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We study the (de)localization phenomena of one-component lattice fermions in spin backgrounds. The O(3)
classical spin variables on sites fluctuate thermally through the ordinary nearest-neighbor coupling. Their
complex two-component (CP1-Schwinger boson) representation forms a composite U(1) gauge field on bond,
which acts on fermions as a fluctuating hopping amplitude in a gauge invariant manner. For the case of
antiferromagnetic (AF) spin coupling, the model has a close relationship with the t − J model of strongly
correlated electron systems. We measure the unfolded level spacing distribution of fermion energy eigenvalues
and the participation ratio of energy eigenstates. The results for AF spin couplings suggest a possibility that, in
two dimensions, all the energy eigenstates are localized. In three dimensions, we find that there exists a mobility
edge, and we estimate the critical temperature TLD(δ) of the localization-delocalization transition at the fermion
concentration δ.
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I. INTRODUCTION

Localization-delocalization (LD) transition of fermions has
been one of the most important problems in quantum statisti-
cal physics and random systems. After the seminal work by
Anderson [1], its relations to the scaling theory, nonlinear
sigma models, and the universality class of random matrix
theory have been studied extensively [2]. The effect of inter-
actions among fermions on the localization has been studied
mostly by using the perturbation theory [3]. Recently, effects
of strong correlations between fermions on a localization have
attracted interests in modern perspectives. Among others,
Smith et al. [4] considered fermions in one dimension (1D)
coupled with the z component of s = 1/2 spins, and they stud-
ied many-body localization (MBL) driven by spontaneously
generated disorders and its relation to disentanglement, and
so on.

As another interesting work, Kovacs et al. [5] studied a LD-
like transition in quantum chromodynamics (QCD) by directly
analyzing the eigenstates of relativistic kernel of quarks mov-
ing in gluon backgrounds. They employed a quenched approx-
imation; i.e., gluon configurations are generated by the SU(N)
pure gauge theory, ignoring the back-reaction by quarks. This
system is substantially different from the Anderson model on
the following points: (i) the background gluon field acts on
fermions not as a random site potential but as a fluctuating
hopping amplitude on link, and (ii) the hopping amplitudes
are not independent link by link but correlate each other via
the SU(N) gauge-field dynamics. QCD is a strong-coupling
system due to large fluctuations of gluons, and it is regarded
as a strongly correlated system, even though there exist no
self-couplings of quarks.

Recently, there appeared a couple of interesting systems
sharing similar properties to the above mentioned QCD. The

spin model by Kitaev [6] is represented in terms of Majorana
fermions moving in a static Z(2) gauge field. Smith et al. [7]
introduced fermion models coupled with a Z(2) gauge field to
study the MBL, focusing on the role of local gauge symmetry.

The purpose of the present work is to study yet another
type of random-gauge system; spinless fermions coupled
with a composite U(1) gauge field, which comes from the
Schwinger-boson (CP1) representation of the O(3) spins. This
gauge theory of fermions is not only simple and univer-
sal but also is closely related with the t − J model [8]
of strongly-correlated electron system in the slave-fermion
representation [9,10]. Strong interactions between electrons
induce fluctuating spin degrees of freedom with nontrivial
correlations. In this perspective, the fermions in the present
model are nothing but doped holes in the spin background. As
far as we know, the problem of localization of doped holes in
strongly correlated electron systems has not been addressed
yet.

In this work, we shall study the system in two and three
spatial dimensions by numerically measuring quantities con-
cerning to the localization phenomena. These numerical stud-
ies show that this system exhibits a LD transition in three
dimensions (3D) for the antiferromagnetic (AF) case, and
we estimate the critical temperature of the LD transition as
a function of the fermion concentration. Together with the
numerical results for the ferromagnetic (FM) case, we suggest
a coherent structure of the phase diagram of LD transition.

This paper is organized as follows. In Sec. II, we introduce
the target model and explain its relation to the t − J model of
strongly correlated electrons. In the model, a spinless fermion
moves in the spin background with nontrivial O(3) correla-
tions. We also explain the outline how to prepare the spin
configurations and use them to calculate physical quantities
studied in the successive sections. In Sec. III, we show the
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numerical results of the unfolded level spacing distribution
(ULSD) for the 2D and 3D cases. We find that the system-size
dependence of ULSD reveals an important difference in the
2D and 3D cases, which allows us to determine the location of
the mobility edge for the 3D system. In Sec. IV, we investigate
the participation ration (PR), which is another useful quantity
used for the study on LD transitions. Numerical results verify
the observations obtained in Sec. III. In Sec. V, we use these
results to locate the LD transition temperature as a function
of fermion concentration. In Sec. VI, we present the results
for the FM spin background, and discuss a possible behavior
of the LD transition temperature. Section VII is devoted for
conclusion.

II. MODEL

Before going to study on the target model, let us consider
the Anderson model to fix the notations and concepts that
we will use in the rest of this work. The Hamiltonian of the
Anderson model is given as follows [1]:

ĤA = −t
∑
x,i

(ψ̂†
x+i ψ̂x + H.c.) +

∑
x

Vxψ̂
†
xψ̂x, (2.1)

where ψ̂x is the annihilation operator of fermion at site x of
the D-dimensional lattice without self-interactions, satisfying
[ψ̂x, ψ̂

†
y ]+ = δxy.t is the hopping amplitude from x to x ±

i with i = 1, . . . , D. Vx is a random potential distributing
uniformly in [−U

2 ,+U
2 ]. We measure the energy eigenvalue

λ of ĤA from the band center (λ = 0). For D = 2, all the
energy eigenstates for U > 0 are localized, while in 3D, there
exists a mobility edge (ME) at λ = ±λME(U ) [11]. ME sepa-
rates extended states for −λME < λ < λME and localized states
for |λ| > λME. Fermi energy λF(δ) is an increasing function
of fermion density δ (≡ average fermion number/site). The
critical density δc of the LD transition is defined by λF(δc ) =
−λME. Then as δ crosses δc from below, there appear extended
states. If fermions are charged, then the system changes from
an insulator to a metal at δ = δc. The energy spectrum of the
target model has a similar structure to that of the Anderson
model. The primary concern is whether the ME exists or not.

The Hamiltonian of the target model Ĥψ is given by

Ĥψ = −t
∑
x,i

(Qxiψ̂
†
x+i ψ̂x + H.c.),

Qxi ≡ z̄xzx+i =
2∑

σ=1

z∗
xσ zx+i,σ . (2.2)

Hereafter, we put t = 1
2 as the unit of energy. The com-

plex fermion hopping amplitude Qxi is defined on each link
(x, x + i) in terms of the CP1 variable [12] or Schwinger
bosons zxσ . zxσ (σ = 1, 2) is the two-component complex site
variables on x and satisfies the following local constraint:

zx = (zx1, zx2)t, zxσ (σ = 1, 2) ∈ C

z̄xzx ≡
∑

σ

z∗
xσ zxσ = 1. (2.3)

(The bar symbol denotes Hermitian conjugate.) This zx forms
a background classical O(3) spin vector �Sx as

�Sx = z̄x �σzx, �Sx · �Sx = 1, (2.4)

where �σ are the Pauli matrices.
The target Hamiltonian Ĥψ in Eq. (2.2) can be regarded as

a model describing dynamics of holes doped in many-body
spin degrees of freedom that are generated by the strong cor-
relations between electrons. A typical model of such strongly
correlated electron systems is the t − J model [8] whose
Hamiltonian is given as

ĤtJ = −t
∑
x,i,σ

(C̃†
x+i,σ C̃xσ + H.c.)

+ J
∑
x,i

(
�̂Sx+i

�̂Sx − 1

4
n̂x+i n̂x

)
, (2.5)

C̃xσ ≡ (1 − Ĉ
†
xσ̄ Ĉxσ̄ )Ĉxσ ,

�̂Sx ≡ 1

2
Ĉ†

x �σĈx, n̂x ≡
∑

σ

Ĉ†
xσ Ĉxσ , (2.6)

where Ĉxσ is the annihilation operator of electron at the site
x with the spin σ = 1(↑), 2(↓), and σ̄ = 1(2) for σ = 2(1).
The physical states of the t − J model exclude the double-
occupancy states such as Ĉ

†
x↑Ĉ

†
x↓|0〉 due to the strong electron

correlations, i.e., the strong onsite repulsion of electrons. Due
to this local constraint, the specific operators C̃xσ in Eq. (2.6)
have been introduced and the hopping term in Eq. (2.5) is
expressed in terms of them. This onsite repulsion also induces
the spin-spin interaction in ĤtJ in Eq. (2.5).

The local constraint is faithfully treated by using the slave-
fermion representation [9,10]. In the slave-fermion represen-
tation of electron, Ĉxσ is represented as a composite,

Ĉxσ = ψ̂†
x âxσ , (2.7)

where ψ
†
x is the creation operator of one-component fermionic

hole [we use the same notation ψx as the fermion operator
in Eq. (2.2) because they are to be regarded as the same
thing] and axσ is the annihilation operator of two-component
bosonic spin. The physical states are defined by imposing the
no-double occupancy condition, such as∑

σ

â†
xσ âxσ + ψ̂†

xψ̂x = 1. (2.8)

We introduce a set of bosonic operators, zxσ , and the following
parametrization:

âxσ = (1 − ψ̂†
xψ̂x )1/2ẑxσ

= (1 − ψ̂†
xψ̂x )ẑxσ , (2.9)

where we have used the fact that the eigenvalue of ψ̂
†
xψ̂x

are 0 and 1. Then, Eq. (2.8) is reduced to the so-called CP1

constraint, ∑
σ

ẑ†xσ ẑxσ = 1. (2.10)

It is rather straightforward to derive the Hamiltonian Ĥψ

in Eq. (2.2) from the hopping term in ĤtJ in Eq. (2.5). In
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particular, for the low doping case, where the hole concen-
tration δ = 〈ψ̂†

xψ̂x〉 is small, one may set âx 
 ẑx in Eq. (2.9)
and the electron hopping term in Eq. (2.5) becomes [13]

C̃
†
x+i,σ C̃xσ + H.c. → ẑ

†
x+i,σ ψ̂x+i ψ̂

†
x ẑxσ + H.c. (2.11)

This is just the hopping term of the Hamiltonian Ĥψ of
Eq. (2.2) with t = 1

2 .
In the present work, we treat {zx} in Ĥψ as random vari-

ables obeying certain distribution density ρ(z). Explicitly we
take ρ(z) as the Boltzmann distribution at the temperature T

with the energy Ez of the following O(3) spin model:

Ez = −J
∑
x,i

�Sx+i · �Sx,

ρ(z) = exp(−βEz)∫
[dz] exp(−βEz)

, (2.12)

where J is the ferromagnetic (FM J > 0) or AF (J < 0)
exchange coupling, β ≡ 1/(kBT ), and [dz] = ∏

x dzx is the
Haar measure. Equation (2.12) is obviously motivated by the
spin-spin interactions in the t − J model in Eq. (2.5) [14].
It should be remarked here that the above treatment of the
spin and hole variables is motivated by the recent works
on MBL for systems in which fast and slow particles exist
and slow particles serve as a random quasi-static background
potential for fast particles [15,16]. Namely, our treatment is
viewed as a quenched approximation for the total Hamilto-
nian Ĥψz = Ĥψ + Ez regarding {zx} as quenched variables
and neglecting the back-reaction from fermions to spins. It
is quite straightforward to extend the present formalism to
other cases of spin correlation. In the practical calculation
below, we prepare M (
1000) such z samples, each of which
is chosen in every 10 sweeps of the hybrid Monte Carlo
simulations.

Ĥψ of Eq. (2.2) and �Sx of Eq. (2.4) are invariant under the
local U(1) gauge transformation [17],

zxσ → eiϕx zxσ , ψ̂x → eiϕx ψ̂x, (2.13)

where ϕx is an arbitrary phase for a local gauge transforma-
tion. This way to couple fermions with O(3) spins �Sx by in-
troducing zx in a gauge-invariant manner reminds us the well
known way to couple charged particles with electromagnetic
field by introducing gauge field Axμ. Because ψx represents
doped holes in Refs. [9,10], the present model may have
some universality common to hole-doped spin models. In the
present work, we study the simplest case in Eq. (2.12).

We consider the D-dimensional spatial lattice with N =
LD sites and the periodic boundary condition. For each z

sample, we calculate numerically N eigenvalues λ and eigen-
functions φx (λ) of the Hermitian fermion kernel � in Ĥψ ,

Ĥψ =
∑
x,y

ψ̂†
x�xy (z)ψ̂y,

�xy = −1

2

∑
i

z̄yzx (δy,x−i + δy,x+i ). (2.14)

In the eigenvalue equation,∑
y

�xyφy (λ) = λφx (λ), (2.15)

�xy and φx gauge-transform covariantly as �xy →
eiϕx �xye

−iϕy and φx → eiϕx φx , whereas λ’s are gauge-
invariant. By using λ and |φx (λ)|, we calculate the ULSD
and PR. Then, we average these quantities over M z-samples.
The obtained results give important informations about
(de)localization of fermions ψ̂x .

To understand the β-dependence of the results given below,
it is useful to recall that the O(3) spin model Eq. (2.12)
has a symmetry under AF ↔ FM with J ↔ −J , and the
2D model has only the paramagnetic (PM) phase, whereas
the 3D model exhibits the second-order AF(FM)-PM phase
transition at βJ 
 −1.4(1.4). The two amplitudes on the
link (x, x + i), (i) FM spin-pair amplitude Qxi = z̄xzx+i and
(ii) AF (resonating-valence bond) amplitude,

Rxi ≡ zx1zx+i,2 − zx2zx+i,1, (2.16)

satisfy the identity,

|Qxi |2 + |Rxi |2 = 1, (2.17)

and the each term in Ez is expressed as �Sx+i · �Sx = |Qxi |2 −
|Rxi |2 = 1 − 2|Rxi |2 = 2|Qxi |2 − 1.

As βJ increase from −∞ (deep AF phase) to ∞ (deep
FM phase), the average squared magnitude 〈|Qxi |2〉 increases
monotonically from zero to 1. In particular, in the strong para-
magnetic phase (|βJ | ∼ 0), 〈|Qxi |2〉 
 〈|Rxi |2〉 
 1

2 . Gener-
ally speaking, as we see below, the population of delocalized
states (if any) in the whole spectrum increases as |Qxi | in-
creases.

III. UNFOLDED LEVEL SPACING DISTRIBUTION (ULSD)

A. Definition of ULSD

The ULSD is one of the commonly used quantities [2,5] to
find a ME in an energy spectrum. Due to the sublattice sym-
metry of the system Eq. (2.14), λ’s distribute symmetrically
around λ = 0, and we focus on the half of them (λ � 0). For
each z sample, we sort N/2 λ’s as λm (m = 1, · · · , N/2) with
λm � λm+1. We group these λ’s into K successive sets (cells)
Ck (k = 1, · · · ,K ) such that Ck contains �k successive λ’s as
Ck = (λk

1, · · · , λk
�k

), where λk
α ≡ λTk+α with Tk ≡ ∑k−1

�=1 ��.
For each Ck , we introduce �k − 1 unfolded level spacings
sk
α (α = 1, · · · ,�k − 1) defined as

sk
α ≡ λk

α+1 − λk
α

�λk
, �λk ≡ λk

�k
− λk

1

�k − 1
, (3.1)

where �λk is the average of the (�k − 1) nearest-neighbor-
level spacings over Ck .

Then we assemble these s (={sk
α}) for each cell Ck over M

z samples, and calculate their distribution Pk (s). By definition,
Pk (s) satisfies the following identities:

∫ ∞

0
dsPk (s) = 1,

∫ ∞

0
dssPk (s) = 1 (3.2)

(owing to the unfolding). In the following calculations, we
choose the parameters as K = 40,�k 
 N/(2K ).
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FIG. 1. 2D AF ULSD Pk (s ) (K = 40) for various L’s. (a) Pk (s )
for k = 2 and 40 (βJ = −0.1). For L = 12, both Pk (s )’s look the
Wigner type. However, as L increases, P40(s ) approaches to the
Poisson type. (b) Pk (s0) at s0, the smallest value of s (s0 is 0.005 ∼
0.015). The region of k for the Poisson type [Pk (s0) > 0] extends to
lower k’s as L increases. (c, d) Same plots for βJ = −10.0. They
show similar but stronger L-dependence of Pk (s0). The dashed lines
in (b, d) show the locations of λMAX(K = 40) (right) and possible λME

or a crossover suggested by the data up to L = 48 (left).

In the random matrix theory [2], typical behaviors of
P (s) (= Pk (s) for each cell Ck in the present context) are
known as

Poisson type PP(s) ∝ exp(−s),

Wigner type PW(s) ∝ sc exp(−ds2), (3.3)

with certain positive constants c and d. The behavior of Pk (s)
near s 
 0 clarifies whether the eigenstates in the k-th cell are
localized or extended, i.e.,

Pk (0)

{�= 0, Poisson, localized state


 0, Wigner, extended state.
(3.4)

Because localized eigenstates have a same shape with a finite
extension (localization length) and to be distinguished by
their locations (centers). These states are degenerate in energy
(s = 0), giving rise to Pk (0) > 0. However, extended eigen-
states are made of superpositions of localized basis states as
in Bloch wave so that the degeneracy is removed Pk (0) = 0.
As K becomes sufficiently large, one can identify the ME as
λME 
 λk

1 where Pk (0) ∼ 0 and Pk+1(0) �= 0. The whole range
of positive λ axis is partitioned into the following sections:
(i) extended states; 0 � λ � λME, (ii) localized states; λME <

λ � λMAX, (iii) no states; λMAX < λ.

B. Results of ULSD

Let us turn to numerical results. In Fig. 1, we show 2D
AF ULSD, Pk (s), for various linear lattice sizes L. Fig. 1(a)
for βJ = −0.1 shows that Pk (s)’s with both k = 2 and k =
40 look the Wigner type for L = 12. However, the curve
for k = 40 seems to approach to the Poisson type as L

increases. In Fig. 1(b), we show Pk (s0), where s0 is the
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FIG. 2. 3D AF ULSD Pk (s ) (K =40) for various L’s. (a) Pk (s )
for k = 2 and 40 (βJ = −0.1). As L increases, P40(s ) approaches to
the Poisson type, while P2(s ) remains in the Wigner type. (b) Pk (s0)
(βJ = −0.1). Its high-value region looks narrower than the 2D case
of Fig. 1(b). (c, d) Same plots for βJ = −10.0. Pk (s0) there separates
its high-value region and low-value region at k ∼ 23 more sharply
than (d) of the 2D case with long tails, suggesting a ME. For the
dashed lines, see Fig. 1.

smallest value of s in each cell Ck . Pk (s0) shows that this
L-dependence is systematic. That is, as L increases, the region
of k with the Poisson type increases toward the lower k

monotonically. Figs. 1(c) and 1(d) for βJ = −10.0 slightly
amplify this L-dependence as expected because localization is
more favored than βJ = −0.1. This peeling-off phenomenon
continues down to some value k = kc in L → ∞, and then kc

is the ME, although the precise determination of kc by Pk (s0)
alone requires scaling arguments using the date for larger L’s.
We shall discuss the ME by using more efficient methods
below.

In Fig. 2, we show the results of 3D AF ULSD for βJ =
−0.1, and −10.0. Figure 2(a) shows that, as L increases,
P2(s) remains the Wigner type, whereas P40(s) changes to
the Poisson type. Pk (s0) in Fig. 2(d) for βJ = −10.0 shows
that the regions of lower and higher value of Pk (s0) are more
clearly separate than the 2D case of Fig. 1(d).

The above observation by using the ULSD seems to indi-
cate that, both in the 2D and 3D cases, a LD transition or a
crossover takes place at finite λME. As mentioned, we shall see
that further analyses below provide us with certain signals for
differences in the LD properties of the 2D and 3D systems.

C. ULSD and mobility edge

A way to determine the location of ME, λME, in a systematic
manner was proposed in Refs. [5,19]. It uses the following
integral:

Ik =
∫ s̄

0
dsPk (s), (3.5)

where we put s̄ 
 0.508 [18] in the practical calculation
following Refs. [5,19,20], but the qualitative results are the
same for other values of s̄(≈0.5). Physical meaning of
the integral Ik is the following. For small s̄, Ik picks up the
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FIG. 3. I (λ) of Eq. (3.5) for βJ = −0.1, −10.0. (a, b) 2D I (λ).
For both β’s, as L increases, I (λ) peels off upward monotonically.
(c, d) 3D I (λ). For both β’s, four curves with different L’s cross
approximately at a single point in contrast with the 2D case. This
almost L-independent point is a candidate of ME. The lower dashed
lines show IW and the upper dashed lines show Ic of the critical
statistics Pc(s ).

behavior of Pk (s) in the regime s ∼ 0, so Ik is small for the
Wigner distribution and large for the Poisson distribution. Let
us regard Ik as a function of the smallest λ in Ck , i.e., λk

1 and
define I (λk

1) ≡ Ik . For large K , λk
1 becomes sufficiently dense,

and so I (λk
1) becomes a smooth function I (λ), which equals

Ik for λ = λk
1. As we mentioned above, one can determine λME,

from the behavior of I (λ). Explicitly, we compare below I (λ)
with its three typical values:

IW 
 0.12 for PW(s),

IP 
 0.40 for PP(s),

Ic 
 0.196 for Pc(s), (3.6)

where the first two correspond to the Wigner and Poisson dis-
tributions of Eq. (3.3), respectively [18,19]. However, Pc(s)
is the critical distribution at the transition point between
them [19,20].

In Fig. 3, we show I (λ) for βJ = −0.1, and −10.0 and
various L’s. In Figs. 3(a) and 3(b), 2D I (λ) remains near the
value IW in the lower-λ region, and it starts to deviate upward
as λ increases. As L increases, the point of deviation shifts to
lower λ’s monotonically.

In Figs. 3(c) and 3(d), 3D I (λ) increases toward IP as λ

increases, as expected [21]. The four curves of I (λ) for four
L’s show systematic size-dependence such that the transition
gets sharper as L increases, and interestingly enough, these
four curves seem to cross with each other almost at the same
point [insets of Figs. 3(c) and 3(d)]. This is in sharp contrast
with the 2D case. This crossing point is L-independent and to
be a candidate for the ME in the infinite-volume limit. Another
candidate of the ME is given by I (λME ) = Ic for the critical
statistics at the transition point between the Poisson and the
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FIG. 4. 2D and 3D AF PR(λ). (a) 2D PR(λ) for βJ = −0.1 and
−10.0. (We plot it only for 0 � λ because PR(λ) is an even function.)
In the small-λ region, PR is fairly large corresponding to extended
states, and as λ increases, PR decreases rapidly toward localized
states. As L increases, PR’s for both βJ reduce monotonically in
the entire region. (b) 2D exponent γ (λ) in the fitting PR(λ) = CLγ .
γ (� −0.3) is negative for all λ, suggesting that PR → 0 as L → ∞.
For large λ’s γ converges to −2(=−D) corresponding to localized
states (see the text). The dashed lines in (a, b) locate approximate
crossover points. (c) 3D AF PR(λ) for βJ = −0.1 and −10.0. In
contrast with the 2D PR of (a), L-dependence of PR in the small-λ
region is quite weak. (d) 3D exponent γ (λ). It stays around zero for
small λ’s and converges to −D = −3 for large λ’s. Panels (c) and (d)
suggest ME around the dashed lines.

Wigner distributions, although the critical statistics itself of
the present model may differ from Pc(s) due to the correlated
hopping. It is interesting that the above two methods give
almost the same estimation of λME.

IV. PARTICIPATION RATIO (PR)

Another quantity that we use to study the LD transition
is the PR [5,22], which is defined by using a normalized
eigenfunction φx of eigenvalue λ as follows:

PR(λ) = 1∑
x |φx |4N . (4.1)

To see typical behavior of the PR, let us calculate PR of a
state with |φx |2 = constant on S sites and φx = 0 on the other
(N − S) sites:∑

x

|φx |2 = S|φx |2 = 1, PR = 1

SS−2N
= S

N
. (4.2)

Equation (4.2) shows that PR is the ratio of numbers of
participated (occupied) sites and the total sites.

In Fig. 4(a), we show the averaged value of 2D AF
PR(λ) over M z-samples for βJ = −0.1 and −10.0. As β

increases, the width of PR [the range of λ = (−λMAX, λMAX )]
decreases reflecting the fact that the magnitude of the FM
hopping amplitude Qxi reduces as the AF correlation in-
creases. Although PR exhibits a crossover between high and
low-value regions suggesting existence of a finite λME, PR de-
creases monotonically as L increases for all λ’s. To study the
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L-dependence of PR(λ) systematically, we fit the obtained
data of PR as

PR(λ) = CLγ (λ). (4.3)

In Fig. 4(b), we show the exponent γ (λ). It shows that
γ is negative (� −0.3) for all λ’s, suggesting that the
L-dependence is strong enough, and all the states get localized
(PR→ 0) as L → ∞. If the state consists of a single localized
region with finite localization length �, then S in Eq. (4.2)
is ∝ �D ∼ L0 and γ → −D as L → ∞ [23]. γ in Fig. 4(b)
certainly converges to this value for λ � 0.4.

In Fig. 4(c), we show 3D AF PR(λ) for βJ = −0.1 and
−10.0. In contrast with the 2D PR in Fig. 4(a), the L-
dependence in the small-λ region is very weak and the lo-
cation of the sharp reduction at λ 
 0.47 is stable, suggesting
existence of a finite ME in the 3D case. In Fig. 4(d) we show
the exponent γ . For λ � 0.3, γ remains almost vanishing,
suggesting the states in that regime are delocalized, and
around λ 
 0.47, γ shifts quickly to 
−D of localized states.
Therefore, we conclude that there is a ME for βJ = −10.0 at
λME 
 0.47, and similarly λME 
 1.8 for βJ = −0.1 [see the
dashed lines in Figs. 4(c) and 4(d)]. These values are in good
agreement with the estimation by using I (λ) of Figs. 3(c)
and 3(d). We note that the 3D Anderson model has a similar
behavior of PR(λ), i.e., it has strong depression for localized
states as L increases, whereas it has almost no L-dependence
for extended states.

Let us summarize the L-dependence of the AF 2D and 3D
systems. Although Pk in Figs. 1 and 2 show weaker signals,
all the quantities, Pk (s), I (λ), PR have similar behavior, i.e.,
the 2D system shows monotonic L-dependence, while the 3D
system has some fixed point in λ that indicates the existence
of a ME. If the 2D monotonic behavior continues down to
λ → 0 as L → ∞, then all the states are to be localized.

V. CRITICAL TEMPERATURE OF THE LD TRANSITION

From the numerical studies explained in the previous
sections, we can estimate the LD transition temperature as
a function of the fermion concentration δ. This problem is
addressed in this section.

As the fermion concentration δ increases from zero to the
critical density δc, Fermi energy increases from −λMAX to
−λME. Because λME depends on T in the present AF 3D system
through Eq. (2.12), δc is determined as a function of T , i.e.,
we have the critical temperature of the LD transition, TLD(δ).
To estimate TLD(δ), we first show λME as a function of βJ in
Fig. 5(a), which is determined by I (λ) of Fig. 3 and the PR
of Fig. 4 for various βJ . To relate λME and δc at sufficiently
low T ’s, we obtain λ(δ) just by counting the number of states
with the eigenvalue between (−λMAX,−λ). In Fig. 5(b), we
plot TLD(δ) in the (δ − T ) plane. The slope of TLD(δ) reduces
drastically as it crosses the Néel temperature from above. It
may reflect the fact that Qxi fluctuates more in the AF phase
than in the PM and FM phases, thus favoring localized states.
Figure 5(b) should be compared with the phase diagrams of
various strongly correlated systems including high-T super-
conductors [10,24,25]. In particular, the observation of the
enhancement of the localization in the Néel state compared
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FIG. 5. (a) 3D ME. λME and λMAX vs. β (we set J = −1). λME

are determined by I (λ) of Fig. 4 (c, d) and similar data for other β’s.
(b) 3D TLD(δ) vs. δ − T . The dashed line shows the Néel temperature
TN 
 1/1.4 of the O(3) model of Eq. (2.12). In the AF phase, the
region of localized states increases.

with the paramagnetic state verifies the validity of the present
study.

VI. FM COUPLING

The target system in the FM case (βJ > 0) may exhibit
qualitatively different behaviors from the AF case because
〈|Qxi |2〉 increases from 0 to 1 as βJ varies from −∞ to ∞. In
Figs. 6(a) and 6(c), we show FM density of state (DOS), D(λ)
defined by

D(λ) = dδ

dλ
, (6.1)

for L = 12 and various βJ ’s. In Figs. 6(b) and 6(d), we show
the corresponding PR’s.

Let us see the 3D case first. In the βJ = 0.1 and 1.0
cases, which correspond to the PM phase (0 < βJ � 1.4),
both D(λ) and PR(λ) are rather smooth, and PR of Fig. 6(b)
has a similar behavior to PR of Fig. 4(c) for βJ = −0.1 in

1.0

0 2.41.2

0.510

20

0

(c) 2D FM DOS (d) 2D FM PR

2.41.2 λ λ

0 2.41.2

1.0

0.5

(b) 3D FM PR

λ

β J=+0.1
β J=+1.0
β J=+4.0
β J=+10

0 2.41.2

10

20 (a) 3D FM DOS

λ

FIG. 6. (a) DOS D(λ) and (b) PR(λ) of the 3D FM system
for L = 12 and 0.1 � βJ � 10. D(λ) is smooth for βJ = 0.1, 1.0,
whereas it is spiky for βJ = 4.0, 10.0. For βJ = 0.1, 1.0, PR(λ)
decreases as λ approaches to the band edges. In contrast, for βJ =
4.0, 10.0, PR(λ) increases sharply near the band edges. (c) DOS
D(λ) and (d) PR(λ) of the 2D FM system for L = 12 and 0.1 �
βJ � 10. These quantities exhibit similar behavior with those in the
3D case.
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the PM phase. However, as βJ increases into the FM phase
(βJ � 1.4), the FM DOS and PR’s for βJ = 4.0 and 10.0
in Figs. 6(a) and 6(b) develop spiking structures, while the
AF PR for βJ = −10.0 in Fig. 4(c) remains smooth. This
reminds us of the plane wave state of a free fermion with
a uniform hopping (Qxi → q = |q|eiα). The energy λfree and
φfree

x of a free fermion are given by

λfree = −|q|
D∑

i=1

cos(ki + α), ki = 2πni

L
, ni = 1, · · · , L,

φfree
x = 1√

LD
exp

(
i
∑

i

kixi

)
. (6.2)

λfree exhibits similar spikes in D(λ) in its interval λfree =
(−D|q|,D|q|) and PR(λ) = 1. Its origin is just the discrete-
ness of the momentum ki .

For sufficiently large βJ , this similarity can be understood
as follows; The O(3) model of Eq. (2.12) for βJ � 1 forces
|Qxi | 
 1. This implies Qxi 
 exp(iϕx ) exp(−iϕx+i ) for each
z-sample, and furthermore the phase ϕx can be absorbed
into ψ̂x giving rise to the free fermion system with q = 1.
However, Fig. 6(b) shows PR � 0.5 instead of PR 
1 except
for the states in the vicinity of the band edge. This unexpected
reduction of PR by factor ∼2 is attributed to the slight
deviation 1 − 〈|Qxi |2〉 �= 0 for βJ < ∞ [we estimated it as
1 − 〈|Qxi |2〉 
 0.03 for βJ = 10.0]. Although it generates
certainly a small change in thermodynamical quantities such
as the internal energy, it induces interference effect on the
wave function and the energy of fermions in destructive man-
ner. A similar discrepancy is observed in the random-phase
hopping model (RPHM) [26], although the RPHM does not
have the local gauge symmetry.

Let us turn to the 2D case. In Fig. 6(c) we show 2D FM
D(λ) and in Fig. 6(d) we show 2D FM PR(λ) for L = 12
and various βJ ’s. Both the DOS and PR are smooth for
smaller βJ (=0.1, 1.0) and exhibit a spike structure for larger
βJ (=4.0, 10.0) as in the 3D case. Explicitly, for all βJ ’s,
PR(λ) keeps ∼0.5 in the central region. For |λ| � 0.2, PR(λ)
decreases rather sharply for βJ = 0.1, 1.0, whereas it keeps
the similar values and even approaches ∼1 in the vicinity
of the band edges for βJ = 4.0 and 10.0. This behavior is
quite similar to the 3D D(λ) of Fig. 6(b). We expect that,
in the limit βJ → ∞, the 2D eigenstates converge to the
plane-wave states of Eq. (6.2).

These contrasting behaviors (i.e., smooth and spiky) of the
2D and 3D PR(λ) near the band edges for two regions of βJ ,
(1) βJ ∈ (−10.0,+1.0) and (2) βJ ∈ (4.0, 10.0) imply that
some critical value βJ = (βJ )c exists at which all the states
become delocalized, i.e., λME = λMAX. This may be expected
as one extends Fig. 5(a) for J = −1 into the positive-J
region. This critical point is to be induced because the squared
hopping amplitude |Qxi |2 runs from 0 to 1 as βJ runs from
−∞ to ∞ both for the 2D and 3D systems. The 2D O(3)
spin model has no phase transitions in contrast with the 3D
model. Therefore, the phase transition of the correlated-spin
background itself is not a necessary condition for the existence
of (βJ )c itself. Calculation of (βJ )c ∈ (1.0, 4.0) requires
further analyses of PR(λ), etc.

VII. CONCLUSION

In summary, we studied the LD of a realistic gauge model
of fermions in the correlated spin background by using the
conventional techniques for random systems and level statis-
tics. As emphasized in the Introduction, the strong correla-
tions between the original electrons generate the fluctuating
spin background with the correlation of the O(3) model in the
present model. We assume that the spin serves as a random
quasi-static background controlling the fermion hopping am-
plitude.

First, we studied the model in 2D and 3D for the AF
spin coupling by the ULSD. Finite-size scaling analysis of
the ULSD indicates the existence of the ME in the 3D
case, whereas it does not give a clear conclusion for the
2D case. Then, we investigated the PR and its finite-size
scaling. The results imply that all the states are localized in
the 2D case, but more detailed study is required to obtain
a clear conclusion. In fact, for some related models of a
2D electron gas in a random magnetic field and an onsite
random potential, a Kosterlitz-Thouless-type metal-insulator
transition was pointed out [27] and also existence of a hidden
degree of freedom was suggested [28]. As the amplitude and
phase of the hopping Qxi are both random variables, the
model in the present work may have some resemblance with
the above ones. This is a future problem. In any case, these
methods work well allowing us to calculate the 3D critical
temperature TLD(δ) of the LD transition. It shows that the
region of localized states is enhanced in the AF phase. The
result of PR for the FM spin coupling indicated some critical
point (βJ )c at which all the states become delocalized (λME =
λMAX).

Concerning to the relation between the magnetic phase
transition of the O(3) spin model and the LD phase transition,
one might expect some strong correlation between them. In
fact, our result that a ME exists in the 3D AF case while no
clear evidence of ME (probably a crossover) in the 2D AF case
is compatible with the fact that the O(3) transition existing in
the 3D case disappears in the 2D case. However, we think that
this is just accidental coincidence. In fact, Anderson model
and related models with uncorrelated randomness show a ME
in 3D but not in 2D, which is explained without additional
phase transitions. Also, our result of Fig. 5(b) shows that the
ME generally takes place not on the O(3) transition line. The
O(3) spin transition is a thermodynamic transition concerning
to a global change in nature of the system, while the LD
transition is related with the transport properties, and the
details of each eigenstate are an essential ingredient for that.
This point shares some common aspect with the discussion
at the end of Sec. VI for the critical value at which λME =
λMAX.
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