
PHYSICAL REVIEW B 98, 184202 (2018)

Disorder perturbed flat bands. II. Search for criticality
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We present a common mathematical formulation of the level statistics of a disordered tight-binding lattice,
with one or many flat bands in the clean limit, in which system-specific details enter through a single parameter.
The formulation, applicable to both single- as well as many-particle flat bands, indicates the possibility of two
different types of critical statistics: one in weak disorder regime (below a system-specific disorder strength) and
insensitive of the disorder strength, another in strong disorder regime and occurs at specific critical disorder
strengths. The single-parametric dependence, however, relates the statistics in the two regimes (notwithstanding
different scattering conditions therein). This also helps in revealing an underlying universality of the statistics in
weakly disordered flat bands, shared by a wide range of other complex systems irrespective of the origin of their
complexity.
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I. INTRODUCTION

A dispersionless band, also referred as a flat band, appears
in crystal lattices under subtle interplay of the system con-
ditions. The onset of disorder, say w, may lead to violation
of these conditions, lifting the degeneracy of the energy
levels and changing the nature of the eigenfunction dynamics.
The important role played by these bands, e.g., in magnetic
systems, makes it relevant to seek the detailed information
about the effect of disorder on their physical properties, e.g.,
if varying disorder may lead to a localization to delocalization
transition and whether its nature is similar to other disorder
driven transitions.

Previous numerical studies [1–4] on perturbed flat bands
indicate the existence of two different types of transitions:
an inverse Anderson transition [1], independent of disorder
strength, in weak disorder regime (below a system-specific
disorder strength, say w0) and a standard Anderson transition
in strong disorder regime [5,6]. The different nature of
these transitions originates from two types of scattering
mechanisms prevailing in the regimes. The wave-function
interference for w < w0 is caused by strong backscattering
due to diverging effective mass (vanishing group velocity
of the wave function) and is insensitive to disorder strength
(disorder-dependent scattering being weaker) [1,2]. The
interference effects for w > w0 are, however, due to
disorder-dominated scattering, resulting in a transition at
a specific disorder if the band is single particle [5]. In case
of many-particle bands, the system in the w > w0 regime
undergoes a many-body localization transition at one or more
critical disorder strengths [7–9]. A theoretical formulation
of the transition in weak disorder regime and its connection
with the one in strong disorder regime has been missing
so far. Our objective here is to pursue a statistical route,
analyze these transitions using spectral statistics as a tool, and
present an exact mathematical formulation of the transition
parameter in terms of the system conditions. The latter
helps in identifying the universality class of the spectral

statistics at each type of transition and reveals analogies if any
exist.

The need to analyze the transition through statistical ap-
proach can be explained as follows. The standard search of a
localization to delocalization transition, hereafter referred as
LD transition, in a disordered system is based on a range of
criteria, e.g., the existence of an order parameter, a divergence
of correlation length at the critical point, a scaling behavior
for finite system sizes, and critical exponents of the average
physical properties. For complex systems, however, the fluc-
tuation of physical properties, from one sample to another or
even within one sample subjected to a perturbation, is often
comparable to their average behavior and their influence on
the physical properties can not be ignored. As a consequence,
one has to consider criteria based on the distribution of the
physical properties [5]. In case of systems where the physi-
cal properties can in principle be expressed in terms of the
eigenvalues and eigenfunctions of a relevant linear operator, it
is appropriate to seek criteria based on their joint probability
distribution function (JPDF) [5].

The definition of criticality in a JPDF of N variable
x1, . . . , xN is in general based on a single-parameter scal-
ing concept [5]. The distribution P (x1, . . . , xN ; t1, . . . , tn)
that depends on system size N and a set of n pa-
rameters t1, t2, . . . , tn obeys one-parameter scaling if for
large N it is approximately a function of only variables
x1, . . . , xN and one scale-dependent parameter, say, � ≡
�(N, t1, . . . , tn). For system conditions under which the
limit �∗ = limN→∞ �(N ) exists, the distribution approaches
a universal limiting form P ∗({x},�∗) = limN→∞ P ({x},�)
and is referred as critical with �∗ as the critical parameter
[5]. In [10], we considered a typical disorder perturbed flat
band, with its Hamiltonian modeled by a system-dependent
ensemble of Hermitian random matrices and described a
single-parametric formulation of its ensemble density. As an
integration of the ensemble density over all eigenfunction
leads to the JPDF of its eigenvalues, this encourages us to
search for a single-parametric scaling of the JPDF as well
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as higher-order eigenvalue correlations. The universal limit of
these correlations, if it exists, is referred as the critical spectral
statistics for the ensemble.

The concept of critical spectral statistics was first intro-
duced in [11] in context of metal-insulator transition in dis-
ordered Hamiltonians; the study showed that the distribution
P (s) of the spacings s between the nearest-neighbor eigen-
values of the Hamiltonian turns out to be a universal hybrid
of the Wigner-Dyson distribution at small s and Poisson at
large s, with an exponentially decaying tail: P (s) ∼ e−κs

for s � 1 with κ as a constant [11]. The analytical studies
later on indicated the criticality to manifest also through an
asymptotically linear behavior of the number variance �2(r )
(the variance in the number of levels in an spectrum interval
of length rD) in mean number of levels r with a fractional
coefficient [12].

As indicated by many studies of the transition in disor-
dered systems, with or without particle interactions, the wave
functions at the critical point are multifractal [5,6,13]. (Note,
however, the study [14] claims an absence of multifractal
wave functions in many-body systems; see [15] in this con-
text.) This led to introduction of the singularity spectrum
as the criteria for the criticality. The wave functions in the
delocalized limit are essentially structureless and overlapping
almost everywhere which leads to Wigner-Dyson–type level
repulsion. In localized limit, the wave functions are typically
localized at different basis state with almost negligible overlap
which manifests in uncorrelated level statistics described by
Poisson universality class. But, the multifractality leads to an
intimate conspiracy between the correlations of energy levels
and eigenfunctions (for both single-particle as well as many-
particle type). This is because the two fractal wave functions,
irrespective of their sparsity, still overlap strongly which in
turn affects the decay of level correlations at long energy
ranges. For |en − em| � �, the correlation between two wave
functions ψn(r ) and ψm(r ) at energies en and em is given as
[12] 〈|ψn(r )|2|ψm(r )|2〉 ∝ |en − em|1−(D2/d ). In [12], χ was
suggested to be related to the multifractality of eigenfunc-
tions too: χ = d−D2

2d
with D2 as the fractal dimension and d

as the system dimension. However, numerical studies later on
indicated the result to be valid only in the weak-multifractality
limit [6].

Our objective in this work is to analyze the criticality of
the spectral statistics and eigenfunctions when a flat band is
perturbed by the disorder. In [10], we analyzed the disordered
tight-binding Hamiltonians, with at least one flat band in the
clean limit, using their matrix representation in an arbitrary
basis. Presence of disorder makes it necessary to consider an
ensemble of such Hamiltonians; assuming the Gaussian disor-
der in onsite energies (and/or interaction strengths, hopping,
etc.) and by representing the nonrandom matrix elements by a
limiting Gaussian, the ensemble density, say ρ(H ) with H as
the Hamiltonian, was described in [10] by a multiparametric
Gaussian distribution, with uncorrelated or correlated matrix
elements. Using the complexity parameter formulation dis-
cussed in detail in [16–20], the statistics of ρ(H ) can then
be mapped to that of a single-parametric Brownian ensemble
(BE) appearing between Poisson and Wigner-Dyson ensem-
ble [20–25] (also equivalent to Rosenzweig-Porter model
[26]). The mapping is achieved by identifying a rescaled

complexity parameter of the BE with that of the disordered
band. The mapping not only implies connections of the
flat-band statistics with the BE but also with other com-
plex systems under similar global constraints, e.g., symmetry
conditions and conservation laws [27,28]. Additionally, as
discussed in detail in [10], it also leads to a single-parametric
formulation of the level density and inverse participation ratio
of the perturbed flat band.

In case of the BEs, the existence of a critical statistics
and multifractal eigenstates is already known [9,20]. Their
connection with disorder perturbed flat bands suggests pres-
ence of criticality in the latter too. This is indeed confirmed
by our results presented here which indicate existence of
a critical statistics for all weak disorders and is therefore
in contrast to a single critical point in the disorder driven
Anderson transition. Although the disorder independence of
the statistics of a weakly disordered flat band was numerically
observed in previous studies [2,3,29], its critical aspects were
not explored. Another feature different from the Anderson
transition is the following: with increasing disorder, the spec-
tral statistics in a flat band undergoes a Poisson → Brownian
ensemble → Poisson transition, implying a localization →
extended → localization transition of the eigenstates. As is
well known, the standard Anderson transition undergoes a de-
localization → localization transition with increasing disorder
[19]. Notwithstanding these differences, the complexity pa-
rameter formulation predicts an Anderson analog of a weakly
disordered flat band and also reveals its connection of to a
wide range of other ensembles [27,28,30] of the same global
constraint class; the prediction is verified by a numerical
analysis discussed later in the paper. Although the theoretical
analysis presented here is based on the Gaussian disorder
in flat bands, but it can also be extended to other types of
disorder [18].

The paper is organized as follows. The complexity pa-
rameter formulation for the ensemble density of a disordered
tight-binding lattice, with at least one flat band in clean
limit, is discussed in detail in [10]. To avoid the repetition,
we directly proceed, in Sec. II, to review the complexity
parameter formulation for the statistics of the eigenvalues and
eigenfunctions. This formulation is used in Secs. III and IV
to derive an exact mathematical expression for the transition
parameter and seek criticality in the disorder perturbed flat
bands; here, we also analyze the influence of other neighbor-
ing bands on the statistics. A detailed numerical analysis of
our theoretical claims is discussed in Sec. V. The next section
presents a numerical comparison of the spectral statistics of
the disordered flat bands with two other disordered ensem-
bles with dispersive bands, namely, the standard Anderson
ensemble with onsite Gaussian disorder and Rosenzweig-
Porter ensemble and confirms an analogy of their statistics
for those system parameters which result in the same value
of their complexity parameters. This in turn validates our
theoretical claim regarding the existence of one-parameter-
dependent universality class of statistics among disordered
bands, irrespective of the underlying scattering mechanism,
and more generally among complex systems subjected to
similar global constraints, e.g., symmetry, conservation laws,
etc. We conclude in Sec. VII with a brief summary of our main
results.
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II. CRITICALITY OF SPECTRAL STATISTICS
AND EIGENFUNCTIONS

Consider the Hamiltonian H of a disorder perturbed tight-
binding lattice with at least one flat band in the clean
limit: H = V + U with V and U as single-particle and two-
particle interactions. By choice of a physically motivated N -
dimensional basis, H can be represented as an N × N matrix,
with N as a system-specific parameter [31]. Here, we consider
a basis, labeled by vectors |k〉, k = 1 → N , in which (i) H is
Hermitian, (ii) matrix elements Hkl are either independent or
only pair-wise correlated. (For example, for U = 0, a basis
consisting of single-particle states, e.g., site basis can serve
the purpose. Similarly, for U �= 0 a many-body wave-function
basis [8], e.g., many-body Foch basis of localized single-
particle states or occupation-number basis, is appropriate [32];
see Sec. III of [10] for an example.)

Ensemble complexity parameter. As discussed in [10]
along with a few examples, the statistical behavior of the H

matrix, with entries Hkl , can be modeled by a multiparametric
Gaussian ensemble if Hkl are either independent or pairwise
correlated. Assuming e1, e2, . . . , eN and U1, . . . , UN as the
eigenvalues and eigenfunctions of H , the correlations among
their various combinations can then be obtained, in principle,
by an integration of the ensemble density, say ρ(H ), over
those variables which do not appear in the combination. To
study the effect of varying system conditions on the corre-
lations, it is, however, easier as well as more informative to
first derive an evolution equation of ρ(H ) which on integra-
tion leads to the evolution equations for the correlations. As
described in [10], irrespective of the number of changing con-
ditions, the diffusion of ρ(H ) undergoes a single-parametric
evolution

∂ρ

∂Y
=

∑
k,l;q

∂

∂Hkl;q

[
gkl

2

∂

∂Hkl;q
+ γ Hkl;q

]
ρ, (1)

where gkl = 1 + δkl with δkl as a Kronecker delta function and
γ is an arbitrary constant, marking the end of the diffusion.
The diffusion parameter Y , referred as the ensemble complex-
ity parameter, is a combination of all ensemble parameters of
ρ(H ) and thereby contains the information about the system
parameters.

A detailed derivation of Eq. (1) is technically complicated
and is discussed in [17] for multiparametric Gaussian en-
sembles (also see [16,27]) and in [18] for multiparametric
non-Gaussian ensembles. As an example, consider the case
which can be modeled by the probability density ρ(H, v, b) =
C exp[−∑β

q=1

∑
k�l

1
2vkl;q

(Hkl;q − bkl;q )2]; here, q refers to
the real (q = 1) or imaginary (q = 2) component of the vari-
able, with β as their total number, and, the variances vkl;q and
mean values bkl;q can take arbitrary values (e.g., vkl;q → 0 for
nonrandom cases). Using Gaussian form of ρ(H ), it is easy to
see that a specific combination Tρ of the parametric deriva-
tives, namely, Tρ ≡ ∑

k�l;q [ 2
(2−δkl )

xkl;q
∂ρ

∂vkl;q
− γ bkl;q

∂ρ

∂bkl;q
]

can exactly be rewritten as the right side of Eq. (1) where
xkl;q ≡ 1 − (2 − δkl )γ vkl;q . Clearly, the left side of Eq. (1)
must satisfy the condition Tρ = ∂ρ

∂Y
which on solving gives Y

as follows [16,18]:

Y = − 1

γ Nβ

ln

⎡
⎣∏

k�l

β∏
q=1

|xkl;q | |bkl;q + b0|2
⎤
⎦ + const

(2)

with Nβ = βN

2 (N + 2 − β ) + Nb and Nb as the total number
of bkl;q which are not zero. Further, b0 = 1 or 0 if bkl;q = 0 or
�= 0, respectively. Similarly, Y can be formulated for the case
when the matrix elements of H are pairwise correlated; see
[10] and Eq. (15) of [17].

Spectral density correlations: Spectral complexity param-
eter. The statistical measures of a spectrum basically corre-
spond to the local fluctuations of spectral density around its
average value and can in principle be obtained from the nth-
order level-density correlations Rn(e1, e2, . . . , en; Y ), defined
as Rn = ∫ ∏n

k=1 δ(ek − λk )ρ(H ; Y )DH . As mentioned in
[10] (see Sec. II C therein), Eq. (1) is analogous to the Dyson’s
Brownian motion model of random matrix ensembles, also
referred as Brownian ensemble [see Sec. 6.13 of [21] or
Eq. (9.2.14) of [22]]. The latter describe the perturbation of
a stationary Gaussian ensemble by another one with Y as a
perturbation parameter (or mean-square off-diagonal matrix
element of the perturbation). Following exactly the same
steps, as used in the derivation of Eq. (6.14.21) in Sec. 6.14 of
[21], a hierarchical diffusion equation for Rn can be derived by
a direct integration of Eq. (1) over N − n eigenvalues and en-
tire eigenvector space (also see Sec. 8 of [23] or [20,24,25] for
more information). The specific case of R1(e) was discussed
in detail in [10]; it varies at a scale Y ∼ N�2

e . The solution
of the diffusion equation for R2(e1, e2) with Poisson initial
conditions is discussed in [24] [see Eq. (48) therein]. Contrary
to R1, Rn with n > 1 undergo a rapid evolution at a scale
Y ∼ �2

e , with �e(e) as the local mean level spacing in a small
energy range around e. For comparison of the local spectral
fluctuations around R1(e), therefore, a rescaling (also referred
as unfolding) of the eigenvalues en by local mean level spacing
�e(e) is necessary. As discussed in detail in Sec. 6.14 of
[21] in context of single-parametric Brownian ensembles, this
leads to a rescaling of both Rn as well as the crossover
parameter Y , with new correlations given as Rn(r1, . . . , rn) =
limN→∞ (�e )nRn(e1, e2, . . . , en), where rn = en/�e and the
rescaled crossover parameter �e given as [see Eq. (6.14.12)
of [21]]

�e(Y, e) = |Y − Y0|
�2

e

. (3)

As discussed in [16] (see Sec. I E therein) and [17] [see
neighborhood of Eq. (53) therein], Eq. (3) also gives the
rescaled parameter in context of multiparametric Gaussian en-
sembles. (This is expected because the latter include Gaussian
Brownian ensembles as a special case.) As Y is a combination
of all ensemble parameters, �e can be interpreted as a measure
of average complexity (or uncertainty) of the system measured
in units of mean level spacing. This encourages us to refer �e

as the spectral complexity parameter. It must be noted that
�e → ∞ leads to a steady state, i.e., Gaussian orthogonal
ensemble (GOE) if H is real symmetric (β = 1) or Gaussian
unitary ensemble (GUE) if H is complex Hermitian (β = 2),
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�e → 0 corresponds to an initial state [16,17,20]. Also note
that �e here refers to the single-particle mean level spacing
for the single-particle bands and many-particle level spacing
in case of the many-particle bands.

In principle, all spectral fluctuation measures can be ex-
pressed in terms of Rn; the spectral statistics as well as
its criticality, therefore, depend on the system parameters
and energy only through �e. For system conditions un-
der which the limit �∗ = limN→∞ �e(N ) exists, Rn ap-
proaches a universal limiting form Rn

∗(r1, . . . , rn; �∗) =
limN→∞ Rn(r1, . . . , rn; �e ). Clearly, the size dependence of
�e plays an important role in locating the critical point which
can be explained as follows. The standard definition of a phase
transition refers to infinite system sizes (i.e., limit N → ∞);
the parameter governing the transition is therefore expected to
be N independent in this limit. In general, both Y − Y0 as well
as �e and therefore �e can be N dependent. In finite systems,
a variation of N therefore leads to a smooth crossover of
spectral statistics between an initial state (�e → 0) and the
equilibrium (�e → ∞); the intermediate statistics belongs to
an infinite family of ensembles, parametrized by �e. However,
for system conditions leading to an N -independent value
of �e, say �∗, the spectral statistics becomes universal for
all sizes; the corresponding system conditions can then be
referred as the critical conditions with �∗ as the critical value
of �e. It should be stressed that the critical criteria may not
always be fulfilled by a given set of system conditions; the
critical statistics therefore need not be a generic feature of all
systems. (For example, it is conceivable that �e for a single-
particle flat band perturbed by disorder may not achieve size
independence at a specific energy for any disorder strength,
thus indicating lack of criticality. Switching on particle in-
teractions, however, may change the size dependence of �e

and Y and lead to a size independent �e.) This indicates
an important application of the complexity parameter based
formulation: �e provides an exact criteria, based only on
a Gaussian ensemble modeling of the Hamiltonian, to seek
criticality and predict the presence or absence of the LD
transition in a disorder perturbed flat band (single particle as
well as many particles).

At the critical value �e = �∗, Rn (for n > 1) and therefore
all spectral fluctuation measures are different from the two
end points of the transition, i.e., �e = 0 and ∞ and any
one of them can, in principle, be used as a criterion for the
critical statistics [20]. An important aspect of these measures
is their energy dependence: Rn retain the dependence through
�e even after unfolding and are nonstationary, i.e., vary
along the spectrum [20]. Any criteria for the criticality in the
spectral statistics can then be defined only locally, i.e., within
the energy range, say δec, in which �e is almost constant
[20]. For example, as reported by the numerical study [2] of
diamond lattice with two flat bands, the metal-insulator tran-
sition occurs only at specific energies; this energy dependence
of transition can theoretically be explained using �e (see
Sec. IV for details).

Spectral fluctuations: Standard measures. Based on pre-
vious studies, numerical as well as theoretical, two spectral
measures, namely, nearest-neighbor spacing distribution P (s)
and the number variance �2(r ), are confirmed to be reliable
criteria for seeking criticality [5,6,11,22,33] in a wide range

of complex systems. Here, P (s) measures the probability
of a spacing s between two nearest-neighbor energy levels
(rescaled by local mean level spacing) and �2(r ) gives the
variance of the number of levels in an interval of r unit mean
spacings. Although in the past P (s) has played an important
role in spectral fluctuation analysis of many-body systems,
e.g., nuclei, atoms, and molecules, the numerical rescaling
of a many-body spectrum is subjected to technical issues,
e.g., exponentially increasing density of states or numerical
simulation of large number of realization. This has motivated
some recent studies to suggest another spectral measure for
the short-range correlations, namely, distribution of the level
spacing ratio [32,34]. In this study, however, it is sufficient
to consider P (s) for the critical analysis (this is because the
disordered systems used in our, as well as previous, numerical
analysis [2] are single-particle cases with Gaussian mean level
densities and the unfolding on the spectrum is easier).

As confirmed by several studies in past (see, for ex-
ample, [5,6,22,33] and references therein), the level fluc-
tuations of a system in a fully delocalized wave limit be-
have similar to that of a Wigner-Dyson ensemble, i.e., GOE
(β = 1) for cases with time-reversal symmetry and inte-
ger angular momentum and GUE (β = 2) for cases with-
out time-reversal symmetry; here, P (s) = Aβsβe−Bβ s2

with
A1 = π/2, B1 = π/4, A2 = 32/π2, B2 = 4/π , and �2(r ) =

2
π2β

(ln(2πr ) + γ + 1 + (β−2)π2

8 ) with γ = 0.5772. Simi-
larly, the fully localized case shows a behavior typical of a
set of uncorrelated random levels, that is, exponential decay
for P (s), also referred as Poisson distribution P (s) = e−s ,
and �2(r ) = r [5,22,33]. (In case of the structured matrices,
e.g., those with additional constraints aside from Hermiticity,
however, Poisson spectral statistics may appear along with
delocalized eigenfunctions [35].)

For nonzero, finite �e cases, the exact P (s) behavior
is known only for the Brownian ensembles consisting
of matrices of size N = 2. As derived in [36], P (s) for
Poisson → GOE crossover and Poisson → GUE crossover
can be given as

P (s,�e ) = s

4�e

exp

(
− s2

8�e

) ∫ ∞

0
dx e− x2

8�e
−xI0

(
xs

4�e

)
,

β = 1 (4)

P (s,�e ) = s√
2π�e

exp

(
− s2

8�e

)

×
∫ ∞

0
dx

1

x
e− x2

8�e
−x sinh

(
xs

4�e

)
, β = 2

(5)

with I0 as the modified Bessel function [see Eqs. (5) and (11)
of [36]]. Here, β = 1 case corresponds to Brownian ensemble
of real-symmetric matrices which appear as a perturbed (or
nonequilibrium) state of a Poisson ensemble by a Gaussian
orthogonal ensemble (also referred as the Poisson → GOE
crossover) and are good models for systems with time-reversal
symmetry. Similarly, the β = 2 case corresponds to Brownian
ensembles of complex Hermitian matrices, appearing as a
perturbed state of a Poisson ensemble by a Gaussian unitary
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ensemble (also referred as Poisson → GUE crossover) and
are applicable to systems without time-reversal symmetry.
As P (s) is dominated by the nearest-neighbor pairs of
the eigenvalues, this result is a good approximation also
for N × N case derived in [37], especially in small-s and
small-�e limits. Using the complexity parametric based
mapping of the multiparametric Gaussian ensembles of the
perturbed flat bands to Brownian ensembles, the above results
can directly be used for the former case too.

As mentioned above, �e is nonzero, finite, and size in-
dependent in the critical regime. This, along with Eqs. (4)
and (5), indicates the following: P (s) ∼ e−κs , for s � 1 with
κ a constant for a finite �e. The study [11] indicates an
exponentially decaying tail of P (s) as a criteria for critical
spectral statistics. Similarly, �2(r ) for the critical spectral
statistics is linear but with fractional coefficient: �2(r ) ∼ χ r

with 0 < χ < 1 [5]. The coefficient χ , also referred as the
level compressibility, is a characteristic of the long-range
correlations of levels; it is defined as, in a range r around en-
ergy e, χ (e, r ) = 1 − ∫ r

−r
[1 − R2(e, e + s)] ds. As R2(e, r )

is related to �2(e, r ), χ can also be expressed as the r rate of
change of �2(e, r ) [5,12]: χ = limr→∞ d�2(r )

dr
. As discussed

in [19,20], χ at the critical point �∗ can be given as

χ ≈ 1 − 4 π2 �∗ small �∗ (6)

≈ 1

βπ2�∗ large �∗ (7)

with χ (e, r,� = 0) = 1 and 0 for Poisson and Wigner-Dyson
(GOE if β = 1 or GUE if β = 2) limits, respectively. χ is also
believed to be related to the exponential decay rate of P (s)
for large s: χ = 1

2κ
. Although χ is often used as a measure

for criticality of the statistics [5] but, as discussed in [20], its
numerical calculation in case of nonstationary ensembles is
error prone and unreliable.

Eigenfunction fluctuation measures. At the critical point,
the fluctuations of eigenvalues are in general correlated with
those of the eigenfunctions. The spectral features at the criti-
cality are therefore expected to manifest in the eigenfunction
measures too. As shown by previous studies [5,6], this indeed
occurs through large fluctuations of their amplitudes at all
length scales, and can be characterized by an infinite set
of critical exponents related to the scaling of the ensemble-
averaged, generalized inverse participation ratio (IPR), i.e.,
moments of the wave-function intensity with system size.
At transition, ensemble average of IPR, later defined as
Iq (e) = ∫ |�(r)|2qdr for a state �(r) with energy e, reveals
an anomalous scaling with size N : 〈Iq〉(e) ∼ N−(q−1)Dq/d

with Dq as the generalized fractal dimension of the wave-
function structure and d as the system dimension. At critical
point, Dq is a nontrivial function of q, with 0 < Dq < d.
The criticality in the eigenfunction statistics also manifests
through other eigenfunction fluctuation measures, e.g., IPR
distribution or two-point wave-function correlations [6]. A
complexity parameter based formulation for these measures
is discussed in [10,20,25].

Role of dimensionality. The dimensionality dependence
of the critical point in the localization → delocalization
transitions of the wave functions is well established. This can
also be seen through �e based formulation where dimension d

of the system enters mainly through local mean level spacing
�e(e) at energy e. This can be explained as follows. In the
delocalized regime, a typical state, say �(r), occupies the
volume Ld with L as the linear size of the system which
gives |�(r)|2 = 1

Ld [under normalization
∫
Ld |ψ (r)|2 dr = 1).

As almost all states in this regime occupy the same space
with unit probability, �e(e) = 1

〈ρe〉 Ld with 〈ρe(e)〉 as the
mean spectral density (i.e., number of states per unit energy
per unit volume): 〈ρe(e)〉 = 1

N
〈∑N

n=1 δ(e − en)〉 = R1
N

. In the
localized regime, the states are typically not overlapping but
localized in the same regime with a probability ξd

Ld where ξ

is the average localization length at energy e; consequently,
�e(e) in this case corresponds to the level spacing in the local-
ized volume ξd and is given as �e(e) = 1

〈ρe〉 ξd = N
R1 ξd . Note

ξ (e) is in general a function of dimensionality [5] (aside from
other system conditions, e.g., particle interactions) and can be
expressed in terms of the inverse participation ratio 〈I2〉 of the
eigenfunctions in a small neighborhood of e (with 〈. . .〉 and
. . . implying ensemble and spectral averages, respectively):
ξd = (〈I2〉)−1. The above gives �e(e) = N

R1
〈I2〉 which on

substitution in Eq. (3) results in

�e(Y,N, e) = |Y − Y0|
N2

(
R1

〈I2〉

)2

. (8)

As is clear from the above, a size independence of �e(e),
i.e., existence of �∗(e) requires a subtle cancellation of size
dependence among the ensemble complexity parameter Y ,
ensemble-averaged level density R1, and inverse participation
ratio I2 (single particle or many particle based on the nature
of the band). Note, in case of a many-particle band, ξ refers to
many-particle localization length, defined as the typical scale
at which many-particle wave function decays and I2 its inverse
participation ratio.

In the following sections, we use Eq. (8) to derive �e for
three cases of disorder perturbed flat bands; R1 and I2 for
these cases are derived in [10].

III. TRANSITION IN AN ISOLATED FLAT BAND

In [10], we obtained the ensemble complexity parameter Y

for a perturbed flat band. For cases in which disorder w is the
only parameter subjected to variation, Y turns out to be

Y − Y0 = − 1

N
ln |1 − w2|, (9)

where Y0 corresponds to the unperturbed flat band (w = 0)
and N is the number of energy levels in the band. As discussed
in [10], the level density R1 for an isolated flat band for
arbitrary w is [Eq. (39) of [10]]

R1(e; w) = N√
2πw2

e
− e2

2w2 . (10)

Further, the averaged inverse participation ratio 〈I2〉(e) for
arbitrary w and large N can be approximated as (see Sec. V B
of [10])

〈I2〉 ≈ 6πu0

NEc

e
2�I
N e

− 4e
Ec

+ e2

2w2 (11)
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with u0 as the local intensity at e = 0 and �I = 4 ln |1−w2|
E2

c
.

Here, Ec is an energy scale associated with the range of
level repulsion around e and can in general depend on e as
well as w. Equation (11) is obtained by assuming Ec ∼ N−μ

with μ � 0 which is consistent with the definition of Ec; as
discussed in [10], Ec ∼ Eth with Eth as the Thouless en-
ergy: Eth ∼ o(N−1) and o(N0) for the localized and delocal-
ized dynamics, respectively, but in partially localized regime
Eth ∼ �(e)ND2/d , with �(e) = (R1(e))−1 as the mean level
spacing at energy e, D2 as the fractal dimension, and d as
the physical dimension. Assuming �(e) ∼ N−η with η as a
system-dependent power, this gives

Ec ∼ N−(ηd−D2 )/d (12)

and μ = (ηd − D2)/d. With 0 � D2 � d, the assumption
μ > 0 is valid at least in flat-band regime where η = 1 [the
latter follows from Eq. (10)].

Substitution of Eqs. (10) and (11) along with Eq. (9) in
Eq. (8) leads to

�e(Y,N, e) = NE2
c

72π3 u2
0

| ln |1 − w2||
w2

e
− 16 ln |1−w2 |

NE2
c e

8e
Ec

− 2e2

w2 .

(13)

As is clear from the above, �e depends on the energy e,
disorder w, as well as energy scale Ec. To seek the critical
point, it is necessary to find specific e and w values which
results in a �e size independent as well as different from
the two end points: lim

N→∞ �e �= 0,∞. For further analysis of
Eq. (13), we consider following energy and disorder regimes:

Case e ∼ 0. For large N and Ec ∼ N−μ with 0 < μ � 1
2 ,

one can approximate e
− 16 ln |1−w2 |

NE2
c ∼ 1. This along with Eq. (13)

then implies disorder independence of �e for e
√

2 < w < 1:

�e(Y,N, e) = NE2
c

72 π3 u2
0
. Further for cases with μ = 1

2 , �e is
also size independent, implying a critical spectral statistics in
the bulk of the flat-band spectrum (i.e., e ∼ 0). As indicated
by our numerical analysis, η = 1, D2 ≈ 1.18 which gives
Ec ∼ N−0.41 for the two-dimensional checkerboard lattice
(d = 2) in weak disorder limit. The criticality of the spectral
statistics is also confirmed by the size independence of the
fluctuation measures [see parts (c) and (e) of Figs. 2 and 3].
The details are discussed later in Sec. V. (Note, for weak
disorder, the checkerboard lattice has a perturbed flat band in
the neighborhood of a dispersive band but the former can still
be treated as isolated.)

For large w and finite N , �e decrease smoothly with
increasing w and therefore the spectral statistics near e ∼
0 again approaches Poisson limit, implying a lack of level
repulsion. Further, in the limit N → ∞, �e → 0 for any finite
w > 1 which indicates a transition from critical statistics to
Poisson at w ≈ 1. As is clear from the above, the statistics
undergoes an inverse Anderson transition in the disorder per-
turbed flat band, with fully localized states at zero disorder be-
coming partially localized for a weak disorder (w < 1 in our
case). However, the usual Anderson transition sets in presence
of strong disorder (w � 1). In infinite-size limit N → ∞, the
statistics therefore shows two types of disorder driven critical
behavior near e ∼ 0: (i) at w ∼ 0, Poisson → near GOE (or

near GUE in presence of magnetic field) transition of the level
statistics, (ii) at w ∼ 1, the level statistics transits from near
GOE/GUE → Poisson.

Case e > 0. For w2 < 2e2, the term e
− 2e2

w2 → 0 which
gives �e → 0 and Poisson statistics. But, for a fixed e > 0,

e
− 2e2

w2 → 1 with increasing w and consequently �e increases
too if w < 1. For w > 1, however, the contribution from other
terms results in a decrease of �e with increasing w. For finite
N the statistics at e > 0 therefore changes from Poisson →
GOE → Poisson with increasing w. An important point worth
emphasizing here is an energy dependence of the spectral
statistics for infinite system sizes (N → ∞) and for weak
disorder: critical near e ∼ 0 if Ec(e ∼ 0) ∝ 1√

N
but Poisson

for e > 0 if N E2
c � 1 for e > 0. This suggests the existence

of a mobility edge separating partially localized states from
the localized states.

At this stage, it is relevant to indicate the following. As the
level density for a flat band in clean limit can be expressed
as a δ function, irrespective of whether the band is single- or
many-particle type, the formulation derived in [10] remains
valid for both types of bands (although Y for two cases
is different). Similarly, the response of the average inverse
participation ratio to weak disorder discussed in [10] is based
on a knowledge of initial condition only and not on the
presence or absence of interactions in the band; it is thus
applicable for both types of bands too. This is, however, not
the case for the spectral fluctuations which are governed by �e

and therefore dependent on the local mean level spacing �e.
For many-particle spectrum, �e in general depends on many-
particle localization length which can be varied by tuning
either disorder or interactions. Thus, the size independence of
many body �e can be achieved in many ways which could as
a result lead to more than one critical point.

IV. TRANSITION IN A FLAT BAND WITH OTHER BANDS
IN THE NEIGHBORHOOD

In presence of other bands, the energy as well as size de-
pendence of �e, defined in Eq. (8) can vary significantly based
on the neighborhood. As calculation of �e requires a priori
knowledge of the level densities and IPR, here we consider
two examples for which these measures are discussed in [10].

(i) Two flat bands: As discussed in Sec. VI A [10], R1(e)
can now be expressed as a sum over two Gaussians (originat-
ing from δ-function densities of two flat bands)

R1(e; w) = N

2
√

2πw2

2∑
k=1

e
− (e−ek )2

2w2 (14)

with e1, e2 as the centers of two flat bands. The IPR in the
large-N limit is (see Sec. VI B of [10])

〈I2〉(e,�I ) ≈ 3 u0

√
2π

2 R1 Ec

2∑
k,l=1

e− 4(e−ek )
Ec e

− (el−ek )2

2w2 + 2�I
N

×�(e − ek ) (15)

with �I = 4 ln |1−w2|
E2

c
and �(x) as the step function: �(x) =

0, 1 for x < 0 and x > 0, respectively. Substitution of
Eqs. (14) and (15) in Eq. (8) now gives �e for this case.
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A better insight can, however, be gained by deriving �e in
different energy regimes.

Case e ∼ ek . For e ∼ ek , with k = 1, 2, Eqs. (14) and (15)

can be approximated as R1(e; w) ≈ N

2
√

2πw2
[1 + e

− (e2−e1 )2

2w2 ] and

〈I2〉(e) ≈ 6πu0
NEc

e
8ln|1−w2 |

NE2
c . These on substitution in Eq. (8) give

�e(Y,N, e) ≈ NE2
c

288π3u2
0

| ln |1 − w2||
w2

e
− 16 ln |1−w2 |

NE2
c

[
1 + e

− (e2−e1 )2

2w2
]2

.

(16)

Clearly, similar to the single-band case, here again �e is
independent of disorder for w < 1 and in large-N limit but it
rapidly decreases with larger disorder (for w > 1). Here again
the size independence of �e requires Ec ∝ 1√

N
. For w < 1,

the spectral statistics at the centers of two Gaussian bands
(flat bands in clean limit) can therefore be critical as well as
disorder independent only if μ = 1

2 .
Case e ∼ (e1 + e2)/2. For the energies midway be-

tween two bands, R1 is very small for w < 1 but, con-
trary to band center, it increases with increasing w for

w > |e1 − e2|: R1( e1+e2
2 ) = N√

2πw2
e
− (e2−e1 )2

8w2 and Eq. (15)

gives 〈I2〉(e) ≈ 6πu0
NEc

e
8 ln |1−w2 |

NE2
c e

−2(e2−e1 )
Ec e

(e1−e2 )2

8w2 [1 + e
−(e1−e2 )2

2w2 ].
With Y − Y0 given by Eq. (9), we now have

�e(Y,N, e) = NE2
c

72π3u2
0

| ln |1 − w2||
w2

e
− 16 ln |1−w2 |

NE2
c

× e
4(e2−e1 )

Ec e
−(e1−e2 )2

2w2

(
1 + e

−(e1−e2 )2

2w2
)2

. (17)

As is clear from the above, here also �e become N inde-
pendent, thus implying critical statistics if Ec ∝ N−1/2. Note,

however, the term e
−(e1−e2 )2

2w2 present in Eq. (17) can result in the
statistics different from that of e ∼ ek .

A case of two flat bands was studied in [2] for the three-
dimensional hexagonal diamond lattice. The study indicates
D2 ≈ 2.55 and 2.61 for e ∼ ek and e ∼ (e1 + e2)/2, respec-
tively. With �(e) ∝ N−1 and d = 3, Eq. (12) gives Ec for this
system as N−0.15 for e ∼ ek and N−0.13 for e ∼ (e1 + e2)/2.
Based on our theory, the statistics is predicted to be size
as well as disorder dependent near e ∼ (e1 + e2)/2 and size
dependent but disorder independent near e ∼ ek . The display
in Figs. 4 and 5 of [2] indeed confirms this prediction.

The case of three flat bands was discussed in [38], for
a bipartite periodic lattice described by a tight-binding, in-
teracting Hamiltonian. The study indicates a localization →
delocalization transition at the onset of disorder or many-body
interactions. The possibility of a critical behavior for this case
can be explored along the same route as given above.

(ii) A flat band at the edge of a dispersive band: For the
combination of a flat band located at e = 0 and a dispersive
band at e > 0 with the level density fd (e), the results in
Sec. VI of [10] give

R1(e; w) = N

2
√

2πw2
e
− e2

2w2 + N

2
fw(e,w,N ) (18)

with fw(e,w,N ) as the dispersive band density at disorder w

and

〈I2〉(e,�I ) ≈ 1

2 R1

3
√

2

w Ec

[u0
√

π + B1 + B2 + B3]

× e− 4e
Ec

+ 2�I
N (19)

with B1 = 2u0w
Ec

√
πN
�I

∫ ∞
−∞ dx fw(x) e

− 2Nx2

�I E2
c

+ 4x
Ec , B2 = N

∫ ∞
−∞

dx fw(x)ud (x) e
− x2

2w2 + 4x
Ec , B3 = √

2πw2
∫ ∞
−∞ dx fw(x)ud (x)

e
4x
Ec and �I = 4 ln |1−w2|

E2
c

. Here, u0 and ud (e,w) are the local
eigenfunction intensities in the flat band at disorder w = 0
and in dispersive band at disorder w. For cases in which
fw(e,w,N ) vary slower than the Gaussians in the related
integrals, B1 and B2 can be approximated as follows:

B1 = π
√

2u0fw( �I Ec

4 )e
2�N

N , B2 = √
2πw2ud ( 4w2

E2
c

) e
8w2

E2
c .

A substitution of Eqs. (18) and (19) along with Eq. (9) in
Eq. (8) gives �e for arbitrary energy and disorder but here
again it is instructive to analyze the behavior near specific
energies,

Case e ∼ 0. Due to almost negligible contribution for
weak disorder from the dispersive part near e ∼ 0, one can
approximate R1 ≈ N

2
√

2πw2
and 〈I2〉 ≈ 6πu0

NEc
which in turn

gives �e = N E2
c

288π3u2
0
. The latter is therefore again size as well

as disorder independent indicating criticality near e ∼ 0 for
all weak disorders if Ec ∝ N−1/2. As intuitively expected,
the behavior of spectral statistics near e ∼ 0 and w < 1
in this case is analogous to that of the single flat-band
case.

As mentioned in [3,10], the two-dimensional checkerboard
lattice consists of a flat band and a dispersive band in a
clean limit. Our numerical analysis of the system for w < 1
indicated �(e) ∝ N−1 and D2 ∼ 1.18 [see Figs. 2(a) and 2(b)
and 3(a) and 3(b) of this work and Fig. 4 of [10]], leading
to Ec ∼ N−0.41 which implies 〈I2〉 ∼ N−0.59, an indicator of
partially localized states [39]. Based on theoretical grounds,
therefore, the spectral statistics is expected to be critical
near e ∼ 0 and w < 1; this is indeed confirmed by the size
independence of the statistics displayed in Figs. 2(c) and 2(e)
and 3(c) and 3(e).

For large w (e.g., w > 1 for the case with μ = 1
2 ),

however, the contribution from the dispersive band be-
comes significant near e ∼ 0. This results in R1(e ∼ 0) ≈

N

2
√

2πw2
T1 where T1 = 1 + √

2πw2 fw(0, w,N ) and 〈I2〉 ≈
6

√
π

N Ec T1
[u0

√
π + B1 + B2 + B3] e

8 ln |1−w2 |
NE2

c . These on substitu-
tion in Eq. (8) give

�e(Y,N, e) = NE2
c

288 π2

| ln |1 − w2||
w2

× T 4
1

(u0
√

π + B1 + B2 + B3)2

× e
− 16 ln |1−w2 |

NE2
c . (20)

As is clear from the above, for large w and finite N , �e

decrease smoothly with increasing w and therefore the spec-
tral statistics near e ∼ 0 again approaches the Poisson limit,
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implying lack of level repulsion; note Ec is expected to
decrease with increasing w. Further, in the limit N → ∞,
�e → 0 for any finite w > 1 which indicates a transition from
critical statistics to Poisson at w ≈ 1.

The above prediction is again consistent with our numeri-
cal analysis [see Figs. 4(c) and 4(e) and 5(c) and 5(e)]. Note
as displayed in Fig. 5(a), �(e) ∝ N−1, and in Fig. 5(b), D2 ≈
0.5 which gives Ec ∼ N−0.75, thus implying a size dependent
�e, approaching zero in large-N limit which corresponds to
Poisson statistics. Figures 4(c) and 4(e) and 5(c) and 5(e)
indeed confirm the approach of spectral measures to Poisson
limit for e ∼ 0 and w > 1.

Case e > 0. Due to weaker contribution from the Gaussian
density for e > 0, the contribution from the dispersive band
density need not be negligible and it is appropriate to consider
the full form of R1(e). The IPR can now be approximated

as

〈I2〉 ≈ 6
√

π

NEcT0
[u0

√
π + B1 + B2 + B3]e

− 4e
Ec

+ 8 ln |1−w2 |
NE2

c ,

(21)

where T0 = e
− e2

2w2 + √
2πw2 fw(e). The above leads to

�e(Y,N, e) = NE2
c

288π2

| ln |1 − w2||
w2

× T 4
0

(u0
√

π + B1 + B2 + B3)2
e
− 16 ln |1−w2 |

NE2
c

× e
8e
Ec . (22)

The presence of the term e
8e
Ec in Eq. (22) results in

the statistics different from the case e ∼ 0. For w = 0, the
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FIG. 1. Disorder dependence of spectral measures in two energy ranges: (a) P (S ) in the bulk of flat band (e ∼ 0), (b) P (S ) in the bulk of
dispersive band (e ∼ 4), (c) χ (r ) in the bulk of flat band (e ∼ 0), (d) χ (r ) in the bulk of dispersive band (e ∼ 4). Here, W = w2 and P (S ) refers
to the distribution of the nearest-neighbor spacing S and χ (r ) as the spectral compressibility for the unfolded eigenvalues taken from a narrow
energy range around the specific energy for a fixed system size L = 70. The total number of eigenvalues used in each case is approximately
105. As clear from (a) and (c), the statistics is near GOE and disorder insensitive for w < 1 but approaches Poisson limit for w > 1. Clearly,
with w = 0 as the Poisson case (due to degeneracy in flat-band spectrum), increasing disorder from zero leads to a change of statistics from
Poisson to near-GOE to Poisson, which corresponds to a localization-delocalization-localization crossover of the eigenfunctions in the bulk of
the flat band. But, (b) and (d) indicate a disorder insensitivity as well as inverse crossover in the dispersive band: with w = 0 as GOE case,
increasing disorder from zero leads to a change of statistics from GOE → Poisson → GOE which corresponds to a delocalization-localization
crossover of the eigenfunctions in the bulk of the dispersive band.
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FIG. 2. Critical spectral statistics for weak disorder w = √
3 × 10−5: (a) Level density in the flat band (inset showing the behavior in

the dispersive band) with fit f (ew ) = 1
2
√

1.25π
ew

−0.8 e2
w , (b) Dq in the flat band (e ∼ 0), (c) P (S ) for flat-band bulk (e ∼ 0), (d) P (S ) for

dispersive-band bulk (e ∼ 4), (e) χ (r ) for flat-band bulk (e ∼ 0), (f) χ (r ) for dispersive-band bulk (e ∼ 4). Panels (c)–(e) also display the
GOE and Poisson limits. Here, with 〈I2〉 = 0.0116 and R1 ≈ 0.248 N

w
, Eq. (23) gives �e = 0.395 near e ∼ 0. The convergence of the curves

for different sizes in (c) and (e) indicates scale invariance of the statistics in the flat band. The behavior is critical due to P (S ) being different
from the two end points, namely, Poisson and GUE statistics even in large size limit. This is also confirmed by the χ behavior shown in (e),
approaching a constant value 0.2 for large r , and Dq behavior shown in (b). Note the χ value is in agreement with Eq. (7) and D2 is consistent
with relation D2 = d (1 − 2χ ) with d = 2. The survival of scale invariance and partially localized behavior even for such a weak disorder
indicates the critical point of the inverse Anderson transition to occur at zero disorder strength. In contrast, (d) and (f) indicate that the bulk
statistics in the dispersive band is size dependent and is not critical.

statistics in the dispersive band at e > 0 is that of a GOE (or
GUE if time-reversal symmetry is violated) but, with onset of
disorder, it abruptly changes to Poisson. With increasing w

for 0 < w < 1, �e increases but starts decreasing above w =
1. For large e > 0, the statistics therefore varies from GOE
(at w = 0) to Poisson statistics for w = 0+, becomes GOE
at w = 1, and then again approaches Poisson w > 1. This
prediction is consistent with our numerical results displayed in
Figs. 2(d) and 2(f) and 3(d) and 3(f) for w < 1 and Figs. 4(d)
and 4(f) and 5(d) and 5(f) for w � 1.

V. NUMERICAL ANALYSIS:
2D CHECKERBOARD LATTICE

To verify our theoretical predictions, we pursue a nu-
merical statistical analysis of the eigenvalues and eigenfunc-
tions of the Hamiltonian H = ∑N

x,y Vxy c
†
y.cx of a 2D planar

pyrochlore lattice with single orbital per site [3,10]. With
2D unit cell labeled as (m, n), one can write a site index
as x = (m, n, α) with α = a, b (i.e., two atoms per unit
cell). The lattice consists of one flat band Ef = ε − 2t and
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FIG. 3. Critical spectral statistics for weak disorder: w = 0.1: The details here are the same as in Fig. 2; the fit in part (a) is f (ew ) =
1

2
√

1.25π
e−0.8e2

w . Here, with 〈I2〉 = 0.0116 and R1(e) ≈ 0.248N

w
, Eq. (23) gives �e ≈ 0.395. As can be seen from (b) and (e), χ = 0.2, D2 = 1.2

near e ∼ 0 which is again in agreement with Eq. (7) as well as relation D2 = d (1 − 2χ ) with d = 2. The analogy of the statistics with the case
displayed in Fig. 2 indicates the disorder insensitivity of the statistics for w < 1.

one dispersive band Ed = ε + 2t (cos kx + cos ky + 1) if Vxy

satisfies the following set of conditions [3,10]: (i) Vxx = ε,
(ii) Vxy = t with x = (m, n, α) if y = (m, n, β ) or (m −
1, n, β ) or (m, n + 1, β ) with β = a, b, and (iii) Vxy = 0 for
all other x, y pairs.

For ε = 2, t = 1, the Hamiltonian, in absence of disorder,
consists of a flat band at e = 0 and a dispersive band centered
at e = 4. (This can be seen from the band energies Ef and Ed

given above.) The onset of disorder through onsite energies
with 〈Vxx〉 = ε, 〈V 2

xx〉 − 〈Vxx〉2 = w2 leads to randomization
of the Hamiltonian. For the numerical analysis, therefore, we
simulate large matrix ensembles of the Hamiltonian and, at
many w, for various ensemble sizes M (the number of matri-
ces in the ensemble) as well as the matrix sizes N = L2. The
energy sensitivity of the transition (due to energy dependence
of �e) requires the fluctuation’s analysis at precisely a given
value of energy. In order to improve the statistics, however, a

consideration of the averages over an optimized energy range
�E is necessary (not too large, to avoid mixing of different
statistics). For comparison of a measure for different system
sizes N at a given disorder, we have used only 20% levels in
our numerical analysis.

In [10], we theoretically analyzed the disorder dependence
of level density R1 and average inverse participation ratio 〈I2〉.
Our results indicated a disorder insensitivity of these measures
in weak disorder limit (w < 1). This was also confirmed by
their numerical analysis as well as that of Dq displayed in
Fig. 4 of [10]. A search for criticality, however, also requires
an analysis of the size dependence of the fluctuation measures.
In this section, we numerically analyze the disorder and size
dependence of the spectral fluctuations as well as the fractal
dimensions Dq . Figure 1 displays the disorder dependence of
P (s) and �2(r ) in two energy regimes, i.e., near e ∼ 0 and
e ∼ 4 (corresponding to bulk of the flat band and dispersive
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FIG. 4. Critical spectral statistics for disorder: w = 1: (a) Level density R1(ew )/N along with fit f (ew ) = 1
2
√

1.15π
e−0.76 e2

w with ew = e/w,
(b) Dq near e ∼ 0, (c) P (S ) near e ∼ 0, (d) P (S ) near e ∼ 4, (e) χ (r ) near e ∼ 0, (f) χ (r ) near e ∼ 4. Here, with 〈I2〉 = 0.0269 and R1(e) ≈
0.261N

w
, Eq. (23) gives �e = 0.08 near e ∼ 0. Panels (b) and (e) now give D2 = 0.95, χ = 0.5 near e ∼ 0; these values are no longer consistent

with Eq. (6) or (7) or relation D2 = d (1 − 2χ ); the latter is, however, expected because the D2 − χ relation is expected to be valid only for
small χ . Further, as can be seen from (a), the two bands start merging at this disorder strength. In contrast to the weak disorder case, the
statistics in flat and dispersive bands are now reversed, i.e., closer to Poisson and GOE, respectively. But, the survival of scale invariance and
partially localized behavior even for this disorder strength indicates the dominance of flat-band spectrum on that of the dispersive band.

bands in clean limit). As clear from Figs. 1(a) and 1(c), for
a weak disorder (w < 1) and near e ∼ 0, both measures are
insensitive to change in disorder. But as displayed in Figs. 1(b)
and 1(d), the statistics in the dispersive band (e ∼ 4) varies
with disorder even for weak disorders. A similar result was
reported by the numerical study of a three-dimensional disor-
dered diamond lattice (with two flat bands in the clean limit)
[2]. The effect of onsite disorder for the T3 lattice with three
flat bands in clean limit was analyzed in [29]. The results again
indicated disorder independence of the fluctuation measures
for low disorder w < 1 but an increase of localization with w

for w > 1.
Our next step is to seek criticality in the spectral and

eigenfunction statistics. For this purpose, we focus on the

size dependence of P (S), χ , and D2 in two energy regimes
e ∼ 0 and e ∼ 4; the results for four disorder strengths, two
in weak and two in strong disorder regime, are displayed in
Figs. 2–5. [Here, for clarity of presentation, a comparison with
theoretical approximation given by Eq. (4) is not displayed.]
To determine �e for these cases, it is numerically easier
to use the following expression (instead of the theoretical
approximation discussed in the previous section):

�e,FE = R2
1

〈I2〉2

| ln |1 − w2||
N3

, (23)

where R1 and 〈I2〉 are numerically obtained; the correspond-
ing values are given in the captions of Figs. 2–5. Before
proceeding further, it is important to note that the initial
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FIG. 5. Critical spectral statistics for strong disorder w = √
10: (a) Level density R1(ew )/N along with fit f (ew ) = 1

2
√

0.82π
e−1.2 e2

w with
ew = e/w, (b) Dq near e ∼ 0, (c) P (S ) near e ∼ 0, (d) P (S ) near e ∼ 4, (e) χ (r ) near e ∼ 0, (f) χ (r ) near e ∼ 4. Here, with 〈I2〉 = 0.1149
and R1(e) ≈ 0.3 N/w, Eq. (23) gives �e = 1.38 × 10−3 near e ∼ 0. As can be seen from (b) and (e), χ ≈ 0.6, D2 = 1.2 near e ∼ 0. Again,
there is no agreement with Eq. (6) or relation D2 = d (1 − 2χ ). Clearly, Eq. (6) seems to be applicable for a much smaller �e. Further, a
large D2 value here seems to be the effect of the complete merging between two bands giving rise to a new band. The statistics approaches
the Poisson regime and an intermediate regime for e ∼ 0 and e ∼ 4, respectively, both indicating localized dynamics of wave functions. The
system has now reached an insulator limit in the bulk energies but is still partially localized at the edge of the new band.

condition w = 0 (clean limit) corresponds to �e = 0 but the
initial state of the statistics is different in the two bands. In
the clean limit, the flat band corresponds to Poisson statistics
while the dispersive band corresponds to that of the GOE.

The size independence as well as location of the curves,
intermediate to Poisson and GOE limits in Figs. 2(c) and
2(e), is an indicator of the critical spectral statistics; note the
disorder here is very weak (w ∼ 10−5). Similarly, behavior
in Fig. 2(b) is an indicator of the partially localized wave
functions [6,39] in the weakly disordered flat-band bulk; also
note that Figs. 2(b) and 2(e) give D2 ≈ 1.2 and χ ≈ 0.2,
respectively, for the flat band which agrees well with the
prediction based on the weak multifractality relation D2 =
d(1 − 2χ ) (note d = 2 in our case) [12]. With �e ≈ 0.384

in this case (see caption of Fig. 2), the numerically obtained χ

value is also consistent with Eq. (7). In contrast to behavior
near e ∼ 0, the size dependence of the measures is clearly
visible from Figs. 2(d) and 2(f) (depicting behavior near
e ∼ 4) which rules out criticality in the dispersive regime.
Furthermore, the statistics here is almost Poisson which in-
dicates an abrupt transition from GOE (for w = 0) with onset
of disorder;

As shown in Figs. 3(b), 3(c), and 3(e), the critical behavior
in the flat band persists even when disorder is varied to
w ∼ 10−1. But, in contrast to w ∼ 10−5, the statistics in the
dispersive regime (e ∼ 4) now shifts away from the Poisson
limit [see Figs. 2(d) and 2(f) and 3(d) and 3(f)]; this implies
a tendency of the wave functions in the dispersive band to in-
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creasingly delocalize as w approaches 1. The results given in
Figs. 2 and 3 clearly indicate the reverse trend of the statistics
in two bands with increasing disorder in range 0 < w � 1:
the flat-band bulk undergoes a Poisson → near GOE →
near Poisson type crossover with increasing w (though never
reaching GOE), but the dispersive bulk changes from GOE →
Poisson → GOE limit. For w > 1, however, bands increas-
ingly overlap with each other and the statistics for both
energy ranges approaches the Poisson limit with increasing
disorder (although at different rate based on energy regime,
see Figs. 4 and 5), as expected from a standard Anderson
transition (later discussed in more detail in [6]). The statistics
now seems to be size independent for all energy ranges. Also,
note from Figs. 5(b) and 5(e), the relation D2 = d(1 − 2χ ) is
no longer so well satisfied near e ∼ 0 [here d = 2, D2 ≈ 0.5
from Fig. 5(b) and χ ≈ 0.42 from Fig. 5(e)]. This is expected
because the multifractality in the band is no longer weak.

As confirmed by a large number of theoretical, numerical,
as well as experimental studies of wide-ranging complex
systems [5,6,22,33], Poisson and GOE type behaviors of
the spectral statistics are indicators of localized and delo-
calized dynamics of the eigenfunctions, respectively, with
an intermediate statistics indicating partially localized states
[39] (note, as discussed in [35], the above relation between
spectral statistics and eigenfunction dynamics is valid only
for Hermitian matrices). This implies that, for w ∼ 10−5

and 10−1, the states near e ∼ 0 are extended (although not
completely delocalized) but localized near e ∼ 4 [see parts
(c) and (d) of Figs. 2 and 3]. For w = 1, however, the local-
ization tendency is now reversed, with almost localized states
near e ∼ 0 but delocalized near e ∼ 4. This inverse eigenstate
localization tendency at e ∼ 0 to the at e ∼ 4 for a given weak
disorder hints at the existence of a mobility edge/region. Note
beyond w > 1, all states are almost localized although the
rate of change of localization length with disorder strength
is energy dependent. (This follows because the average local-
ization length in general depends on both disorder as well as
energy.)

Let us now focus on the flat band only. As is clear from
the above, the behavior near e ∼ 0 indicates the occurrence
of an inverse Anderson transition, with fully/compact lo-
calized states at zero disorder becoming partially localized
for a nonzero weak disorder (w < 1 in our case). However,
the usual Anderson transition sets in presence of the strong
disorder (for w � 1). The quantum dynamics near e ∼ 0 now
shows two types of critical behavior: (i) at w = 0, a localized
→ extended state transition, in weak disorder regime, and
(ii) an extended state → localization transition at w ≈ 1.

VI. ANALOGY WITH OTHER ENSEMBLES

Based on the complexity parametric formulation, different
ensembles subjected to the same global constraint (which is
the Hermitian nature of H matrix in this study) are expected
to undergo similar evolution. This in turn implies an analogy
of their statistical measures if the values of their complexity
parameters are equal and the initial conditions are statisti-
cally analogous. In this section, we verify the analogy by
comparing the statistical behavior of weakly disordered flat
bands with two other disordered ensembles of real-symmetric

matrices, namely, the Anderson ensemble with onsite Gaus-
sian disorder and Rosenzweig-Porter ensemble. Similar to
flat-band lattices, both of these ensembles can be expressed as
a multiparametric Gaussian ensemble and the expressions for
Y and �e for them can be easily obtained (see [19], [28], and
[20] for details). The two ensembles can briefly be described
as follows.

Anderson ensemble. The standard Anderson Hamiltonian
H = ∑N

k=1 εkc
†
kck + ∑N

k,l=n.n Vklc
†
kcl describes the dynam-

ics of an electron moving in a random potential in a d-
dimensional tight-binding lattice with one atom per unit cell.
The disorder in the lattice can appear through onsite energies
εk or hopping Vkl between nearest-neighbor sites. Here, we
consider the lattice with N sites, an onsite Gaussian disorder
(with 〈ε2

k〉 = w2, 〈εk〉 = 0), and a random nearest-neighbor
hopping (〈V 2

kl〉 = tf0, 〈Vkl〉 = 0 with f0 = 1 if the sites k, l

are nearest neighbors, otherwise it is zero) with z as the
number of nearest neighbors. The ensemble density in this
case can be written as

ρ(H ) = lim
σ→0

Ca

N∏
k=1

e
− H2

kk

2w2

N∏
k,l=n.n

e− H2
kl

2t

N∏
k,l �=n.n

e
− H2

kl

2σ2 (24)

with Ca as the normalization constant. From Eq. (9), the
ensemble complexity parameter in this case is [19]

Y ≈ − 1

N
ln[|1 − w2| |1 − 2t |z/2] + const. (25)

Here, the initial state is chosen as a clean lattice with suf-
ficiently far off atoms resulting in zero hopping (i.e., both
w = 0 and t = 0) which corresponds to a localized eigenfunc-
tion dynamics with Poisson spectral statistics. (This choice
ensures the analogy of initial statistics with the flat-band case.)
Substitution of Eq. (25) in Eq. (3) with �e(e) = N〈I2〉

R1
and 〈I2〉

as the typical ensemble as well as spectral averaged IPR at e,
leads to

�e,AE(Y,N, e) = R2
1

N 〈I2〉2 |ln(|1 − w2| |1 − 2t |z/2)|. (26)

Based on the complexity parameter formulation and ver-
ified by the numerical analysis discussed in [19], the level

density here turns out to be a Gaussian: R1(e) = N√
2πα2

e
− e2

2α2 .
As indicated by several studies in the past (e.g., [5,6]), the lo-
calization length ξ in this case depends on the dimensionality
as well as disorder: (i) ξ ≈ π l ≈ O(L0) for all w for d = 1
with l as the mean-free path of the electron in the lattice, (ii)
ξ ≈ e

1
2 πlkF ≈ O(L0) for all w for d = 2 with kF as the Fermi

wave vector, and (iii) ξ ≈ ξ0(e,w) LD2 with D2 = d
2 for the

critical disorder w = w∗ for d > 2. As a consequence, �e ∼
O(1/N ) for d � 2, which implies the statistics approaching
an insulator limit N → ∞. For d > 2, �e in the spectral
bulk is size independent only for w = w∗ (for a fixed t),
thus indicating only one critical point [19] of transition from
delocalized to localized states with increasing disorder.

An important point worth reemphasizing here is that
notwithstanding the N dependence of Y − Y0 as for the An-
derson ensemble (AE) and the flat bands (discussed in Sec. II),
the statistics of energy levels and eigenfunctions in the two
cases undergoes an inverse transition. This occurs because �e,
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FIG. 6. Comparison of flat-band ensemble (FE) with AE and BE: Here, (a) and (b) display the P (s ) comparison for the AE, BE analogs
of a weakly disordered flat band for two disorders w2 = 0.1 and 10. The AE and BE analogs have been obtained by the conditions �e,FE =
�e,AE = �e,BE given by Eqs. (23), (26), and (28), respectively; the system parameter for the three ensembles leading to approximately same
�e near e ∼ 0 are as follows: (a) FE: N = 1156, w2 = 10−2, ε = 2, t = 1, AE: N = 512, w2 = 4.15

6 , t = 1
12 , BE: N = 512, c = 0.2, and

(b) FE: N = 1156, w2 = 10, ε = 2, t = 1, AE: N = 512, w2 = 120.15
6 , t = 1

12 , BE: N = 512, c = 69.2. To rule out the accidental coincidence,
we also compare γ1 = γ (0.4699), γ2 = γ (1.9699) for a range of �e values. The results are displayed in (c) and (d), respectively. As clearly
visible from the figures, the values for all three ensembles collapse on the same curve for small �e values. But, while �e of a flat band decreases
for both small and large �e, the �e of an AE and BE smoothly increases from 0 to a large value with decreasing disorder. The deviation in
their behavior for large �e values is therefore an indicator of the different nature of transition.

the only parameter governing the spectral statistics, depends
on the localization length and mean level density which have
different response to disorder w in the two cases.

Rosenzweig-Porter (RP) ensemble. This represents an en-
semble of Hermitian matrices with independent, Gaussian
distributed matrix elements with zero mean, and different
variance for the diagonals and the off diagonals. The ensemble
density ρ(H ) in this case can be given as

ρ(H ) ∝ exp

⎡
⎣−1

2

N∑
i=1

H 2
ii − (1 + μ0)

N∑
i,j=1;i<j

H 2
ij

⎤
⎦. (27)

As is clear from the above, contrary to the multiparametric-
dependent Anderson case, the RP ensemble depends on the
single parameter, i.e., ratio of the diagonal to off-diagonal
variance (aside from matrix size).

The ensemble density given above is analogous to the
Brownian ensemble (BE) which arises due to a single-
parametric perturbation of an ensemble of diagonal matrices
by a GOE ensemble (discussed in detail in Sec. 2 of [19] and
also in [20]). Clearly, the statistics of BE or RP ensemble lies
between Poisson and GOE limits and depends on a single
parameter which can be given as follows. The choice of
initial condition as an ensemble of diagonal matrices (which

corresponds to μ0 → ∞) gives Y − Y0 = 1
4μ0

[see Eq. (11)
of [19], also can be seen from Eq. (2) by substituting vkl;q =
δkk + (1−δkk )

2(1+μ0 )δq1, bkl,q = 0 for all k, l pairs) which leads to

�e,BE(e) = Y − Y0

�e(e)2
= R2

1

4μ0
. (28)

Note, the second equality in the above equation is obtained by
using �e(e) = 1

R1(e) (see [40] for a brief explanation).
As discussed in [20], the size dependence of R1(e; μ0) for

a BE or RP ensemble changes from
√

N to N . This in turn
indicates the existence of two critical points: (i) for μ0 =
c1N

2: here, R1 = N√
π
e−e2

which gives �e,BE = 1
4πc1

e−2e2
;

(ii) for μ0 = c2N : here, R1(e) = (bπ )−1
√

2bN − e2 leading
to �(e) = 2bN−e2

π2b2Nc2
with b ∼ 2. The two critical points here

correspond to a transition from localized → extended →
delocalized states with decreasing μ0 [20].

Parametric values for the analogs. For numerical analysis
of the Anderson ensemble, we consider a three-dimensional
cubic lattice with hard-wall boundary conditions, onsite Gaus-
sian disorder w, and a random hopping with t = 1

12 . For
the Brownian ensemble, we choose the case with μ0 = cN2

(note the latter choice is arbitrary). The system parameters for
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the Anderson and Brownian ensemble analogs of a weakly
disordered flat band can now be obtained by invoking the
following condition:

�e,FE = �e,AE = �e,BE (29)

with �e,FE, �e,AE,�e,BE given by Eqs. (23), (26), and (28),
respectively.

Figure 6 displays a comparison of the nearest-neighbor
spacing distribution for two cases of disordered checkerboard
lattice (with Fermi energy in bulk of the flat band) with
AE and BE analogs predicted by Eq. (29). The numerically
obtained values for the analogs near (e ∼ 0 for each case) are
as follows:

(i) Weak disorder analogy. (a) FE: N = 1156, w2 =
0.01, ε = 2, t = 1, 〈I typ

2 〉 = 0.0116, R1(e) = 0.248 N
w

which
gives �e,FE = 0.395; (b) AE: N = 512, w2 = 4.15/6, t =
1/12, z = 6, 〈I typ

2 〉 = 0.025, R1 = 0.2983 × N with �e,AE =
0.465; and (c) BE: N = 512, c = 0.2 with �e,BE = 0.398.

(ii) Strong disorder analogy. (a) FE: N = 1156, w2 =
10, ε = 2, t = 1, 〈I typ

2 〉 = 0.1149, R1(e) = 0.3 N
w

which
gives �e,FE = 1.3 × 10−3; (b) AE: N = 512, w2 = 120.15/6,
〈I typ

2 〉 ≈ 0.3, R1 ≈ 0.1/N with �e,AE = 7.58 × 10−4; and
(c) BE: N = 512, c = 69.2 with �e,BE = 1.15 × 10−3.
The AE and BE analogs for the other flat-band cases can
similarly be obtained. Alternatively, statistics of the perturbed
flat band considered here can also be mapped to the AEs
with different system conditions and the BE with μ0 ∝ N .
To confirm that this analogy is not a mere coincidence and
exists for other �e values too, we compare these ensembles
for full crossover from �e = 0 → ∞. One traditionally used
measure in this context is the relative behavior of the tail of
nearest-neighbor spacing distribution P (s), defined as

γ (δ; �) =
∫ δ

0 [P (s; �) − P (s; ∞)]ds∫ δ

0 [P (s; 0) − P (s; ∞)]ds
(30)

with δ as one of the two crossing points of Po(s) = P (s; ∞)
and Pp(s) = P (s; 0) (here the subscripts o and p refer to
the GOE and Poisson cases, respectively) [5,19]. As obvious,
γ = 0 and 1 for GOE and Poisson limit, respectively, and
a fractional value of γ indicates the probability of small
spacings different from the two limits. In the limit N → ∞,
a γ value different from the two end points is an indicator of
a new universality class of statistics and therefore a critical
point. Figures 6(c) and 6(d) show a comparison of γ for two
δ values for three systems: γ1 = γ (δ1) and γ2 = γ (δ2), with
δ1 = 0.4699, δ2 = 1.9699; the display confirms our theoreti-
cal claim regarding the analogy of the three systems. It must
be noted that the �e for FE never approaches a value as large
as that of AE and BE; following from Eqs. (13) and (17), it
first increases and then decreases beyond a disorder-strength
w ∼ 1. This is contrary to AE and BE for which �e decreases
with increasing disorder. This behavior is also confirmed by
our numerical analysis displayed in the figure.

VII. CONCLUSION

Finally, we summarize with main insights and results given
by our analysis. We find that a disordered system, with one or
more flat bands in the clean limit, can undergo two types of

localization to delocalization transition. In the weak disorder
regime (below a system-specific disorder strength, say wc),
the localization is insensitive to disorder strength and persists
even for a very small disorder. This in turn leads to a criti-
cal spectral statistics, disorder independent and analogous to
a Brownian ensemble intermediate to Poisson and Wigner-
Dyson classes. But, in the strong disorder regime (w > wc),
the behavior is analogous to that of a disorder driven, standard
Anderson transition (for single-particle bands) or many-body
localization transition (for many-particle bands) in which a
size-invariant spectral statistics occurs only at specific disor-
der strengths; the statistics here is again analogous to a Brown-
ian ensemble but characterized by a different parameter value.
This clearly reveals the influence the underlying scattering
has on the transitions in the two regimes: although it affects
the transition parameter dependence on disorder, the spectral
statistics in both regimes belongs to one parameter-dependent
universality class of Brownian ensembles.

The analysis presented here is based on a single-parameter
formulation of the spectral statistics. This not only helps in
theoretical understanding of the numerical results given by
our, as well as previous, studies [2] but also reveals addi-
tional features. For example, it provides a unified formulation
of the spectral statistics in the weak and strong disorder
regimes (notwithstanding different scattering conditions). It
also identifies the spectral complexity parameter as the transi-
tion parameter and leads to its exact mathematical expression,
which in turn helps in the search of criticality in a disorder
perturbed flat band; this occurs when the system conditions
conspire collectively to render the spectral complexity param-
eter size independent. More clearly, the criticality requires the
ensemble complexity parameter, an indicator of the average
uncertainty in the system, measured in the units of local mean
level spacing, to become scale free. The underlying localiza-
tion dynamics clearly leaves its fingerprints on the transition
parameter; the latter turns out to be disorder independent in
the weak disorder regime but is disorder dependent in the
strong disorder regime.

The advantage of complexity parameter based analysis
goes beyond a search for criticality in perturbed flat bands.
It also reveals an important analogy in the localization to
delocalization crossover in finite systems: notwithstanding
the difference in the number of critical points as well as
equilibrium limits, the statistics of a disordered flat band can
be mapped to that of a single-parametric Brownian ensemble
[20] as well as a multiparametric Anderson ensemble [19]
(see Sec. VI). The analogy of these ensembles to other
multiparametric ensembles intermediate between Poisson
and Wigner-Dyson is already known [18,20,27,30]. In fact, it
seems a wide range of localization → delocalization transition
can be modeled by a single-parameter Brownian ensemble
appearing between Poisson and GOE (Rosenzweig-Porter
ensemble) [28]. This hints at a large-scale universality and a
hidden web of connection underlying complex systems even
for a partially localized regime. Note the universality of spec-
tral statistics and eigenfunctions in the ergodic or delocalized
wave regime is already known but the complexity parameter
formulation reveals a universality even at the critical point of
widely different systems (of same global constraint class) if
their complexity parameters are equal. It is relevant for the
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following reason: It is well known that average properties
of systems often show a power-law behavior at the critical
point and can be classified into various universality classes
based on their powers, referred as the critical exponents.
However, in case of a complex system where the fluctuations
of physical properties are often comparable to their averages,
it is not enough to know the universality classes of critical
exponents. An important question in this context is whether
there are universality classes among the fluctuation properties
too. As discussed in Sec. VI, such universality classes can
indeed be identified based on the complexity parameter
formulation. This issue will be discussed in more detail in a
future publication.

Our study gives rise to many new queries. For example, an
important question is whether weak particle-particle interac-
tions in clean flat bands can mimic the role of weak disorder
in the perturbed flat bands. At least, the complexity parameter
formulation predicts this to be the case but a thorough investi-
gation of the fluctuations is needed to confirm the prediction.
A detailed analysis of the role of the symmetries in flat-band
physics using the complexity parameter approach still remains
to be investigated. Our analysis seems to suggest the existence
of a mobility edge too, however, this requires a more thorough
investigation. We expect to explore some of these questions in
the future.
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