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Quantized excitation spectra by magnon confinement in quasi-one-dimensional S = 1 spin systems
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The infinite time-evolving block decimation algorithm is applied to calculate the dynamical spin-structure
factors of the quasi-one-dimensional (Q1D) S = 1 antiferromagnetic spin system with single-ion anisotropy
and bond alternation. It is found that when the staggered field induced by the weak interchain interaction is
taken into account, the excitation continuum originating from magnons is quantized. The excitation energies
of the quantized excitation spectra are well explained by the negative zeros of the Airy functions, when the
single-ion anisotropy is negatively strong. This quantization of the magnon continuum is a counterpart of the
spinon confinement, which has been recently discussed for Q1D S = 1/2 antiferromagnets. It is further shown
that, when a staggered field exists, the quantized excitation spectra appear on the phase boundary between the
Haldane and Néel phases of the phase diagram without the staggered field. However, the quantized excitation
spectra disappear in the singlet-dimer phase.
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Recent inelastic neutron scattering (INS) experiments [1,2]
on quasi-one-dimensional (Q1D) S = 1/2 antiferromagnetic
(AF) Ising-like XXZ magnets, (Ba/Sr)Co2V2O8 [3], have
reported that, below the Néel temperature TN, these materials
show quantized excitation spectra with excitation energies that
are well explained by the series of negative zeros in the Airy
function (NZAF). McCoy and Wu argued the relation between
the NZAF and confinement of the domain-wall excitations by
focusing on the excitation spectra of the S = 1/2 ferromag-
netic (FM) Ising chain in weak transverse and longitudinal
magnetic fields [4,5]. Since the ground state of this model
is a fully polarized state, low-energy excitation is achieved
by flipping spins of arbitrary lengths, i.e., two domain-wall
excitations. Since each domain wall carries �S = 1/2, the
low-energy excitation is interpreted as two-spinon excitation.
In the transverse field, these two spinons travel in the chain
and compose an excitation continuum. When the uniform
longitudinal field is further applied weakly, it works as a
linear potential between the two spinons. The effective model
for this two-spinon excitation is exactly solvable and the
eigenvalues are given by NZAF [4,5]. This means that the
excitation spectra of the two-spinon continuum are quan-
tized. The quantized spectra explained by NZAF have been
confirmed in the INS experiments [6] on CoNb2O6, which
is a ferromagnetic Ising spin-chain compound. Shiba also
discussed the quantized excitation spectra in the Q1D S = 1/2
AF Ising-like XXZ system [7]. When we focus on bipartite
systems, the interchain interaction in the Q1D AF systems
effectively works as a weak staggered field below TN. Thus,
it is expected that the domain-wall excitations along the spin-
chain direction are confined by the weak staggered field and
that the same discussion as that for the ferromagnetic Ising
spin chain is applicable for low-energy excitation.

The two-spinon confinement plays a key role in the quan-
tized excitation spectra. On the other hand, the excitation
continuum can be generated by other quasiparticles. A multi-
magnon continuum in the S = 1 AF Heisenberg chain where

a single magnon carries �S = 1 is a typical candidate. In the
S = 1 AF Heisenberg chain, the ground state is the celebrated
Haldane-gap state [8–10]. It has been shown that, for low-
energy excitation, the single-magnon isolated mode appears at
q ≈ π , while the lower edge of the two-magnon continuum is
expected to be q ≈ 0 [11–16]. At q ≈ π , the lower edge of the
three-magnon continuum appears above the single-magnon
mode [11–16]. Despite these studies, however, low-energy
excitations in the Q1D S = 1 AF spin system below TN are
still poorly understood. In this Rapid Communication, we
focus on the quantized spectra in the Q1D S = 1 AF spin
system with single-ion anisotropy and bond alternation.

The Hamiltonian for a Q1D S = 1 AF spin system with
single-ion anisotropy and bond alternation is written as

H = J
∑

ij

[1 + α(−1)i]Si,j · Si+1,j

+D
∑

ij

Sz
i,j

2 + J ′ ∑

i〈j,j ′〉
Si,j · Si,j ′ , (1)

where i is the site index in the chain direction and j specifies
the chain. J (>0) is the antiferromagnetic intrachain interac-
tion and J ′ (>0) is the interchain interaction. α denotes the
bond alternation in the spin-chain direction and D represents
the single-ion anisotropy. The summation 〈j, j ′〉 runs over
all nearest-neighbor interchain pairs. The bipartite system is
assumed.

When the mean-field treatment for the weak interchain
interaction is applied, the staggered fields are induced in the
intrachain Hamiltonian. The effective Hamiltonian reads

HMF = J
∑

i

[1 + α(−1)i]Si · Si+1

+D
∑

i

Sz
i

2 + hs

∑

i

(−1)iSi
z, (2)
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where hs is the mean field derived from the magnetic moments
of the nearest-neighbor chains and is determined by solving a
self-consistent equation. In the following calculations, we set
a small value of hs , because it is not important to obtain hs

self-consistently from a given J ′.
We apply the infinite time-evolving block decimation

algorithm [17,18] to calculate the dynamical spin structure
factor (DSF) for the Hamiltonian (2). The DFS is defined
as Sμμ(q, ω) = π−1 Im

∫ ∫
iAμμ(x, t )e−iqx−i(ω−eg )t dxdt ,

where Aμμ(x, t ) = 〈Sμ
x (t )Sμ

0 (0)〉 is the dynamical spin-spin
correlation function and eg is the ground-state energy. Note
that S

μ
x (t ) = eiHMF t S

μ
x e−iHMF t . The details of the numerical

techniques have been discussed in Ref. [19]. We obtain the
DSFs from the Fourier transformation of Aμμ(x, t ) for a finite
window size N in real space. To reduce numerical noise,
we combine the Gaussian filtering method [20] with the
Fourier transformation. In the following calculations, we set
χmax = 120, where χ corresponds to the maximum value of
the bond dimension for tensors composing the wave function,
and N = 200 for the window size. We calculate the DSFs for
S = 1/2 and S = 1 Heisenberg chains as a benchmark test,
which are shown in Ref. [5].

In Fig. 1, we show the DSFs of the Hamiltonian (2) for
(α,D/J ) = (0,−5). When (α,D/J ) = (0,−5) and hs = 0,
the ground state is the Néel state. Since the critical point
between the Haldane and Néel phases exists at Dc/J =
−0.36 ± 0.01 [21] for α = 0 and hs = 0, (α,D/J ) = (0,−5)
is considered to be located deep in the Néel phase. For
(α,D/J ) = (0,−5), an isolated mode appears in 0 � qx � π

in the low-lying excitation [Figs. 1(a) and 1(b)]. The excitation
continuum appears above the isolated mode. These excitation
continua are quantized by the finite value of hs , as shown in
Figs. 1(c) and 1(d). In Figs. 1(e) and 1(f), the NZAF and each
excitation energy of the quantized excitation spectra at qx = π

and π/2 are compared. We find that the excitation energies of
the quantized spectra in both Sxx (qx, ω) [= Syy (qx, ω)] and
Szz(qx, ω) are quantitatively explained by NZAF. Note that
the lowest quantized state is not the low-lying isolated mode.

Since each spin prefers the Sz = ±1 state for the negatively
large D/J , the system is mapped to the AF Ising chain
at the Ising limit, D/J → −∞, due to the positive J . For
the bipartite system, the AF Ising chain is equivalent to the
FM Ising chain via spin rotations on one of the two sublat-
tices. The mapped Hamiltonian is expressed as HFM = H0 +
H1, where H0 = D

∑
i S

z
i

2 − J
∑

i S
z
i S

z
i+1 − hs

∑
i S

z
i and

H1 = J
∑

i (S+
i S+

i+1 + S−
i S−

i+1). The condition |D|/J � 1
allows H1 to be treated as the perturbation. If hs is positively
infinitesimal, the ground state of H0 is the fully polarized state
expressed by ψ+

GS = | · · · + + + + + + + · · · 〉, where +, 0,
and − in the ket denote Sz = 1, 0, and −1, respectively. When
H1 is included, the total Sz is not a good index, but the Hilbert
space is still classified by the parity of total Sz.

First, we consider the low-energy excitation in Sxx (qx, ω).
The low-energy excitation in Sxx (qx, ω) is described by the
dynamics of the state ψ+

1 whose initial state is prepared by
ψ+

1 = Sx
i |ψ+

GS〉. Since Sx
i ∝ (S+

i + S−
i ), this initial state is

interpreted as one magnon state, ψ+
1 ∝ | · · · + + + 0 + + +

· · · 〉. The parity of ψ+
1 is different from that of the ground

state. Since the energy cost to create ψ+
1 is approximately

FIG. 1. Sxx (qx, ω) and Szz(qx, ω) for (α,D/J ) = (0, −5) at (a),
(b) hs = 0 and at (c), (d) hs/|D| = 0.1. The excitation energies
� of the quantized excitation spectra of (e) Sxx (qx, ω) and (f)
Szz(qx, ω) at qx = π and π/2. The horizontal axis corresponds to
the excitation level of the quantized spectra. Note that the isolated
mode that already emerged at hs = 0 is excluded for counting the
excitation levels. � is measured from the lowest quantized energy.
The NZAF results are scaled using a constant factor γi to fit the
excitation energy �(N = 1) for the first excited state in the quantized
excitation spectra, � = γizi , where zi indicates each negative zero of
the Airy function. The constants used for the fitting are γ1 ≈ 0.270,
γ2 ≈ 0.285, γ3 ≈ 0.191, and γ4 ≈ 0.173.

ω = |D| + 2J , the isolated mode by ψ+
1 appears at

ω = |D| + 2J , in the absence of H1. When H1 acts on the
site with Sz = 0, the further excited state appears above ψ+

1 :
Sz = 0 moves to the nearest-neighbor site, accompanying the
site with Sz = −1, | · · · + + + − 0 + + · · · 〉. This means that
the domain composed of the Sz = −1 sites develops by the
action of H1 on the site with Sz = 0 repeatedly. Therefore, the
excitation continuum with the band center at ω ≈ |D| + 4J

appears above the excitation mode by the ψ+
1 state. In the

mapped Hamiltonian, hs works as the confinement potential
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for the domain with Sz = −1 sites, and thus the excitation
continuum is quantized by hs .

Next, the low-energy excitation in Szz(qx, ω) is considered.
Since the initial state in the longitudinal component is given
by multiplying the ground state at the site i by Sz

i , the parity
of total Sz

i for the initial state is conserved. The H1 operation
on a nearest-neighbor pair of the initial state creates the
two-magnon state, namely, ψ+

2 = | · · · + + + 00 + + + · · · 〉.
The energy cost for creating ψ+

2 is ω ≈ 2|D| + 3J . For
example, when H1 acts on ψ+

2 twice at the sites with Sz = 0,
each magnon moves in the opposite direction, | · · · + + 0 −
− 0 + + · · · 〉. Thus, the domain with Sz = −1 sites develops
through the action of H1 repeatedly on the site with Sz = 0.
This means that the domain-wall excitation is also allowed
for ψ+

2 and the excitation continuum appears centered at ω ≈
2|D| + 4J . In the same manner as the excitation continuum
by ψ+

1 , the excitation continuum by ψ+
2 is quantized by hs .

The quantization of the excitation continua discussed
above is explained by NZAF, because the mechanism, namely,
the confinement of the domain walls, is similar to that dis-
cussed for the S = 1/2 FM Ising spin chain [4]. The above
scenario is considered to be satisfied for D/J = −5, which
implies that the system is near the Ising limit. From the
analogy to the domain-wall excitation in the S = 1/2 FM
Ising spin chain [4], domain-wall excitation by ψ+

0 = | · · · +
+ + − − + + + · · · 〉 is expected to appear in the low-energy
excitation. However, a higher-order process is required to
create such a state and the intensity is much suppressed in
the present case.

In Fig. 2, the DSFs for (α,D/J ) = (0,−0.2) are shown,
where the ground state is in the Haldane phase when hs = 0.
For hs = 0, the single-magnon isolated mode appears in the
low-lying excitation at qx ≈ π and the multimagnon contin-
uum appears above the isolated mode, which is schemati-
cally the same behavior as that of the isotropic case D = 0
[11–16]. Even for (α,D/J ) = (0,−0.2), the quantization of
the excitation continuum emerges for hs > 0. However, the
quantization is not clear in comparison with that for D/J =
−5. In Figs. 2(e) and 2(f), the NZAF and excitation energies
of the quantized spectra at qx = π and π/2, respectively, are
compared. For (α,D/J ) = (0,−0.2), the excitation energies
of the quantized spectra in Sxx (qx, ω) and Szz(qx, ω) deviate
from NZAF. Note that the energy of the third quantized state
(N = 3) in Szz(qx = π,ω) accidentally agrees with that of
NZAF. Therefore, the origin of quantization in the excitation
spectra is considered to be different from that in the Ising
limit.

For (α,D/J ) = (0,−0.2) and hs = 0, the system is in
proximity to the phase boundary between the Haldane and
Néel phases. At the critical point, the energy gap closes and
the system is described by the Tomonaga-Luttinger liquid in
the low-energy limit [22], which is equivalent to the theory of
free boson fields. When the system departs from the critical
point, the low-energy effective model is expressed by adding
the family of Cb exp[ibφ] terms [23] to the Lagrangian of
free-boson field theory, where φ is the bosonic field and b and
Cb are constants. Each Cb exp[ibφ] is classified as relevant or
irrelevant, and the most relevant interaction opens the energy
gap. This means that the sine-Gordon field theory qualitatively
describes the low-energy part of the system in proximity

FIG. 2. Sxx (qx, ω) and Szz(qx, ω) for (α,D/J ) = (0, −0.2) at
(a), (b) hs = 0 and (c), (d) hs/J = 0.1. The excitation energies of
the quantized excitation spectra of (e) Sxx (qx, ω) and (f) Szz(qx, ω)
at qx = π and π/2. The constants used for the fitting are γ1 ≈ 0.127,
γ2 ≈ 0.155, γ3 ≈ 0.163, and γ4 ≈ 0.170.

to the phase boundary. In the excitation spectrum of the
sine-Gordon field theory, several isolated modes originating
from the soliton/antisoliton and breather modes are present in
addition to the excitation continuum [22]. When the system
approaches the critical point, the excitation continuum shifts
to the lower-energy region and the isolated modes become
unstable by touching the lower edge of the excitation con-
tinuum. However, when the system deviates from the critical
point, these isolated modes are placed below the lower edge
of the excitation continuum and thus we observe the quantized
excitation spectra. This scenario for the quantized excitation
spectra is considered valid in the vicinity of the following two
critical lines: One is dividing the Néel and Haldane phases,
and the other is dividing the Néel and singlet-dimer phases, as
shown in Fig. 3(a).

In Fig. 3(a), the region where the quantized excita-
tion spectra appear for hs > 0 is schematically represented
by the shaded area. Figures 3(b)–3(e) are the results of
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FIG. 3. (a) Schematic region where the quantized excitation
spectra are observed. In the shaded area, the excitation continuum
shows the quantization for hs > 0. Black dots are critical points
at hs = 0, presented in Ref. [21]. “H,” “N,” “SD,” and “LD” cor-
respond to the Haldane phase, Néel phase, singlet-dimer phase,
and large-D phase, respectively. (b)–(e) Sxx (qx, ω) at (α, D/J ) =
(0, 0), (0.25, −0.2), (0.25, −0.5), and (0.6, −0.5) for hs = 0.05.
Open circle, triangle, square, and diamond in (a) correspond to the
parameter used in (b)–(e) for hs = 0, respectively. Note that the DSFs
are shown in the extended zone representation except for (b). White
arrows in (b) indicate the peak positions of the intensity.

Sxx (qx, ω) at (α,D/J ) = (0, 0), (0.25,−0.2), (0.25,−0.5),
and (0.6,−0.5). Since the large intensity appears at qx = π

and ω = 0 in Szz(qx, ω) deep in the Néel phase [5], the rela-
tive intensity of the quantized excitation spectra in Szz(qx, ω)
is very weak.

For (α,D/J ) = (0, 0), (0.25,−0.2), and (0.25,−0.5), the
system with the first parameter is located in the Haldane phase
and the latter two are located in the Néel phase for hs = 0. In
such a case, the excitation continuum in the DSF is quantized
for hs > 0, as shown in Figs. 3(b)–3(d). The quantization of
the spectra is smeared when the system approaches the phase
boundary in the singlet-dimer phase. The quantized excitation
spectra disappear in the singlet-dimer phase, as shown in
Fig. 3(e). This is explained by considering the low-energy
excitation for D = 0 and α ≈ 1. For D = 0 and α ≈ 1, the
ground state is the direct product state of the singlet dimers.
The low-energy excitation that has a potential to compose the
excitation continuum is given by replacing two singlets with
two triplets from the ground state. As α decreases from α = 1,

the two-triplet excitation composes the excitation continuum
around qx = π [24]. However, the staggered field does not
work as the confinement potential and rather localizes the
triplet dimers with Sz = 0. Note that the energy of the triplet
dimer with Sz = ±1 remains unchanged by the staggered
field, which means that the confinement potential is absent.

At D → ∞, the ground state is expressed by the
direct product of Sz = 0 at each site, namely, ψ0 =
| · · · 00000000 · · · 〉. The lowest-energy excitation from ψ0 is
given by the single-spin flipping, ψ+

1 = | · · · 000 + 000 · · · 〉
or ψ−

1 = | · · · 000 − 000 · · · 〉. The site carrying Sz = ±1
propagates by the hopping term S+

i S−
i+1 + S−

i S+
i+1, and ψ±

1
composes the isolated mode. The candidate for the low-energy
excitation that composes the excitation continuum is obtained
by creating two Sz = 1 (Sz = −1) states at the neighbor-
ing sites, ψ+

2 = | · · · 000 + +000 · · · 〉 or ψ−
2 = | · · · 000 −

−000 · · · 〉. In ψ±
2 , each site with Sz = 1 (or Sz = −1) al-

most freely travels in the chain, and thus they compose the
excitation continuum. However, since all sites sandwiched by
the two sites with Sz = 1 (or Sz = −1) are filled by Sz = 0
due to the energy cost, the staggered field does not work
as the confinement potential for the two sites with Sz = 0.
Thus, the quantized excitation spectra are suppressed in the
singlet-dimer phase [5].

So far, many S = 1 chain materials have been syn-
thesized. Most of them are considered to have the posi-
tive single-ion anisotropy, but negative single-ion anisotropy
has been also reported for several materials. For example,
Y2BaNiO5 [25] and SrNi2V2O8 [26] have been evaluated
as D/J ≈ −0.033 and ≈ −0.057, respectively. There are
likely many compounds whose proper models have been
unsettled precisely due to the large deviation from the ideal
Haldane-gap system. In such compounds, there is a chance to
find the quantized excitation spectra. Further experiments are
desirable.
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