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Irreversibility, despite being a necessary condition for thermalization, still lacks a sound understanding in
the context of isolated quantum many-body systems. In this Rapid Communication we approach this question
by studying the behavior of generic many-body systems under imperfect effective time reversal, where the
imperfection is introduced as a perturbation of the many-body state at the point of time reversal. Based on
numerical simulations of the full quantum dynamics we demonstrate that observable echoes occurring in
this setting decay exponentially with a rate that is independent of the perturbation; hence, the sensitivity to
perturbations is intrinsic to the system, meaning that the dynamics is effectively irreversible.
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Introduction. The recent development of experimental
techniques to realize and precisely manipulate closed quan-
tum systems with many degrees of freedom [1–7] motivated a
lot of theoretical activity aimed at understanding the dynamics
of quantum many-body systems far from equilibrium. A fun-
damental question that arose in this context is how and in what
sense closed quantum many-body systems thermalize when
initially prepared far from thermal equilibrium. This has been
investigated with great effort in recent years [8,9]. Closely
related is the question of irreversibility, which, however, to
date, has not receive as much attention; in the context of quan-
tum many-body systems, different notions of irreversibility
are under discussion [10–14].

For classical systems, the origin of irreversibility despite
microscopically reversible dynamics was already discussed
by Boltzmann and Loschmidt [15–17] and was essentially
understood in a modern sense by Thompson [18]. Classical
systems typically exhibit chaotic dynamics if composed of
many degrees of freedom. Hence, any practical efforts to
revert the dynamics, e.g., by inverting the momenta, are
ultimately futile due to the exponential sensitivity of the
dynamics to small imperfections. In particular, the dominant
rate with which initially nearby trajectories diverge, called
the Lyapunov exponent, is independent of the perturbation
strength. Therefore, any improvement of the accuracy in the
time-reversal protocol can only affect the prefactor of the
exponential law.

This practical understanding of irreversibility in classical
systems led Peres [19] to introduce the Loschmidt echo,

L(t ) = |〈ψ0|ei(Ĥ+εV̂ )t e−iĤ t |ψ0〉|2, (1)

as a measure for irreversibility in quantum systems. The
Loschmidt echo is the overlap of a wave function evolved
forward in time with Hamiltonian Ĥ and subsequently back-
wards with a slightly perturbed Hamiltonian Ĥ + εV̂ , thereby
quantifying the resemblance of the time-evolved state with the
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initial state. This quantity proved very useful in the analysis
of the dynamics of quantum systems with few degrees of
freedom [20,21].

In generic quantum many-body systems, however, overlaps
such as the Loschmidt echo have only limited significance
for the resemblance of states in physical terms. According
to the eigenstate thermalization hypothesis (ETH) [22–25],
energy expectation values of few-body observables OE =
〈E|Ô|E〉 are smooth functions of the eigenstate energy E.
More precisely, the assumption is that the difference of the ex-
pectation value in neighboring eigenstates, |OEn

− OEn+1 |, is
exponentially suppressed with increasing system size, which
is strongly supported by numerical evidence from different
studies [26–29]. Since all experimentally measurable quan-
tities are related to the above-mentioned class of observables,
this means that energetically close-by eigenstates of a generic
Hamiltonian Ĥ , although orthogonal, are by all practical
means indistinguishable in experiment. The same holds for
integrable systems if the further integrals of motion are taken
into account in addition to the energy [30]. Therefore, any
definition of irreversibility in many-body systems should be
based on observables, which are accessible in experiment
[10–13,31–33].

Connected to the question of irreversibility, so-called
out-of-time-order correlators (OTOCs) of the form
〈Â†(0)B̂†(t )Â(0)B̂(t )〉β were recently suggested to
probe scrambling, i.e., the complete delocalization of
initially local information, and exponential sensitivity of
the dynamics to small perturbations [34,35]. Based on
this, a black hole theory and a holographic model of
Majorana fermions were identified as maximally chaotic
systems [36–38]. Moreover, OTOCs can directly be related
to an information-theoretic measure for the delocalization
of initially local information [39]. These ideas were seized
theoretically in a number of subsequent works to investigate
the signatures of chaos and scrambling in the dynamics
of local lattice models [39–53] and first experiments were
conducted [54–57].

Scope of this work. In this Rapid Communication, we
propose a probe of irreversible dynamics based on observable
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FIG. 1. Classical analog of the time-reversal protocol under
consideration.

echoes under imperfect effective time reversal. A first in-
vestigation of an integrable model was done in Ref. [13].
There, it was found that the echoes in an integrable spin
chain do not decay faster than algebraically, indicating that
the dynamics is well reversible. Under a certain protocol, even
ever-persisting echoes were found. Here, we demonstrate that
in generic nonintegrable systems the observable echoes under
imperfect time reversal decay exponentially, as would be
expected when the dynamics is chaotic and—importantly—
that the decay is primarily governed by the intrinsic proper-
ties of the system. This finding contrasts the aforementioned
algebraic decay found in an integrable spin chain. It is,
moreover, in contrast to protocols involving a perturbation
of the Hamiltonian, where the decay timescale naturally de-
pends on the perturbation strength [12,58]. In the considered
protocol the imperfection is introduced as a perturbation of
the many-body state at the point of time reversal. Hence,
the proposed probe of irreversibility directly corresponds
with the understanding of classical irreversibility as a conse-
quence of the butterfly effect, but it is applicable to generic
quantum many-body systems far from any semiclassical
limit.

Time-reversal protocol. Irreversibility in classical systems
is understood to be a consequence of chaotic dynamics, i.e.,
the fact that trajectories diverge exponentially if the coordi-
nates are slightly changed initially. This leads to the fact that
the final coordinates deviate exponentially from the initial
coordinates if an imperfect time-reversal protocol as sketched
in Fig. 1 is applied.

An analogous situation in quantum systems is the pertur-
bation of the quantum state at the point of time reversal,
i.e., applying a unitary perturbation operator P̂ε to the time-
evolved state |ψ (t )〉 = e−iĤ t |ψ0〉,

|ψ (t )〉 → |ψ ′(t )〉 = P̂ε |ψ (t )〉, (2)

where ε is a parameter for the magnitude of the perturbation.
For many-body systems it is crucial to regard physical ob-
servables as a measure for the smallness of the perturbation
and not the overlap of the states. Due to the unitarity of the
time evolution there will always be a part of the dynamics
that is perfectly reverted if the states before and after apply-
ing the perturbation have a nonvanishing overlap. A natural
operation P̂ε that leaves observables almost unchanged while
making the state orthogonal is time evolution with a local
extensive Hamiltonian Ĥp for short time δt . In a system with
N degrees of freedom the return probability generally takes
the form |〈ψ0|e−iĤ t |ψ0〉|2 = e−Nr (t ) with an intensive rate

function r (t ), i.e., the overlap vanishes at arbitrarily short
times in the thermodynamic limit N → ∞. Observables, in-
stead, change smoothly under time evolution with a physical
Hamiltonian.

In the following, we study the dynamics of a many-
body system when a time-reversal protocol motivated by
these considerations is applied. The system is prepared in
an initial state |ψ0〉 that exhibits some significant features
distinguishing it from an equilibrium state of the Hamiltonian
Ĥ , such as, e.g., a strong magnetic order in a disordered
phase. This state is time evolved for a waiting time τ , yielding
|ψ (τ )〉 = e−iĤ τ |ψ0〉. At this point a perturbation operator
P̂δt = e−iĤpδt given by some other Hamiltonian Ĥp is applied
for a short time δt , resulting in |ψ ′(τ )〉 = P̂δt |ψ (τ )〉. Subse-
quently, |ψ ′(τ )〉 is evolved backwards in time until the echo
time t∗ ≈ 2τ , where the resemblance of the time-evolved state
to the initial state is largest in terms of the observables un-
der consideration, i.e., these observables show an extremum,
which we call an echo peak. The existence of these echo peaks
can be inferred by considering the case of δt = 0, where a
perfect revival is produced independent of the waiting time
τ , and assuming a smooth behavior of the dynamics as δt

is increased. We propose to declare a system irreversible if
the decay of echoes as a function of the waiting time τ is
exponential or faster than exponential and if the decay rate
is an intrinsic property of the system, i.e., unaffected by
reducing the perturbation strength. This definition means that
substantial improvement of the reconstruction of the initial
state by manipulating with enhanced precision is practically
impossible.

Note that by identifying Â(0) ≡ Ô and B̂(τ ) ≡
eiĤ τ P̂δt e

−iĤ τ this protocol effectively results in the
measurement of an OTOC as introduced above if the
initial state |ψ0〉 is an eigenstate of the observable under
consideration, Ô|ψ0〉 = O|ψ0〉; see also Ref. [54]. A key
difference is, however, the fact that the echo protocol takes
into account the expectation value in the pure initial state far
from equilibrium, whereas the OTOC is originally defined
with respect to a thermal density matrix [34,35].

Model Hamiltonians. As minimal examples of generic
quantum many-body systems we study spin-1/2 systems de-
fined by the Hamiltonian

Ĥ =
∑
i 
=j

Jij

(
σ̂ x

i σ̂ x
j + σ̂

y

i σ̂
y

j

)
, (3)

where the σ̂ α
i , α = x, y, denote the Pauli spin operators acting

on lattice sites i = 1, . . . , N . Here, we focus on two versions
of this Hamiltonian, namely, a Hamiltonian Ĥloc with local
couplings

J loc
ij = J

{
21−|i−j |, for 0 < |i − j | � 2,

0, else,
(4)

and a fully connected random Hamiltonian Ĥfc with J fc
ij =

J fc
ji = JRij /N , where Rij is drawn from the standard normal

distribution. We found that altering the interaction range
of the local Hamiltonian and introducing an (anisotropic)
Heisenberg-type coupling left the results qualitatively un-
changed. However, the restriction of the couplings to shorter
distances or strongly anisotropic couplings, respectively,
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introduces large oscillations to the dynamics, which com-
plicates the identification of echo peaks. As the initial state
we choose the Néel state |ψ0〉 = | ↑↓↑ · · ·〉. For this state
the staggered magnetization M = 1

N

∑
n(−1)n〈σ̂ z

n 〉 and the
spin structure factor Sπ = 1

N

∑
i,j ei(i−j )π/N 〈σi · σj 〉 consti-

tute suited observables for the echo protocol described above.
Moreover, we will investigate the dynamics of the entangle-
ment entropy of bipartitions into subsystems A and B defined
by SA = −tr(ρ̂A log2 ρ̂A), where ρ̂A = trB (|ψ (t )〉〈ψ (t )|) is
the reduced density matrix of the subsystem A.

The Hamiltonian that defines the perturbation is chosen to
be a local random Hamiltonian

Ĥp =
N−1∑
i=1

Ji

(
σ̂ x

i σ̂ x
i+1 + σ̂

y

i σ̂
y

i+1

)
(5)

with real couplings Ji drawn from the standard normal distri-
bution. However, the characteristics of the echo dynamics do
not depend on this particular choice of Ĥp.

Numerical realization and finite-size effects. In the fol-
lowing, we will resort to exact diagonalization and Lanczos
propagation [59] in order to compute the time evolution. This
limits the accessible systems to sizes far from the thermody-
namic limit; due to the numerical expense the maximal system
size we consider is N = 24. For any finite system, however,
the echoes produced under the envisaged imperfect effective
time reversal will generally not decay to zero for long wait-
ing times τ . Introducing the eigenbasis of the Hamiltonian,
(Ĥ − Eα )|α〉 = 0, the time evolution of observables under the
time-reversal protocol is

〈Ô〉t1,t2 = 〈ψ0|eiĤ t1 P̂
†
δt e

−iĤ t2ÔeiĤ t2 P̂δt e
−iĤ t1 |ψ0〉

=
∑

α,α′,β,β ′
〈ψ0|α〉(P †

δt )α,α′Oα′β (Pδt )ββ ′ 〈β ′|ψ0〉

×ei(Eα−Eβ′ )t1+i(Eβ−Eα′ )t2 , (6)

where Xαβ = 〈α|X̂|β〉 with X̂ = Ô, P̂δt , P̂
†
δt denoting the ma-

trix elements of the respective operators. Clearly, any t1, t2
terms with α = β ′ and β = α′ are time independent. These
terms yield the stationary value that is reached at long times
t1 
= t2. At t1 = t2 there is, however, an additional time-
independent contribution of the terms with α = α′ and β =
β ′, where the diagonal elements of the perturbation operator
(Pδt )αα = 〈α|e−iĤpδt |α〉 appear. Most prominent among these
contributions at small N is the identity that gives rise to the
nonvanishing overlap 〈ψ (τ )|P̂δt |ψ (τ )〉 in the finite system.
As discussed above, the modulus of overlaps of the form
〈α|e−iĤpδt |α〉 vanishes at arbitrarily short times in the ther-
modynamic limit. Hence, this nondecaying contribution to
echoes at t1 = t2 vanishes for N → ∞. In the Supplemental
Material [60] we demonstrate that the anticipated dependence
of the persistent echoes on system size can indeed be observed
in our data.

In the finite systems we analyze the decay of the echo
peaks towards these stationary values, which is the universal
behavior that survives in the thermodynamic limit. In practice,
we discard finite-size contributions by including a projec-
tion onto the subspace orthogonal to the unperturbed state
with the perturbation we apply. When analyzing the decay
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FIG. 2. Time evolution of staggered magnetization M (t ), spin
structure factor Sπ (t ), entanglement entropy S5(t ), and return prob-
ability |〈ψ0|ψ (t )〉|2 under the imperfect effective time-reversal pro-
tocol for different forward times τ obtained with the Hamiltonian
Hloc. The observables and the entanglement entropy show clear
echoes at t = 2τ that decay as τ is increased, whereas the return
probability does not show any signal. The perturbation strength
is δt/J = 0.05.

laws we additionally subtract the remaining stationary value
from the echo peak heights; see Supplemental Material [60]
for a further explanation of the analysis of the numerical
data.

Figure 2 displays an exemplary time evolution with Ĥloc

of staggered magnetization M (t ), spin structure factor Sπ (t ),
entanglement entropy Sn(t ) of n = 5 spins at one end of the
spin chain, and overlap with the initial state |〈ψ0|ψ (t )〉|2 for
a system of N = 20 spins, where the perturbation with Jδt =
0.05 is applied at different waiting times τ . Here, the time-
dependent state is

|ψ (t )〉 =
{
e−iĤ t |ψ0〉 , t < τ,

eiĤ (t−τ )P̂δt e
−iĤ τ |ψ0〉 , t > τ,

(7)

from which M (t ), Sπ (t ), and Sn(t ) are obtained. The pertur-
bation causes only a minimal shift of the observables although
the perturbed state is orthogonal to the state before the per-
turbation and the dynamics exhibits pronounced echo peaks
at te ≈ 2τ . Note that in contrast to the results for imperfect
time reversal with a perturbed Hamiltonian [13], the echo time
under the present time-reversal protocol is always very close
to 2τ and does not exhibit any systematic shift away from that.
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FIG. 3. Decay of the echo peak heights of staggered magnetization M , spin structure factor Sπ , and entanglement entropy of five
consecutive spins S5 after imperfect effective time reversal for both the local Hamiltonian Ĥloc with N = 24 (a)–(c) and the fully connected
Hamiltonian Ĥfc with N = 22 (d)–(f). The perturbation Hamiltonian is the same realization of Ĥp in all cases, whereas the plotted perturbation
strengths are Jδt = 0.5, 0.35, 0.25, 0.15, 0.05. The dashed lines indicate exponential fits to the results for δt = 0.05/J .

Echo peak decay. As is evident from the exemplary time
evolution in Fig. 2, the resemblance of the time-evolved state
to the initial state in terms of the observables decreases as the
waiting time is increased. In order to extract laws of decay we
introduce the echo peak height of an observable Ô,

EO (τ ) = max
t ′>τ

|〈Ô〉t ′,τ − O∞|, (8)

where the maximum occurs at the echo time te ≈ 2τ and O∞
is the stationary value reached after long times.

Figure 3 displays the decay of the echo peak heights
for the observables and the entanglement entropy for both
the local Hamiltonian Ĥloc and the fully connected random
Hamiltonian Ĥfc. The decay for a single realization of the
perturbation Hamiltonian Ĥp is shown for different perturba-
tion strengths δt . In all cases the echo peak heights exhibit
a marked exponential decay at long waiting times τ . The
decay rate varies only weakly as δt is changed. In particular,
the curves converge as δt → 0. In each plot an exponen-
tial fit to the data with the smallest perturbation strength
(δt = 0.05) is included. For the local Hamiltonian the fit-
ted decay rates for both observables and the entanglement
entropy are almost identical. In the fully connected system
the observable echoes decay with similar rates, whereas the
echoes in the entanglement entropy decay slightly faster.
While the relation of the decay rates to microscopic prop-
erties of the systems is as of yet unclear, we find that
they do not coincide with the decay rates occurring after
a simple quench. The decay of the entanglement entropy
shows that, although recoverable at short times, the infor-
mation about the genuinely quantal structure of the initial
state is lost in the same fashion as the information about the
observables.

For different realizations of the random perturbation
Hamiltonian Ĥp and fixed δt we observed variations of the
decay rate of about 15%. We attribute these variations to the
small system size and expect them to vanish in the thermody-
namic limit.

Discussion. In this Rapid Communication, results from
numerical simulations of the full quantum dynamics are re-
ported. Our results show that generic quantum many-body
systems exhibit exponential decay of observable echo peaks
under imperfect effective time reversal. This is in contrast
to algebraically decaying echoes found in an integrable sys-
tem [13]. Importantly, the decay rate in the nonintegrable
quantum many-body models studied here was found to be
largely independent of the perturbation strength. This implies
that any practical effort to improve the accuracy in a time-
reversal experiment is in the end futile, just as in irreversible
classical systems.

The presented results give rise to further questions, which
are beyond the scope of this work and are therefore left for
future research. It was found that the decay rate of the echoes
is an intrinsic property of the Hamiltonian that determines
the time evolution. However, it is at this point not clear
how the said rate is related to the microscopic details of
the system. Moreover, possible relations to other definitions
of quantum chaos and irreversibility, e.g., the one based on
OTOCs [34,35], should be investigated.

Regarding experimental relevance, understanding the echo
decay in magic echo setups [61–64] is a long-standing prob-
lem directly related to the fundamental question which we
are addressing here, although the many-body Hamiltonians
relevant for magic echo problems are beyond the scope of
this work [65]. For a highly controlled experimental setup we
propose quantum simulators such as those based on trapped
ions [4,5,66,67] or Rydberg atoms [6,7], which effectively
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implement the dynamics of spin models and where one would
also be able to investigate the finite-size behavior. In fact, a
protocol very similar to our echo prescription has recently
been realized with trapped ions to investigate the dynamics
of OTOCs [54].
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