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Topological metamaterials have invaded the mechanical world, demonstrating acoustic cloaking and waveg-
uiding at finite frequencies and variable, tunable elastic response at zero frequency. Zero-frequency topological
states have previously relied on the Maxwell condition, namely, that the system has equal numbers of degrees
of freedom and constraints. Here, we show that otherwise rigid periodic mechanical structures are described
by a map with a nontrivial topological degree (a generalization of the winding number introduced by Kane
and Lubensky) that creates, directs, and protects modes on their boundaries. We introduce a model system
consisting of rigid quadrilaterals connected via free hinges at their corners in a checkerboard pattern. This bulk
structure generates a topological linear deformation mode exponentially localized in one corner, as investigated
numerically and via an experimental prototype. Unlike the Maxwell lattices, these structures select a single
desired mode, which controls variable stiffness and mechanical amplification that can be incorporated into
devices at any scale.
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I. INTRODUCTION

Topological phases of matter have been realized most
famously in electronic systems [1–6], but also in classical
ones consisting of active fluids [7–10], air flows [11–13],
photons [14–16], vibrating mechanical elements [17–19],
and spinning gyroscopes [20–22]. Across this vast range
of systems, the topological paradigm (1) identifies various
invariants that assume discrete values determined by the bulk
structure that (2) are insensitive to continuous deformations
and (3) determines protected edge modes. We consider
yet another class of topological systems, zero-frequency
mechanical ones, that has been shown to have a topological
invariant protected by the Maxwell condition, that the
system’s degrees of freedom (DOF) and constraints are
equal in number, and that determines the placement of
topological modes on open boundaries and interfaces [23],
point defects [24], and even the bulk [25]. Such systems have
been demonstrated or proposed as new ways of controlling
origami and kirigami folding [26], beam buckling [27] and
fracture [28], as well as composing nonreciprocal mechanical
diodes [29] and mechanically programmable materials [24].
Acoustic systems, although fundamentally distinct from
lattice systems in being continuous, are alike in supporting
topological states, resulting in wave propagation that is
backscattering free [17,18,30] and, when time-reversal
symmetry is broken, unidirectional [11,20–22,31], permitting
unprecedented waveguiding and cloaking capabilities.

As well as such examples of topological modes one dimen-
sion lower than the bulk, exciting new predictions have been
made concerning higher-order topological modes on lower-
dimensional surface elements, such as those split between the
four corners of a square two-dimensional (2D) system [32–
36]. Such modes, subsequently observed in a phononic sys-
tem [37] and a microwave circuit system [38] with mirror
symmetries, raise the possibility of higher-order mechanical

modes. Here, we report just such a family of topological
lattices, presenting both a general theory and a detailed and
experimentally realized example: the 2D “deformed checker-
board” lattice. These lattices possess higher-order mechanical
criticality, in the sense of having modes localized to lower-
dimensional sections of their boundaries. In contrast with
the many boundary modes of Maxwell lattices, isolated zero
modes are present in otherwise rigid materials (and the force-
bearing self-stresses in otherwise floppy ones), amounting to
a fundamentally new and topologically nontrivial capability
among flexible mechanical metamaterials [39].

II. HIGHER-ORDER MAXWELL RIGIDITY

A. A new counting argument

Consider a system governed by a constraint matrix C
which linearly maps some coordinates u (often displacements
of sites) to another vector e (often extensions of stiff mechan-
ical elements). Modes e in the null space of CT are called
self-stresses, (generalized) tensions that do not generate force.
Because of this relation, the rank-nullity relation of linear
algebra implies

Nzm − Nss = NDOF − Ncon, (1)

where the four symbols refer respectively to the system’s
numbers of zero modes, self-stresses, degrees of freedom,
and constraints. This equality is, in the context of constraint
matrices of ball and spring systems, owed to Calladine [40],
Maxwell a century earlier noting the phenomenon of redun-
dant constraints, but not identifying self-stresses [41]. We con-
sider a generalized notion of constraints leading to generalized
pseudoforces.

For periodic systems in d dimensions, this can be further
refined by assuming that the displacements within a single
cell indexed by n = (n1, n2, . . . , nd ) are of the “z-periodic”

2469-9950/2018/98(18)/180102(6) 180102-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.180102&domain=pdf&date_stamp=2018-11-29
https://doi.org/10.1103/PhysRevB.98.180102


ADRIEN SAREMI AND ZEB ROCKLIN PHYSICAL REVIEW B 98, 180102(R) (2018)

form un = u
∏

i z
ni

i , where zi is a complex number of any
magnitude, as used in surface quantum wave functions [42–
44]. Indeed, due to an argument similar to Bloch’s theorem,
any normal mode of a system with a periodic bulk must have
such a form. u thus plays the role of the wave function:
a complex vector describing a state in a periodic system
whose overall magnitude and phase do not matter with a
functional dependence on the (complex) wave vector. For a
finite system with open boundary conditions, a mode with,
e.g., |z1| < 1 exists exponentially localized on the left-hand
boundary. Kane and Lubensky exploited this index theorem
in Maxwell systems (those with nDOF = ncon), to relate the
number of such zero modes, for which det[C(z)] = 0, to
the winding of the phase of det[C(z)] as z1 winds around the
bulk (z1 = eiθ1 ) [23]. Physically, such modes are any change
in system configuration (movements of particles, changes in
electrical currents, rotations of spins, etc.) that satisfy the
linear constraints. As we now present, the one-dimensional
winding number is only one example of a whole family of
topological invariants.

The Maxwell condition is a mechanical critical condi-
tion [45] which identifies systems expected to have boundary
modes from missing bonds at boundaries. More generally,
rather than fixing some intercell evolution via z, we can vary
n of the zi (n � d) as well as u, the shape of the mode within
a single cell, generating n additional “degrees of freedom.”
Thus, upon normalizing our linear mode, the configuration
space has dimension n + nDOF − 1, and zero modes require
satisfying ncon constraint conditions. Thus, the critical con-
dition under which we would expect (for compatible and
independent constraints) isolated zero modes on a surface
element n dimensions lower than the system’s bulk is

n = ncon + 1 − nDOF. (2)

For the case of n = 1, this is simply Maxwell rigidity; more
generally, we refer to it as nth-order Maxwell rigidity. For n =
1, the constraint matrix resembles a non-Hermitian but square
Hamiltonian, known to possess nontrivial topology [46–55],
whereas for higher-order systems the constraint map connects
spaces of modes and constraints that are different sizes. For
the present work we shall focus on the case d = 2, n = 2,
in which zero modes are exponentially localized in corners.
In 3D, one can have corner (third-order) or edge modes
(second-order rigidity), as indicated in Fig. 1. Because of
the duality between the rigidity and equilibrium matrices,
it is also possible to have higher-order self-stresses in un-
derconstrained systems, below the Maxwell point, satisfying
n = nDOF + 1 − ncon. Bulk zero modes are always compatible
with free boundary conditions; bulk self-stresses are permitted
by fixed boundaries.

B. Higher-order topological invariant

The topological paradigm is to relate the existence of
boundary modes to bulk structure. We now describe how to
relate the presence of the topological modes on our (d − n)-
dimensional surface element to the topological degree of a
map over the surrounding (d − n + 1)-dimensional elements
(e.g., a corner mode via the two adjoining edges).

n=1

n=2 n=3

FIG. 1. Systems at the conventional (n = 1 Maxwell critical
point acquire zero modes (red) from missing bonds at open bound-
aries. Imbalances in these modes result from topological polarization
(arrows) of the system’s d-dimensional bulk. Systems with higher-
order n > 1 Maxwell rigidity have polarized surface elements, re-
sulting in modes in corners and (in d = 3) along 1D edges, defying
conventional constraint counting.

Let us describe a region B of configuration space in
which modes have amplitude u2 = 1 and 0 � |zi | � 1, i =
1, 2, . . . , n and are thus exponentially localized to the sur-
face element in question. Consider then the nonlinear but
continuous polynomial (or, in a more general gauge, Laurent
polynomial) map from B to the constraints e = C(z)u. Given
the criticality condition of Eq. (2), these spaces have the same
dimension, and JC (v), the Jacobian determinant of this map,
gives the signed ratio of their volume elements as a function of
the vector coordinate v. As discussed in the Supplemental Ma-
terial [56], the number of zeros in B can then be determined
by evaluating the number of times ∂B’s map to the normalized
constraint space ê = e/|e| covers the real unit sphere S2ncon−1,

NB = A−1
2ncon−1

∫
∂B

dv1 · · · dv2ncon−1JC (v). (3)

Here, Aj is the surface area of the j -dimensional hypersphere.
This topological map then relates the presence of zero modes
in nth-order critical systems to nonlinear maps from modes
to constraints on the surrounding elements, such as the three
edges adjoining the corner of a cube, generalizing the first-
order topological invariant of Kane and Lubensky, a winding
number that relates bulk structure to surface modes [23]. In the
context of bulk-edge correspondence, a corner functions as the
edge of the edges or even the interface between edges, in that
its topological modes are protected by the invariant integrated
over the edge modes. It does, however, depend on the entire
bulk insofar as that it determines the form of the constraint
map. Although the homotopy group of maps of spheres to
themselves is integers [πn(Sn) = Z], our holomorphic maps
always have non-negative degrees corresponding to the num-
ber of modes enclosed.

C. Polarization of general surface elements

We now discuss the mechanical polarization of structural
elements. Consider a system with isolated zero modes, or zero
modes which are isolated once transverse wave vectors are
fixed (e.g., a 2D Maxwell structure has polarization which
depends on a transverse wave vector [25]). One of its surface
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elements possesses a number of zero modes, which we refer
to as its charge, continuing terminology used in mechanics to
describe not only topology [23,24] but also purely geometrical
singularities [57]. Equation (3) may be used to obtain this
charge: For example, the charge on corners of a 2D second-
order critical lattice is

Nσ1,σ2 =
∫ 1

−1
dv0

∫ π

−π

dv1

∫ π

−π

dv2 J
σ1,σ2
C (v), (4)

where the arguments of the Jacobian describe real coordinates
over values zi = rie

iθi and, more generally, the mode shape u.
Since these are modes that bound the corner modes, they lie
on the adjoining edges. To obtain in this manner the charge
on, e.g., the upper left corner (σ1 = −, σ2 = +), coordinates
must be chosen to compactify the space and gauge must be
chosen to maintain a holomorphic map as described in the
Supplemental Material [56].

From these charges we may define the polarizations of all
elements of the structure. For example, the second-order 2D
structure has, in our language, polarizations of its bulk given
by differences between charges of opposing edges and polar-
izations of its edges given by differences in corner charges.

This reveals nontrivial relationships between the charges
and polarizations of various elements. The edge polarizations,
along with the overall charge of the structure, suffice to
determine the corner charges. However, the edge charges (or,
alternately, the bulk dipole polarization) cannot determine the
same without a topological quadrupole charge q = N++ +
N−− − (N−+ + N+−) of the type described in higher-order
electronics [32–36] and phononics [37]. Despite this intrigu-
ing connection, the present corner mode is clearly distinct
from those quadrupole modes in that it occurs at zero fre-
quency and does not require any mirror symmetries. Indeed,
it applies even to systems with irregular boundaries.

While 0D corners necessarily have integer numbers of
modes, 1D edges of 3D structures with second-order Maxwell
rigidity may have a fractional charge. Such a situation was
observed in 2D [25,58] and 3D [59] for Maxwell lattices
(those with ncon = nDOF). In our higher-order analog, we
would expect the face between two fractionally charged edges
to host a sinusoidal zero-energy deformation.

III. MODEL SECOND-ORDER SYSTEM: THE DEFORMED
CHECKERBOARD

To model the general phenomenon of higher-order
Maxwell rigidity, we consider the simplest case, second-order
rigidity in 2D, which occurs in lattices with one additional
constraint per cell beyond the Maxwell condition [Eq. (2)].
Our chosen system is the deformed checkerboard, consist-
ing of rigid quadrilaterals joined at free hinges as shown
in Fig. 2, which can be thought of as the result of fusing
two triangles together in the deformed kagome lattice [23]
or rigidifying an open quadrilateral in the deformed square
lattice [25]. As shown in the Supplemental Material [56], any
zero-energy deformation of this system may be described by
the scalar shearing of the voids between pieces of the form
sn1,n2 = s0z

n1
1 z

n2
2 . Each void’s shearing is coupled to that of

its four neighbors by their shared vertices, resulting in the

FIG. 2. (a) Solid pieces in the system are hinged and allowed to
rotate relative to one another. A given void between pieces can shear,
but this motion is coupled to that of four of its neighbors, leading
to an overconstrained system. (b) The unique zero-energy deforma-
tion is exponentially localized in one of four corners, with green
and yellow shading indicating shearing in opposite directions. This
topological mode lies between two topologically polarized edges
(red arrows). (c) In a two-dimensional region of parameter space in
which three of the piece’s vertices are fixed and the fourth is placed
at (x ′, y ′), the location of the corner mode is in agreement with the
numerically obtained topological degree of the map (shading).

overconstrained constraint matrix

C(z1, z2) =
(

b1 + a1 z1

b2 + a2 z2

)
. (5)

As is now clear, the unique zero-energy deformation has
zi = −bi/ai < 0, where the relative magnitudes of ai, bi > 0
determine in which corner it is exponentially localized. This
mode is antiferromagnetic, in the sense that each piece rotates
in the opposite direction from its four neighbors (also trans-
lating slightly). This form reveals an important effect of sym-
metry: When ai = bi and the constraint matrix is therefore
invariant under the reflection ni → −ni , the mode lies on an
edge rather than a corner. However, this symmetry is evident
only in Eq. (5)—it corresponds to quadrilateral pieces that are
not themselves symmetric but whose centers of mass lie on the
lines connecting their opposing vertices. It is only when both
such conditions are met, with parallelogram pieces, that the
mode enters the bulk and extends to a nonlinear mechanism.
Indeed, by evolving the system through the parameter space
shown in Fig. 2(c) (which would require altering the shape of
the piece) around this parallelogram point, one could “pump”
the mode from corner to corner around the structure.
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FIG. 3. (a) A hinged prototype of the checkerboard lattice.
(b) �s describes the change in the relative angles of pieces, measured
in radians; (ŝ · ŝT )2 = 1 corresponds to an observed mode entirely
predicted by the topological mode. Over a broad range of ampli-
tudes, the topological component ŝT is the dominant mode present.
(c) Configurations in cells indexed by (n1, n2), indicated by error
bars, are in agreement with theory lines.

A. Experimental realization

We realize the topological metamaterial by using a high-
precision programmable laser cutter (Trotec Speedy 300) to
cut ∼1-cm pieces from 3.2-mm-thick acrylic sheets. Nylon
rivets are placed through snug holes in the pieces to join
them at freely rotating hinges, with a 4 × 4 prototype then
assembled, as shown in Fig. 3(a). The prototype is rigid
throughout the bulk and most of the boundary, with a zero
mode consisting of counter-rotating rigid pieces localized in
the corner predicted by the constraints of Eq. (5), as shown
in the video in the Supplemental Material [56]. This easily
realized prototype permits the testing of the practical effects
of friction, static disorder, and geometrical nonlinearities on
our idealized theory. These limitations prevent the system
from acting as an exponential mechanical amplifier (as was
recently treated at certain edges of disordered systems near
the first-order Maxwell point [60]) though some amplification
in deformation is observed when the prototype is manipulated
near the charged corner.

A digital camera is used to track the centers of the rivets as
the system is deformed. Despite the linear nature of the theory,
the compressibility of the rivets allows a (−0.43, 0.31) rad
range (in the most-deformed void) of configurations in which
static friction leaves the prototype stable without any external
support. The vector of shears for the nine voids �s was tracked
across this range, and compared to the predicted topological
mode ŝT . The topological character is plotted as a function of
mode amplitude in Fig. 3(b). The numerical prediction shown
assumes a topological mode and independent normally dis-
tributed errors throughout the system. As shown in Fig. 3(c),
the topological mode is dominant everywhere save where its
amplitude is lowest and static friction most relevant.

Thus, we have shown that even in real, easily realized
systems possessing disorder, nonlinearities, and friction, the
topological mode appears as predicted and accounts for a
broad range of mechanical responses. 3D printing has al-
ready achieved 3D Maxwell systems [61], though a challenge
remains in creating “hinged” pieces that rotate much more
easily than they deform. Unlike 2D Maxwell lattices, which
require careful control of the boundary because of the many
deformation modes [62], our system is mechanically stable
because it has only a single, linear mechanism.

IV. DISCUSSION

We have described a family of higher-order topological
invariants that describes a class of periodic mechanical sys-
tems with zero-frequency boundary modes. These modes are
protected not by symmetries but by a new index theorem re-
lating the number of degrees of freedom and constraints to the
dimensions of the bulk and boundary [Eq. (2)]. They are gen-
erated, protected, and placed on particular surface elements by
the topological degree of the constraint map [Eq. (3)], making
an association in full generality with the physical modes. In
particular, we have experimentally realized a two-dimensional
structure with a single mode and demonstrated its mechanical
response. The existence of the mode is protected by the index
theorem, and its placement in a desired corner determined by a
topological covering number, with further fine tuning possible
through geometric distortions. This allows for a material
such as is realizable with 3D printing techniques [61] with
a unique programed mode, topologically protected by its bulk
structure.

This paradigm relies on the structure’s periodicity and on
particular boundary conditions, but is not limited to mechan-
ical zero modes. Indeed, a Maxwell-Cremona dual [63,64],
in which a mechanical network’s vertices and faces exchange
roles, exists for the deformed checkerboard with a topological
corner self-stress. More generally, nonmechanical systems
with varying numbers of constraints and degrees of freedom,
such as spin systems [65], electrical circuits [66–68], and
others, can have topological boundary modes protected by the
index theorem and winding numbers.

Our systems lie at the intersection of two exciting areas
of research. One is into the finite-frequency higher-order
modes mentioned in Sec. I, compared and contrasted with
the present case in Sec. III. The other, Maxwell lattices
with Kane-Lubensky topological polarization, fall within our
paradigm as systems with balanced numbers of degrees of
freedom with boundary modes one dimension lower than their
bulk. The original Maxwell index theorem [Eq. (1)] offers the
advantage that the Maxwell modes extend nonlinearly, and
exist despite disorder. In contrast, our more general modes
are only linear (barring an additional symmetry, such as
parallelogram tiles in the deformed checkerboard) and rely
on perfect periodicity, though as our prototype demonstrates,
it is still easy to realize the topological mode under realistic
conditions. And such modes have the advantage that the rest
of the structure is rigid, and that the modes are unique, rather
than being part of a family that mixes nonlinearly in ways
that are difficult to control [62].
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The topological connection between bulk and boundary,
constraints, and degrees of freedom presents a number of
immediate avenues for further study. Three-dimensional sys-
tems, which have already demonstrated unique features in
Maxwell systems [59], should admit not only the 2D face
modes of that study and the 0D corner modes corresponding
to this one, but intermediate 1D edge (hinge) modes. Other
systems, such as origami and kirigami [26], have mixed
dimension (a 2D sheet embedded in 3D space) or simply
more intricate constraints [69]. Finally, one may think of
boundaries as a particular case of defects of given dimension,
making contact with the extensive categorization of defects
in topological insulators [4], admitting the same possibil-
ity of defect engineering observed in topological Maxwell

lattices [24]. Because of our map’s nonlinearity, it may shed
light on nonlinear excitations of polarized lattices [70].

Note added. Recently, a systematic study of constraint
matrices with a broader range of dimensions and symmetries
was posted [71], situating the integer invariant considered here
in a large, exciting array of topological states.
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