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Exact results on itinerant ferromagnetism and the 15-puzzle problem
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We apply a result from graph theory to prove exact results about itinerant ferromagnetism. Nagaoka’s theorem
is extended to all nonseparable graphs except single polygons with more than four vertices by applying the
solution to the generalized 15-puzzle problem, which studies whether the hole’s motion can connect all possible
tile configurations. This proves that the ground state of a U → ∞ Hubbard model with one hole away from
the half filling on a two-dimensional honeycomb lattice or a three-dimensional diamond lattice is fully spin
polarized. Furthermore, the condition of connectivity for N -component fermions is presented, and Nagaoka’s
theorem is also generalized to SU(N )-symmetric fermion systems on nonseparable graphs.
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Introduction. The origin of itinerant ferromagnetism based
on Fermi-surface splitting rather than the ordering of local
spin moments is a difficult question in condensed matter
physics [1–24]. As illustrated by Stoner’s criterion, itinerant
ferromagnetism arises from Fermi statistics—parallel spin
alignment leads to the antisymmetrization of electron spatial
wave functions, which reduces the repulsive interaction en-
ergy [3]. However, spin polarization suffers from a kinetic
energy cost, which often dominates the gain of the exchange
energy. As a result, electrons typically remain unpolarized
even in the presence of strong interactions, developing highly
correlated wave functions to reduce interaction energy. Hence,
nonperturbative results and exact theorems in particular are
desired for the study of itinerant ferromagnetism to set up
reliable benchmarks. Known theorems include Nagaoka’s
theorem [9] and its various generalizations [11,12,25] and
flat-band ferromagnetism [13,15]. Inspired by the orbital ac-
tivity characterized by Hund’s coupling in most ferromagnetic
metals, a set of theorems of itinerant ferromagnetism in orbital
band systems driven by Hund’s coupling have been recently
proven [22,25], identifying phases of ferromagnetism with a
large range of electron fillings and finite bandwidth [26].

Nagaoka’s theorem, the first exact result showing itinerant
ferromagnetism [9], proves the existence and uniqueness, up
to spin degeneracy, of the fully polarized ground state for
the single-band Hubbard model. It applies for the case with
a single hole away from half filling in the limit of U → ∞, in
which the only energy is the hole’s kinetic energy. Intuitively,
the hole’s motion is fully coherent in the background of a
fully polarized spin configuration, while it becomes inco-
herent if spins are unpolarized. Hence, the kinetic energy is
optimized with a configuration of the maximum total spin.
The proof of Nagaoka’s theorem was simplified by Tasaki
[11] through use of the Perron-Frobenius theorem, which
has two key conditions—nonpositivity and connectivity. Non-
positivity means that all the off-diagonal matrix elements
of the many-body Hamiltonian are negative or zero, which
is feasible for a single hole under a suitably defined basis
but generally not for more than one hole due to fermionic

statistics. Connectivity means that the hole’s motion can con-
nect all configurations of spins and holes.

The connectivity condition is typically difficult to verify
on a general lattice. It has been shown to hold on lattices
composed of loops of size three or four [11,12]. In this
case, the hole’s hopping around each loop generates arbitrary
permutations of spins. The two-dimensional (2D) square and
triangular lattices and the three-dimensional (3D) cubic lat-
tices satisfy this condition, and Nagaoka’s theorem applies
to them. However, for lattices consisting of loops of more
than four sites, such as the 2D honeycomb lattice and 3D dia-
mond lattice, it remains unclear from previous work whether
Nagaoka’s theorem holds. It is thus interesting to ask whether
necessary and sufficient conditions can be determined under
which connectivity is satisfied.

Graph theory has been a useful tool in solving physical
problems. A celebrated example is the diagrammatic expan-
sion of field theory, in which graph theory is used to guide
the loop expansion and the one-particle irreducible vertex
expansion [27]. In the 1/N expansion of the large N method,
Feynman diagrams are sorted based on their degree of pla-
narity, and the leading-order contribution comes from the pla-
nar diagrams [28]. Graph theory also plays an important role
in the study of polymer configuration [29], phase transitions
in Ising and Potts models [30], and electric network designs
[31]. Physical problems defined on graphs have also attracted
considerable attention, including random walks [32], field
theory [33], phase transitions [34], and dynamic processes
[35].

In this Rapid Communication, we find an interesting con-
nection between the study of itinerant ferromagnetism and the
celebrated 15-puzzle problem of graph theory. In its original
form, the 15-puzzle consists of a 4 × 4 grid of tiles numbered
from 1 to 15, with the 16th cell on the grid being the hole.
The hole can be transposed with neighboring tiles, and the
goal is to permute a scrambled configuration to put the tiles
in order, as shown in Fig. 1. The generalized version of the
15-puzzle problem was examined on arbitrary graphs in Ref.
[36]. By relating the connectivity condition of lattices to the
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FIG. 1. (a) The solved configuration of the original 15-puzzle.
The goal of the puzzle is to return to this configuration from any
scrambled starting one. (b) For the 15-puzzle analogous to spin-1/2
particles, there are only two labels. A sample configuration on a 4 ×
4 grid is shown here with + for spin up and − for spin down. It is
mapped to a spin configuration with a single hole in a square lattice
in (c).

15-puzzle problem, we find that connectivity holds for spin- 1
2

electrons if and only if the lattice (graph) is nonseparable
and not a single polygon larger than a quadrilateral. This
generalizes Nagaoka’s theorem to a large class of lattices
including the honeycomb lattice and the diamond lattice for
which Nagaoka’s theorem has not been previously proven.
We also provide criteria for the connectivity condition for
SU(N ) fermions in the fundamental representation, leading
to a generalized SU(N ) Nagaoka’s theorem.

In what follows, we refer to a“graph” instead of a “lattice”
since the results require a finite number of sites and do
not depend on a regular lattice structure. Consider a spin- 1

2
Hubbard model on a general graph,

H =
∑

i,j,σ

tij c
†
iσ cjσ + U

∑

i

ni↑ni↓, (1)

where σ is the spin index, ni,σ = c
†
iσ ciσ , and tij is a symmetric

matrix of hopping amplitudes that encodes the graph struc-
ture. If sites i and j are connected, then tij > 0, otherwise
tij = 0. In the limit of U → ∞, states with doubly occupied
sites are projected out, and every site has exactly one electron
apart from the site with a hole. On a bipartite graph, the overall
sign of tij does not influence physical properties, since the sign
can by changed by a gauge transformation ciσ → −ciσ on all
sites i in one of the two subgraphs.

In order to consider a general graph structure, we now
summarize Tasaki’s proof of Nagaoka’s theorem [11]. Since
the Hamiltonian of Eq. (1) is SU(2) symmetric, the Hilbert
space decomposes into sectors labeled by the z component
of total spin Sz,tot. Without loss of generality, consider the
sector where Sz,tot = 0 or 1/2 for cases with an even or odd
number of spins, respectively, since any SU(2) multiplet has a
component in this sector. The basis is defined as

|h, {σ }〉 = (−1)h
′∏

i
c
†
i,σi

(ri )|0〉, (2)

where c
†
i,σi

is ordered following an arbitrary but fixed sequence
of the vertex indices, h is the index of hole’s location, and
the primed product excludes the creation operator at the
hole’s vertex. In this basis, the Hamiltonian matrix satisfies
a nonpositivity condition in that its elements are all 0 or
−tij . Suppose that the Hamiltonian additionally satisfies a
connectivity condition, which requires that there exists a

positive integer power N for any two basis elements |h, {σ }〉
and |h′, {σ ′}〉 such that

〈h′, {σ ′}|HN |h, {σ }〉 	= 0. (3)

This connectivity condition intuitively means that any con-
figuration of the spins and hole in the Sz sector can be
converted into any other configuration through a sequence of
hole hopping.

According to the Perron-Frobenius theorem, if both non-
positivity and connectivity are satisfied, Eq. (1) has a unique
ground state,

|ψg〉 =
∑

h,{σ }
αh,{σ }|h, {σ }〉, (4)

with a positive-definite wave function, meaning αh,{σ } > 0 for
all states in the selected Sz sector. To determine the total
spin of |ψg〉, a trial state |ψt 〉 is constructed by summing
over all states in the Sz sector with equal weight, |ψt 〉 =∑

h,{σ } |h, {σ }〉. Such a state is fully symmetric under permu-
tation of spin configurations and is thus fully spin polarized.
Since 〈ψg|ψt 〉 > 0, |ψg〉 shares the same quantum numbers
as |ψt 〉, meaning the ground state must also be fully spin
polarized.

In order to determine conditions under which the connec-
tivity condition holds, it is useful to consider the generalized
15-puzzle problem, which was examined on arbitrary graphs
in Ref. [36]. Through induction on the number of loops in the
graph, it is proven that, apart from two classes of exceptions,
any permutation can be performed on a nonseparable, nonbi-
partite graph, and any even permutation can be performed on
a nonseparable, bipartite graph. Here “nonseparable” means
that the graph remains path connected if any single vertex
is removed. The first class of exceptions consists of single
polygons larger than a triangle, and the second class consists
of the so-called θ0 graph which is a single hexagon with an
extra vertex in the middle that connects two opposite hexagon
vertices, as shown in Fig. 3 in the Supplemental Material (SM)
I [37].

We can now relate the connectivity condition to the gen-
eralized 15-puzzle problem. Each electron is labeled by “+”
or “−” according to its eigenvalue Sz = ± 1

2 and electrons of
the same label are indistinguishable. For example, Fig. 1(b)
illustrates a 4 × 4 lattice, in which each square plaquette
represents a vertex of the corresponding graph. The basis
elements Eq. (2) correspond to an assignment of +, −, or the
hole to each location. The connectivity condition is satisfied
if any configuration of labels can be converted to any other
with the same total numbers of + and − by a sequence of
transposing the hole with neighboring labels. On a general
graph, this takes the form of the generalized 15-puzzle with
only two distinct tile labels. Based on the solution to the gen-
eral 15-puzzle problem [36], we have the following theorem.

Theorem 1. The Hamiltonian in Eq. (1) on a graph G

satisfies the connectivity condition of Eq. (3) if and only if G

is nonseparable and G is not a polygon with V � 5 vertices.
The ground state of the model in Eq. (1) is then fully spin
polarized and unique up to spin degeneracy when U → ∞
and there is exactly one hole.
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Proof. We first prove sufficiency. The connectivity condi-
tion can be verified if G is a single triangle or quadrilateral
simply by cycling the hole around the loop and noting that
at least two spins are identical in the quadrilateral case since
there are only two distinct spin labels. Connectivity also holds
on the θ0 diagram, as shown in SM I [37]. For the remaining
nonseparable, nonpolygonal graphs, we note that since spin
only has two labels, the permutations of the spins and hole
are a subset of the possible permutations in the corresponding
15-puzzle problem where every vertex has a distinct label.
Hence, for the nonbipartite graphs, where all permutations
can be performed in the 15-puzzle problem with all labels
distinct, the connectivity condition is immediately satisfied.
For the bipartite graphs, the vertex number is larger than 4,
and there are thus at least two vertices occupied by the same
spin label. Since exchanging these two identical spin labels is
an identity operation, any odd permutation can be composed
with an exchange of two identical spin labels to produce an
even permutation with the same effect on the labels. Hence
generating all the even permutations on the bipartite graph
is equivalent to generating all permutations when there is a
repeated label. Since the 15-puzzle problem on the bipar-
tite graphs allows for any even permutation, connectivity is
satisfied.

Next, we prove necessity by demonstrating that the connec-
tivity condition is satisfied for neither polygons with vertex
number V � 5 nor for separable graphs. For the polygons
with V � 5, permutations leaving the hole fixed are cyclic
permutations, all generated by a single V − 1 cycle, on the
spin labels and thus cannot connect all configurations in the
Sz sector in general since these cyclic permutations cannot
exchange neighboring spins unless every spin but one has the
same label. This can also be seen by counting the number of
configurations in the Sz,tot = 0 or 1/2 sector, where the total
configuration number is Nc = V !/[m!(V − m − 1)!], where
m = V −1

2 or V −2
2 for odd or even V , respectively. Cycling

the hole around the polygon can at most generate V (V − 1)
configurations, which is less than Nc for V � 5. For the sep-
arable graphs, we only need to consider a general connected
but separable graph, which can be divided into two subgraphs
A and B with a single vertex O connecting them. A and B are
thus disconnected, and the overall graph is disconnected, if O

is removed. If the hole is initially at O, then if the hole moves
to A, it cannot enter B without passing O, and vice versa.
As a result, the hole’s motion cannot be used to move spins
between A and B, and permutations can only be performed
within A and O, or B and O, but not between A and B.

Theorem 1 ensures Nagaoka ferromagnetism for all regular
lattices, which goes beyond the previous results in literature
applying for graphs composed of triangles and quadrilaterals
[11,12]. For example, this demonstrates Nagaoka ferromag-
netism on lattices where the minimal loops are hexagons. To
our knowledge, this was previously an open problem. We thus
have the following corollary.

Corollary. Nagaoka ferromagnetism applies to both the 2D
honeycomb lattice and the 3D diamond lattice.

We can explicitly demonstrate connectivity in the honey-
comb lattice using 3-cycles, and the same method applies to
the diamond lattice as well. Figure 2(a) presents that a 3-cycle
for any three adjacent vertices in a hexagon loop can be

0 5

1 4

2 3

(a)

1

2 3

0 5

4

(b)

1

2 3

0 5

4

(c)

FIG. 2. (a) A three-cycle for any adjacent three vertices 1, 2, and
3 can be performed in a hexagon loop with concrete steps given in
SM II [37]. (b) Vertices 1 and 2 are occupied by spin-↑ and spin-↓.
Apply (123) or (132) when 3 is ↑ and ↓, respectively, then spins on 1
and 2 are exchanged without affecting other vertices as shown in (c).

performed for the 15-puzzle problem without affecting other
vertices, and a construction of such a 3-cycle is given in SM
II [37]. For the case of spins, two opposite labels on any edge
can be exchanged without affecting other vertices as shown
in Fig. 2(b). Without loss of generality, assume vertices 1 and
2 are occupied with spin labels ↑ and ↓, respectively. If site
3 has spin-↓, then simply applying the cycle (123) will be
exchange the spins at sites 1 and 2. Otherwise, if site 3 has
spin-↑, performing the cycle twice, or (321), will exchange the
spins. Next, consider any two vertices 1′ and 2′ with opposite
spin labels. We can choose a path connecting them. If the
hole is not on the path, it is straightforward to show that by
successively applying exchanges between adjacent vertices
along the path can exchange 1′ and 2′ without affecting other
vertices. If the hole is on the path, move it away, and after the
exchange is performed, reverse the hole’s motion. Since all the
permutations of spins can be generated by exchanges, they can
also be performed. In other words, the 3-cycles of adjacent
vertices generate all 3-cycles on the lattice. This establishes
connectivity on the honeycomb lattice.

The above demonstration of Nagaoka ferromagnetism on
the honeycomb and diamond lattices can serve as a starting
point for further studies. An interesting question is the sta-
bility of the fully polarized Nagaoka state in the presence of
multiple holes. Following the method in Refs. [38,39], we
have shown in SM III [37] that the ground-state energy Eg

satisfies the bounds of

EN � Eg � EN + tO
(
N

1/α

h /M
)
, (5)

where EN = −zNht with Nh the number of holes, z the
coordination number, M the total number of sites, and α =
1/2 and 2/5 for the honeycomb and diamond lattices, respec-
tively. When Nh scales with M more slowly than Mα , the
upper and lower bounds meet in the thermodynamic limit and
the Nagaoka state is degenerate with the ground state. The
stability of the Nagaoka state against finite hole densities has
been studied by analytic estimations [40] and a recent nu-
meric density-matrix-renormalization-group simulation [17].
It would be interesting to further explore exact results at finite
hole density in the thermodynamic limit.

Extensions. Recently, SU(N ) symmetric fermionic sys-
tems have attracted considerable attention in the context of
cold atom physics, where they can be realized by alkaline-
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earth fermions [41–43]. Consider the SU(N ) Hubbard model,

H =
N∑

ij,α=1

tij c
†
i,αcj,α + U

2

∑

i

ni (ni − 1), (6)

where 1 � α � N labels the fermion component, ni is the
number operator ni = ∑

α c
†
i,αci,α , and tij > 0 for connected

sites i and j with tij = 0 otherwise. In the U → ∞ limit with
one hole away from 1/N filling, where every site but one
has exactly one fermion, Nagaoka’s theorem was previously
generalized to this SU(N ) system on triangular, kagome, and
hypercubic lattices [44]. Without loss of generality, below
we only consider the case where N is less or equal to the
particle number, i.e., N � V − 1. The fermions considered
here are in the fundamental representation of SU(N ), yielding
N -component fermions.

It is natural to generalize Nagaoka’s theorem to the SU(N )
case on general graphs with the help of the 15-puzzle problem.
The nonpositivity of the Hamiltonian matrix of Eq. (6) can be
established under a many-body basis constructed similarly to
Eq. (2). For the connectivity condition, consider the nonsep-
arable graphs other than the θ0 graph and polygons. For non-
bipartite graphs, the connectivity condition holds even when
all the occupied vertices have different fermion components,
which places no further requirements on N . For bipartite
graphs, since only even permutations can be performed, at
least two vertices must be occupied by fermions in the same
component to allow a 3-cycle involving two identical fermions
to behave as an odd permutation. Satisfying connectivity
thus requires V � N + 2 for bipartite graphs. For polygons,
connectivity only holds on the triangle and quadrilateral for
the SU(2) case, and it does not holds on any polygons with
V � 4 for N � 3. For the θ0 graph, connectivity holds only
for N = 2. Summarizing the reasoning above, we have the
following theorem.

Theorem 2. Consider the SU(N ) Hamiltonian Eq. (6) for
N > 2 on a graph G with vertex number V � N + 1 in
the limit of U → +∞ with a single hole. The connectivity
condition is satisfied for G a nonseparable graph other than
the θ0 graph and polygons with V � 4, with an additional
condition that V � N + 2 for G bipartite. Then the ground
state is in the fully symmetric one-row SU(N ) representation
and is unique up to the SU(N ) degeneracy.

We can also generalize the ferromagnetism to hard-core
bosons with the same Hamiltonian Eq. (6). The Perron-
Frobenius theorem together with the 15-puzzle problem can
be used to prove a fully spin-polarized ground state. For

bosons, the hopping amplitudes need to be tij < 0 for links to
satisfy the nonpositivity of the Hamiltonian matrix elements.
As opposed to the fermion case, extension to multiple holes
is possible since bosons do not suffer from the minus sign
when switching two holes, allowing nonpositivity to hold.
Connectivity continues to hold for nonseparable graphs other
than single polygons larger than a triangle and the θ0 graph,
since a single hole can still be used to solve the 15-puzzle and
the remaining holes can be considered labels. When there are
at least two holes, connectivity holds on θ0 as well, as shown
in SM IV [37]. This yields Theorem 3.

Theorem 3. Consider the Hubbard model of Eq. (6) for
SU(N ) hard-core bosons in the U → +∞ limit on a graph
G. The connectivity condition for N > 2 is satisfied for
any number of bosons Nb � V − 1 if and only if G is a
nonseparable graph other than θ0 and polygons with V � 4
with an additional condition that V � N + 2 in the case of
only a single hole in a bipartite graph. If there are at least two
holes or N � 2, connectivity holds if G is θ0 as well. Then the
ground state is in the fully symmetric, one-row representation
of SU(N ), which is unique up to SU(N ) degeneracy.

Conclusions. The graph theorem of the generalized 15-
puzzle problem has been applied to establish the Nagaoka
ferromagnetic state of the infinite-U Hubbard model on gen-
eral graphs with a single hole away from half filling. We
have found that for the SU(2) case, the Nagaoka state is the
unique ground state up to spin degeneracy for all nonseparable
graphs other than single polygons with vertex number V �
5, as established by Theorem 1. This extends Nagaoka’s
theorem to the 2D honeycomb lattice and the 3D diamond
lattice, whose minimal loops contain six vertices and are
hence beyond previous results in the literature. Furthermore,
Nagaoka’s theorem can also be extended to the case of a single
hole in an otherwise 1/N-filled SU(N ) Hubbard model. In
the SU(N ) case, the result is valid on nonseparable graphs
other than the θ0 graph and single polygons with an additional
condition of V � N + 2 for bipartite graphs, as established by
Theorem 2. Similar results can also be generalized to SU(N )
hard-core boson systems. These results are helpful for further
analytic and numeric studies of the mechanism for itinerant
ferromagnetism and searches for novel ferromagnetic states
in condensed matter and ultracold atom systems.
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