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Josephson coupling in the dissipative state of a thermally hysteretic μ-SQUID
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Micron-sized superconducting interference devices (μ-SQUIDs) based on constrictions optimized for min-
imizing thermal runaway are shown to exhibit voltage oscillations with applied magnetic flux despite their
hysteretic behavior. We explain this remarkable feature by a significant supercurrent contribution surviving deep
into the resistive state due to efficient heat evacuation. A resistively shunted junction model, complemented
by a thermal balance determining the amplitude of the critical current, describes well all experimental
observations, including the flux modulation of the (dynamic) retrapping current and voltage, by introducing a
single dimensionless parameter. Compared to the nonhysteretic regime, this regime extends the voltage readout
mode in a given μ-SQUID to further lower temperatures. More importantly, the quantitative modeling of this
regime incorporating both heating and phase dynamics paves the way for further optimization of μ-SQUIDs for
nanomagnetism.
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I. INTRODUCTION

A superconducting quantum interference device (SQUID),
in which two Josephson junctions (JJs) form a closed loop,
exhibits a modulation of the critical current Ic as a function of
the magnetic flux through the loop with a period �0 = h/2e.
It is the most sensitive magnetic field transducer to date [1,2].
Miniaturized SQUIDs have been used for probing magnetic
properties of nanoparticles [3–6] and surfaces with submicron
resolution [7,8]. The coupling of a nanoparticle’s magnetic
flux to a μ- or nano-SQUID is far better [1] than coupling
it to a conventional SQUID, leading to a magnetic moment
resolution down to below 1 μB [4,9]. Thus, optimizing such
μ-SQUIDs in terms of sensitivity, ease of fabrication, and
operation or operating temperature and magnetic field range
is the focus of a large number of recent works [10–16]. How-
ever, hysteresis in the current-voltage characteristics (IVCs)
of μ-SQUIDs severely limits their flux resolution and speed.
Hysteresis in conventional SQUIDs based on superconductor-
insulator-superconductor Josephson junctions is well under-
stood in the frame of the resistively and capacitively shunted
junction (RCSJ) model [17,18]. In contrast, hysteresis in
weak-link (WL)-based μ-SQUIDs arises from the Joule heat-
ing leading to a self-sustained hot spot [19–22].

Despite their hysteresis, Nb-based μ-SQUIDs have been
remarkably successful in nano-magnetism, in particular in
the pioneering works of Wernsdorfer and collaborators [3–5].
Their fabrication based on electron lithography is easy and
scalable. Efforts to fabricate high-sensitivity nano-SQUIDs
based on high-Tc cuprate films have also been quite successful
recently [23–25]. Nevertheless, all WL-based SQUIDs ex-
hibit hysteresis at very low temperatures, where the quantum
dynamics of magnetization can be probed. Hence, ways to
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further optimize Nb-based μ-SQUIDs down to very low
temperatures with high speed and sensitivity are being in-
vestigated [26–28]. A hurdle in this direction is the poor
understanding of the phase-dynamic regime in WLs due to
the contribution of heating and other nonequilibrium effects.
Only in this dynamic regime can a SQUID exhibit voltage os-
cillations with magnetic flux, making the fast voltage-readout-
mode possible. The latter uses the linear portion of the voltage
response to flux at fixed bias current in order to operate a
SQUID in a flux-locked loop [17].

In a WL biased with a current I close to the critical current
Ic, the transition to the dissipative state is triggered by a phase
slip [29,30], which changes ϕ between the leads by 2π . The
ensuing voltage peak, and thus heating, generally suffices to
create an avalanche of phase slips, driving the local WL tem-
perature TWL above the bath temperature Tb. When the bias
current is ramped down, superconductivity is recovered only
at the so-called retrapping current (<Ic), leading to hysteresis.
The hot-spot model by Skocpol, Beasley, and Tinkham (SBT)
[19] considers that in the finite-voltage state the temperature
TWL is above the critical temperature Tc. The Josephson cou-
pling is then lost, so that no SQUID-type behavior is observed
in this state for most of the temperature range [22,31,32].
Still, it has been observed in some devices based on WLs
[20,33,34] and superconductor-normal metal-superconductor
(SNS) junctions [35–37]. In most cases, the theoretical mod-
eling neglected thermal effects and relied on a conventional
RCSJ model, but with an effective capacitance [38] well above
the actual geometric one. Eventually, the SBT model was also
extended to the case of a WL temperature remaining below
Tc, still ignoring the WL phase dynamics [33,34].

Recently, some of us proposed a dynamic thermal model
[39] of WLs, incorporating both the overheating of the WL at
a temperature TWL and a resistively shunted junction (RSJ)-
type phase dynamics. If TWL remains below Tc, then the
Josephson coupling across the WL is not fully destroyed.
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The Josephson current, together with the normal current,
persists over a portion of the finite-voltage branch of the IVCs
[40], thus leading to SQUID-type voltage oscillations. This
dynamic thermal model (DTM) is in between the SBT model,
where the Josephson coupling does not exist at nonzero
voltages, and the R(C)SJ model that ignores the thermal
effects. A similar approach was used to describe the radio-
frequency response of a SNS junction [41]. Alternatively, hys-
teresis in the phase-slip-controlled regime can be described
using a more elaborate nonequilibrium approach using time-
dependent Ginzburg-Landau equations [42].

In this paper, we report temperature- and magnetic-field-
dependent transport in μ-SQUIDs with a geometry optimized
for a moderate Joule heating. Despite being clearly hysteretic,
the devices exhibit voltage oscillations with the magnetic
flux. The related nonzero flux-sensitive supercurrent contri-
bution surviving well above the critical current and within
a finite current window, which cannot be understood using
either the static SBT or isothermal R(C)SJ model, is ana-
lyzed with the dynamic thermal model, which quantitatively
captures every observation. We eventually discuss the flux
sensitivity of the studied hysteretic μ-SQUIDs in the dynamic
regime.

II. DYNAMIC THERMAL MODEL

In the dissipative state, phase slips [30,43,44] occur
at a rate V/�0 � τ−1

J = RNI 0
c /�0, where I 0

c is the zero-
magnetic-field critical current, taken here at the bath tem-
perature. Each phase slip deposits a Joule heat I�0, leading
to a temperature rise in the WL region. The Joule heat is
generated over a length scale determined by the inelastic
quasiparticle diffusion length [45,46], much longer than the
WL dimensions studied here. Thus we assume a uniform [30]
temperature over the entire WL, which determines its critical
current Ic. The characteristic time for the thermal balance is
τth = CWL/k, where CWL is the WL heat capacity and k is
the thermal conductance to the bath. Under the quasistatic
approximation, the instantaneous WL temperature TWL is
dictated by a thermal balance between the Joule heat and the
conduction to the bath k(TWL − Tb).

If the temperature TWL remains below Tc at any instant
of time t , the bias current I is dynamically shared between
a supercurrent Is(t ) and a complementary normal current.
This gives rise to a time-dependent voltage V (t ) = RN[I −
Is(t )] related to the phase difference ϕ through the Josephson
relation V (t ) = �0ϕ̇/2π . The heat balance equation govern-
ing the dynamics of temperature is written as CWL ˙TWL +
k(TWL − Tb) = V2(t )/RN. These two equations can be rear-
ranged in terms of dimensionless variables as [39]

ϕ̇ = 2π (i − is), (1)

αṗ + p = β

4π2
ϕ̇2. (2)

Here the currents i and is are, respectively, the currents I

and Is in units of the zero-magnetic-field critical current
I 0

c (Tb). The time unit is τJ, and α = τth/τJ. The dimensionless

temperature is defined as

p = TWL − Tb

Tc − Tb
. (3)

We also define the dimensionless parameter

β = RNI 0
c

2(Tb)

k(Tc − Tb)
(4)

as the ratio of Joule heat generation (at I 0
c ) and heat evacuation

(at Tc).
The static retrapping current Ih [47] is defined by the

WL being right at the critical temperature (TWL = Tc). From
Eq. (2), the thermal balance k(TWL − Tb) = RNI 2 gives

Ih = I 0
c /

√
β. (5)

At a larger current I > Ih we have TWL > Tc, so that there
is no Josephson coupling, and hence, V = RNI . A nonzero
supercurrent can be carried by the WL only for I < Ih.

The dynamic retrapping current I
dyn
r is the current below

which the dynamic state ceases to exist and the zero-voltage
state becomes stable against any phase slip. Here and in the
following, we consider WLs featuring a linear temperature
dependence of the critical current and a sinusoidal current-
phase relation Is(ϕ). One can then obtain by solving Eqs. (1)
and (2) [39]

2β2

[
I

dyn
r

I 0
c

]2

=
√

1 + 4β2 − 1. (6)

From numerical simulations, we find that a nonsinusoidal
Is(ϕ), within a regime of single-valued current, negligibly
affects this relation. Moreover, the elevated WL temperature
in the dynamic state gives rise to an increase in coherence
length ξ , and thus, the current-phase relation Is(ϕ) is close to
sinusoidal.

The extent of the dynamic regime, defined by the current
bias window I

dyn
r < I < Ih, depends on the value of the

dimensionless parameter β. Figure 1(a) depicts the device
state diagram found using the β dependence of I

dyn
r and

Ih. For large values of β, i.e., poor heat evacuation and/or
high I 0

c , I
dyn
r and Ih are both below I 0

c and very close to
each other. The dynamic regime then occurs in a bias current
window of vanishing width, making its observation in IVCs
practically impossible [27,31]. In this limit, the physics is
well described by the SBT and other static thermal models
[19,20,31]. In contrast, for β of about unity or smaller, the
dynamic regime spans a significant current range. The static
retrapping current Ih can then significantly exceed I 0

c , and the
dynamic retrapping current I

dyn
r is close to I 0

c . For extremely
good heat evacuation β → 0, one has Ih → ∞ and I

dyn
r →

I 0
c , and RSJ model is recovered.

In the dynamic regime between I
dyn
r and Ih, the WL

temperature TWL oscillates with time about an average value.
However, for a large value of α, the magnitude of these oscil-
lations is negligible compared to the average WL temperature
[39]. This is always the case as τth, which can range from
tens of nanoseconds to microseconds, is greater than τJ, which
is of picosecond order. The WL can thus be considered at
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FIG. 1. Device state diagram with the gray shaded region indi-
cating the dynamic regime where the WL has a finite voltage but
carries a nonzero supercurrent. The region to the left of this gray
region is the zero-voltage state where all the bias current is carried
as supercurrent, while the right region has no supercurrent. The red
(green) line depicts the β dependence of I dyn

r (Ih). Inset: Equivalent
circuit of the DTM. (b) Variation of the dimensionless time-averaged
WL temperature p with the bias current in the dynamic regime for
different β values. (c) Ratio of the time-averaged supercurrent Is and
the critical current I 0

c as a function of β at the bias current values of
I dyn

r and I 0
c .

a constant (time-averaged) temperature TWL [30,39,41]. The
corresponding time-averaged reduced temperature p can be
calculated as a function of the current bias i from Eqs. (1) and
(2) [39]:

p = i2β2 +
√

−i2β2 + i4β2 + i6β4

1 + i2β2
, (7)

with β being the single parameter. Figure 1(b) shows how
p (or, equivalently, TWL) decreases with the current bias for
various values of the parameter β, starting from 1 (or Tc) at
Ih. At every bias, one can thus calculate the critical current
Ic(TWL) and the related time-averaged voltage as

V = RN

√
I 2 − I 2

c (TWL) (8)

and the time-averaged supercurrent Is as

Is = I − V/RN = I −
√

I 2 − I 2
c (TWL). (9)

Figure 1(c) shows Is as a function of the parameter β at
bias current values equal to I

dyn
r and I 0

c . For β > 1, the
time-averaged supercurrent Is is zero when the bias current
reaches I 0

c [19,31]. In practice, as soon as β exceeds about 2,

(b)(a)

FIG. 2. (a) Current-voltage characteristics at different temper-
atures in the hysteretic regime. Red, black, green, and blue cor-
respond to Tb = 1.67, 2.27, 2.77, and 2.98 K, respectively. (b)
Temperature dependence of the critical current I 0

c and the (dynamic)
retrapping current I dyn

r . The crossover temperature Th is close to
3 K. The solid lines are fits below Th. The critical current I 0

c is
fit to 211.2(1 − Tb/3.3), which gives the zero-temperature critical
current Ic0 = 211.2 μA. The dynamic retrapping I dyn

r is fit to Eq. (6),
which gives the WL critical temperature Tc = 6.0 K. Inset: Scanning
electron micrograph of the SQUID loop.

the WL switches almost immediately to a fully normal state
with TWL � Tc and (almost) zero supercurrent. For small β

values, the supercurrent Is is comparable to the full critical
current I 0

c .

III. EXPERIMENTAL DETAILS

The fabrication of the μ-SQUIDs starts with the deposition
of a Nb thin film with a thickness of 40 nm on a Si substrate.
A resist layer was afterwards patterned using laser lithogra-
phy for the outer leads and contact pads and electron-beam
lithography for the smaller structures. A 25-nm-thick Al layer
was then deposited, followed by liftoff. With the latter acting
as a protective mask, the Nb devices were obtained by a
SF6 reactive-ion etch. The Al mask is eventually chemically
etched. Figure 2(b) shows the loop of a SQUID with the
two constrictions, with nominal width and length of 40 and
160 nm, respectively, in parallel. The critical current Ic was
tuned down (to the 100 μA range) by trimming [28] down
the Nb thickness to 20 (±2) nm in subsequent reactive-ion
etching steps without an Al mask. The etching process can
also lead to a reduction in Tc due to the appearance of a
nonsuperconducting layer on the top and bottom and also
on the sides [48–50]. However, the thickness of such a layer
[51,52] is estimated to be only ∼2 nm, which leaves a large
and effective superconducting channel at the core of the WLs.

Electrical transport measurements were carried out in a
closed-cycle refrigerator with a base temperature of 1.3 K.
The electrical signals are thoroughly filtered, both at room
temperature (π filters) and at base temperature (copper-
powder filters). Home-made ground-isolated current sources
and voltage amplifiers were used. From the temperature-
dependent four-probe transport measurements of the first de-
vice, we find the onset of superconductivity at 8.6 K and
a sheet resistance R� = 5.8 � in the normal state. In the
following, we will present experimental data mainly from
one sample. Another sample featured a similar behavior (see
Appendix A).
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IV. RESULTS

Zero-field IVCs of a μ-SQUID at various bath tempera-
tures Tb are shown in Fig. 2(a). The critical current I 0

c varies
strongly with temperature and exceeds 100 μA below 2 K
[see Fig. 2(b)]. The critical current density Jc at 1.3 K, found
as 21.1 MA/cm2, is close to the Ginzburg-Landau depairing
current density Jdp = (2/3)3/2[Hc(0)/λ] = 36 MA/cm2 (at
zero temperature), estimated using parameters for bulk and
clean Nb [18]. This Jc value is similar to that of our earlier
devices [31]. Together with the linear dependence (up to Th) of
the critical current I 0

c on the bath temperature Tb, this confirms
the intrinsic superconducting nature of the WLs as opposed to
that of SNS WLs [31,41,53]. Below the crossover temperature
Th ≈ 3 K, hysteresis is observed with a retrapping to the zero-
resistance state at a well-defined dynamic retrapping current
I

dyn
r [39] [see Fig. 2(a)]. A fit of its temperature dependence

to Eq. (6) provides the value for the critical temperature of the
WL Tc = 6.0 K. At bias currents significantly above I 0

c , further
thermal instabilities occur in larger portions of the device, as
evidenced by additional retrapping currents (see Appendix A).
Our study here is focused on the hysteretic regime and at bias
currents below or in the vicinity of the critical current Ic.

In the dissipative branch, the IVC slope dV/dI varies with
the bias current from 5.2 � (just above I

dyn
r ) to 7 � (above

I 0
c ) at 1.67 K [see Fig. 2(a)]. In the low-bias regime of interest

here, the differential resistance is always close to RN = 5.2 �

independent of bias current and temperature (see Appendix
A). This value is significantly below the value of 11.5 � for
the resistance of two WLs in parallel estimated from the sheet
resistance. This indicates that the WLs are not fully resistive
in this dissipative state.

When applying a perpendicular magnetic field B and
thus a flux � = BS, the critical current Ic displays a �0-
periodic modulation, taking an effective SQUID loop area
S = 1.6 μm2. The flux modulation of the critical current,
starting from its maximal zero-field value I 0

c , is not complete
and has a rather triangular shape [see Figs. 3(a) and 3(b)]. This
behavior cannot be explained solely by asymmetric critical
currents between the two arms. Moreover, self-flux-related
effects [17], related to the loop inductance L, are negligible
here, as we estimate LI 0

c /�0 < 0.1. For a WL with a length
	 � ξ , the supercurrent phase Is(ϕ) relation is nonsinusoidal
[54–57]. Numerical calculations using a nonsinusoidal Is(ϕ)
relation indeed yield an incomplete cancellation of Ic at � =
�0/2 (Appendix B), similar to the experimental behavior.

Strikingly, the retrapping current I
dyn
r also shows oscil-

lations with the magnetic flux [see Figs. 3(a) and 3(b)], in
contradiction to the SBT picture of a fully normal state of
the device in the dissipative state. A similar feature was
observed in SQUIDs based on normal-metal WLs [35–37] but
not satisfactorily explained. It constitutes the first indication
that superconductive coupling is not fully suppressed by the
electron heating in the dissipative branch of our hysteretic
devices.

Moreover, the SQUID voltage also shows an oscillatory
dependence on magnetic field for a wide bias current window
[see Figs. 3(c)–3(f)]. This is completely opposed to the SBT
model behavior, in which the dissipative state displays no
signature of Josephson coupling across the SQUID WLs. The

FIG. 3. (a) and (b) Oscillations of the critical and dynamic re-
trapping currents with the magnetic field in the hysteretic regime at
1.3 and 2.42 K, respectively. (c) Voltage oscillation with magnetic
field for I = 39 to 53 μA in 2 μA intervals at 2.42 K. (e) The same
for I = 25 to 50 μA at 3.26 K. (d) and (f) IVCs at different flux
values (0,�0/2, and �0/4) at 2.42 and 3.26 K, respectively.

initial jump in voltage, seen for I
dyn
r < I < Ic [see Fig. 3(c)],

occurs due to the first arrival to the resistive branch. At a fixed
temperature, the IVCs at different flux values are found to
merge on the linear branch [see Figs. 3(d) and 3(f)], beyond
a particular bias current. We identify this current as the static
retrapping current Ih [39], as discussed in Sec. II. The V -B
oscillations consistently disappear at a bias current beyond Ih.
At lower temperatures (Tb = 1.3 and 2 K) in the hysteretic
regime, V -B oscillations are observed over a narrow bias
current span just above I

dyn
r [see Figs. 4(a) and 4(b)].

The flux-to-voltage transduction function V�, defined as
the maximum of ∂V/∂�(�), is found to be 27 μV/�0 in

FIG. 4. (a) V -B oscillation at the lowest temperature of 1.3 K at
a bias current of 48.3 μA just above the dynamic retrapping current
I dyn

r . (b) Same at 2 K for three different bias currents (45, 46, and
47 μA) very close to I dyn

r . At these lower temperatures, voltage
values are extracted from IVCs at different magnetic field values.
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the dynamic regime at Tb = 2.42 K. With a voltage noise
of ∼1 nV/

√
Hz in our circuit, this gives a flux noise density√

S� ≈ 37 μ�0/
√

Hz. In the nonhysteretic regime, thanks to
higher flux-to-voltage transduction V�, the sensitivity

√
S�

reaches 3 μ�0/
√

Hz at Tb = 3.26 K. The latter value is
similar to the ones reported in nonhysteretic μ-SQUIDs with
room-temperature amplifiers [1,58].

V. DISCUSSION

To model the μ-SQUID, we assume the WLs are iden-
tical, with a temperature-dependent critical current I 0

c /2, a
temperature-independent normal-state resistance 2RN, and a
heat-loss coefficient k/2. The two WLs’ phases, ϕ1 and ϕ2,
maintain a constant difference, ϕ1 − ϕ2 = 2π�/�0, forced
by the magnetic flux through the SQUID loop. Consequently,
the two WLs’ average temperatures are identical in the dy-
namic steady state. Eventually, the SQUID behaves as a single
WL with normal resistance RN, heat-loss coefficient k, and
critical current Ic(TWL,�) = I 0

c (TWL) | cos(π�/�0) |. The
flux modulation of the critical current alters the expression for
the dynamic retrapping current to

I
dyn
r (�)

I 0
c

=
√√

1 + 4β2 cos4(π�/�0) − 1
√

2β | cos(π�/�0) | . (10)

At zero flux, this expression matches Eq. (6). In the limit of a
small β, one recovers the usual | cos(π�/�0) | modulation.
In contrast, Ih is independent of the flux.

For every bath temperature, we use Eq. (6) of the DTM
with the measured zero-flux dynamic retrapping current I

dyn
r

and critical current I 0
c to extract the value of β. Figure 5(a)

shows how the parameter β varies with the bath temperature
Tb over the hysteretic regime, from close to zero at Th to
about 8 at 1.3 K. For small β values, I

dyn
r and I 0

c are (almost)
indistinguishable in IVCs. Thus, the error bars in β increase
when Tb is increased towards Th [see Fig. 5(a)], and the
method cannot be used beyond that. As discussed below, the
variation of the residual supercurrent with the bias current
is then a more appropriate method to extract the value of
β. With the temperature coefficient of the measured critical
current I 0

c (Tb) below Th being known [see Fig. 2(b)], we
use Eq. (4) with k as the single free parameter to fit the
β(Tb) curve. We obtain k = 2.6 nW/K. Alternatively, we
can also use the value of I 2

c0RN/kTc = 13.9 obtained from
the fit of the dynamic retrapping current as a function of
the bath temperature I

dyn
r (Tb), which gives k ≈ 2.8 nW/K.

Using a typical value of the heat-transfer coefficient such as
5 W/cm2 K [22,31] and these two close values of k, the
effective heat-loss area is estimated to be ∼0.06 μm2, which is
larger than but still comparable to the 0.16 × 0.04 μm2 area of
the WL.

Using the variation of the parameter β as a function of the
bath temperature Tb, Eq. (7) provides us with the behavior
of the WL temperature TWL at a bias current equal to the
corresponding dynamic retrapping current I

dyn
r [see Fig. 5(a)].

At the crossover temperature Th where β is small, the WL
is at thermal equilibrium with the bath, i.e., TWL ≈ Tb, as in

FIG. 5. (a) Gray symbols: change in β with bath temperature for
the measured first device as found using I dyn

r and I 0
c in the hysteretic

regime (below Th � 3 K). The blue solid line is a fit per Eq. (4)
in DTM with k = 2.6 nW/K. Red symbols and line represent the
WL temperature TWL as a function of the bath temperature Tb and
at a bias current equal to the corresponding I dyn

r . (b) Variation of
the modulation amplitudes �Ic and �I dyn

r with bath temperature.
(c) Symbols: measured supercurrent modulation amplitude in units
of the critical current modulation amplitude �Is/�Ic in the dissi-
pative state as a function of bias current ranging from I dyn

r to Ih at
different bath temperatures. Solid lines: best fit to the DTM with fit
parameters listed in Table I. The value of I 0

c , setting the x-axis scale,
depends on the bath temperature. Arrows and dotted lines indicate
the positions of the static and dynamic retrapping current Ih and I dyn

r ,
respectively.

the isothermal RSJ model. Towards low temperature, the WL
temperature TWL increases towards Tc.

A small β value, required for observation of the dynamic
regime, necessitates a small critical current Ic and/or a large
thermal conductance to the bath k. Compared to earlier similar
devices [31] for which we estimate β to be about 20 at 4.2 K,
we enhanced k by widening the leads right outside the SQUID
loop while still keeping a short and narrow neck between the
SQUID loop and the wide leads to avoid vortices between the
two WL’s current path [59]. As described earlier, we reduced
Ic approximately by an order of magnitude by trimming the
Nb thickness down, which overall dominates the decrease in
β value. The value β = 2 obtained at 2.1 K [see Fig. 5(a)]
approximately defines the low-temperature limit for practical
operation of the SQUID in the voltage-modulation mode,
significantly below the hysteresis temperature Th. At lower
temperatures, the bias-current range of the dynamic regime
is narrow, and the voltage oscillations are of small amplitude.
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TABLE I. Sample parameters, including the calculated and fitted
values of β for different temperatures.

Tb (K) I 0
c (μA) I dyn

r (μA) β from I dyn
r value β from Fig. 5 fit

2.42 58 44 1.13 1.1
2.62 46 40 0.66 0.74
2.88 40 38 0.35 0.5
3.26 31.6 31.6 0.28

In the experiment and as discussed above, the critical
current is not fully modulated by the flux, which implies
the same for the supercurrent. Thus, one cannot compare the
supercurrent calculated from the model directly to the one
deduced from the measured voltage oscillations. We consider
the amplitude of the supercurrent modulation in units of the
critical current modulation by the flux, i.e., �Is/�Ic. From
the experimental data, we calculate �Is/�Ic as being equal
to �V/(RN�Ic), where �V and �Ic are the modulation
amplitudes of the voltage and the critical current, respectively.
As for the theory, we calculate

�Is

�Ic
=

I −
√

I 2 − I 0
c

2(TWL)

I 0
c (Tb)

, (11)

with the temperature TWL being found using Eq. (7), with β

being the single adjustable parameter.
Figure 5(c) shows the experimental (symbols) and theo-

retical (lines) values of the ratio �Is/�Ic as a function of
the normalized bias current capturing most of the dynamic
regime. Very good quantitative agreement is obtained. The fit
values of β listed in Table I agree well with those deduced
and plotted in Fig. 5(a) from the analysis of the dynamic
retrapping current. The comparison made here is fully justified
only in the case of a sinusoidal Is(ϕ). Extending this to the
case of a nonsinusoidal current-phase relation is intuitive but
still not fully theoretically established. Still, the successful
comparison of experimental data and theoretical calculation
demonstrates that the DTM accurately describes the transition
between the isothermal Josephson junction behavior and the
electronically overheated and hysteretic μ-SQUID behavior.
We attribute a small discrepancy in fits to the assumptions
made in the model, such as the temperature independence of
the thermal parameters.

The insights gained from the above study, in particular the
key role of the parameter β, provide a guideline for designing
devices with improved performance. While for 0.4 < β < 2
a wide dynamic regime is obtained, featuring both hysteretic
behavior and SQUID voltage oscillations, one needs to reach
β < 0.4 so that hysteresis disappears and the voltage modu-
lations reach a significant fraction of �/e. This is illustrated
for a device in Fig. 6, with narrower WLs compared to the
previous one, resulting in a smaller critical current Ic and thus
a small β ∼ 0.36, even at 1.3 K.

In this device, the flux-to-voltage transduction function
V� is 1 mV/�0 at 1.3 K. With an estimated voltage noise
of 1 nV/

√
Hz in our circuit, we find a flux noise density√

S� ≈ 1 μ�0/
√

Hz, i.e., significantly below the values of
3 μ�0/

√
Hz previously reported in nonhysteretic μ-SQUIDs

FIG. 6. V -B oscillations of another device with a small critical
current I 0

c = 51 μA and thus a small β = 0.36 at 1.3 K. Here the bias
current ranges from 50 to 70 μA.

using room-temperature amplifiers [1,58]. The use of a
low-temperature current amplifier [9], while voltage biasing
the μ-SQUID, is expected to further improve the sensitivity.

VI. CONCLUSION

In conclusion, we discussed the crossover from the fully
overheated WL, i.e., the SBT regime, where the supercurrent
is either on or off, to the (isothermal) RSJ case, where the
supercurrent contribution decays progressively when the bias
current exceeds the critical current. This physics is relevant
not only for WLs but also for Josephson junctions based on
nanowires, two-dimensional materials, and topological insula-
tors, where a large supercurrent density can appear, implying a
large power density at the resistive switch, together with poor
heat evacuation, thus creating hysteresis. A single parameter
β reflects the balance between the heat evacuation from the
WL and the injected heat; it can be tuned by trimming
the critical current and/or varying the thermal coupling to
the bath. This balance determines the amplitude of voltage
modulation in the phase dynamic regime. In terms of applica-
tions at low temperature, the existence of voltage oscillations
makes hysteretic μ-SQUIDs useful as flux-to-voltage trans-
ducers for probing magnetism at the nanoscale with a wide
bandwidth.
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FIG. 7. (a) Larger-area SEM image of the μ-SQUID showing the
current and voltage leads. (b) R-Tb plot at a fixed I = 10 μA showing
the superconducting transition at an onset temperature of 8.6 K. The
inset shows some IVCs in the nonhysteretic regime. (c) Hysteretic
IVCs over a larger range of bias current showing thermal instability
at Ir1.

APPENDIX A: ADDITIONAL EXPERIMENTAL DATA

Figures 7(a) and 7(b) show the large-scale scanning elec-
tron microscope (SEM) image of the μ-SQUID together
with its resistance versus bath temperature (R-Tb) curve and
nonhysteretic IVCs. The WL Tc of 6 K cannot be found from
the R-Tb plot as the bias current of 10 μA is too high.

Figure 7(c) shows hysteretic I -V characteristics over a
large bias range. We see multiple retrapping currents, with
the larger-magnitude ones representing thermal instabilities
in wider portions [see arrows labeled A and B in Fig. 7(a)]
of the device, as evidenced by the resistance values above
the respective retrapping currents. The physics of thermal
instability at higher bias currents [above Ir1; see Fig. 7(c)]
beyond the dynamic regime was already reported by some of
us [27,31].

Figure 8(a) shows the dV/dI -I plots for the first device
at four different temperatures to depict the saturation to the
linear IVC for bias currents beyond Ih. Figure 8(b) depicts

FIG. 8. (a) The variation of the differential resistance dV/dI

with I in the range I dyn
r < I . The dotted line shows the saturation

to RN ≈ 5.2 � for I � Ih. (b) Zero-field IVCs (symbols) and the fits
(solid lines) to the DTM. Fitted β values are 1.45, 1, 0.75, and 0.65
for Tb = 2.42, 2.62, 2.88, and 3.26 K, respectively.

FIG. 9. (a) I dyn
r oscillation with B at Tb = 2.16 K for a third

μ-SQUID with Th = 2.75 K. (b) V -B oscillations at this temperature
for I = 25 to 38 μA.

the fits of the experimental zero-field IVCs to the DTM at
four different temperatures after incorporating an appropriate
excess current [20] defined as the intercept of the extrapolated
linear Ohmic branch on the current axis. The latter, as well
as the reduced Ic modulation with flux as discussed earlier, is
beyond the DTM and is believed to arise from nonideal WL
behavior.

Similar results on transport measurements observed in
another (third) μ-SQUID are shown in Figs. 9(a) and 9(b).
The crossover temperature Th of this device is found to be
2.75 K. In the hysteretic regime (below 2.75 K), the retrapping
current I

dyn
r oscillates along with Ic with B [see Fig. 9(a) for

Tb = 2.16 K]. The estimated resistance from the linear Ohmic
branch of IVCs beyond Ih is 4.1 �. The period of oscillation
is the same, i.e., 1.25 mT, as that of the first device. The V -B
oscillations at 2.16 K are shown in Fig. 9(b) for bias currents
ranging from I = 25 to 38 μA.

APPENDIX B: NONSINUSOIDAL Is(ϕ) RELATION
AND Ic MODULATION

As opposed to the short (	 � ξ ) WLs, where the super-
current phase Is(ϕ) relation is sinusoidal (Is = Ic sin ϕ) [57],
the longer WLs (	 � ξ ) exhibit a nonsinusoidal Is(ϕ). Using
Ginzburg-Landau theory (which is valid close to Tc), the Is(ϕ)
relation for a single WL of different lengths is calculated and
shown in Fig. 10 [54]. For a SQUID with identical WLs, the
magnetic flux � gives rise to a phase difference 2π�/�0

between the two WLs. Adding the two WL’s supercurrents
with this phase difference, we obtain the total supercurrent Is.
Figure 10(b) shows the total Is as a function of ϕ at � = �0/2.

FIG. 10. (a) Is(ϕ) relation for different 	/ξ values. For 	/ξ �
4, Is is no longer single valued. (b) Is/I

max
c as a function of ϕ at

� = �0/2. Here Imax
c is the SQUID critical current at zero flux. (c)

Ic/I
max
c variation with flux. The green, red, and blue curves represent

	/ξ = 1, 2, and 3, respectively. The black line in (b) shows Is for the
perfectly sinusoidal Is(ϕ) relation at � = �0/2.

174514-7



BISWAS, WINKELMANN, COURTOIS, AND GUPTA PHYSICAL REVIEW B 98, 174514 (2018)

FIG. 11. Variation of residual supercurrent �Is/�Ic in the resis-
tive branch at Tb = 2.42, 2.62, 2.88, and 3.26 K as calculated from
experimental data (shown by symbols). Solid lines represent the best
fit to the RCSJ model. I 0

c on the x axis is the critical-current value at
zero flux for respective Tb.

For a short WL-based SQUID, with perfectly sinusoidal Is(ϕ),
this total Is at � = �0/2 is identically zero, which is clearly
not the case for long WL-based SQUIDs.

Figure 10(c) shows the Ic(�) oscillations for 	/ξ = 1, 2,
and 3, with Imax

c being the maximum (with respect to ϕ) value
of Is at a given �. The Ic modulation amplitude decreases with
increasing 	/ξ . This demonstrates how the Ic modulation of a
SQUID with flux is limited by the nonsinusoidal Is(ϕ) relation
of the WLs.

APPENDIX C: RCSJ MODEL

Here we attempt the fitting of the supercurrent relative
modulation �Is/�Ic with the RCSJ model. This is not very

plausible due to the lack of sharp cutoff in Is, which is quite
apparent in the experiments.

TABLE II. Comparison of measured I dyn
r and I 0

c with calculated
(from I dyn

r data) and fitted βc for different temperatures.

Tb (K) I 0
c (μA) I dyn

r (μA) Calculated βc Fitted βc

2.42 58 44 2.13 5.4
2.62 46 40 1.5 3.2
2.88 40 38 0.8 2.33
3.26 31.6 31.6 1.0

According to the RCSJ model [17], the current I , as
shared between resistances, capacitances, and the Josephson
junctions of the SQUID, can be written as

I = I 0
c sin ϕ + V (t )

RN
+ C

dV (t )

dt
. (C1)

Here 2RN and C/2 are the resistance and capacitance of each
of the two junctions. We have again assumed the screening
parameter LI 0

c /�0 � 1. Using the same dimensionless quan-
tities as in Sec. I, we get

i = sin ϕ + ϕ̇ + βcϕ̈. (C2)

Here βc = 2π
�0

I 0
c R2

NC is the effective Stewart-McCumber pa-
rameter for the SQUID.

We get the IVCs from the numerical steady-state solutions
of Eq. (C2) and V = �0ϕ̇/2π . Using these solutions, we find
that I

dyn
r /I 0

c depends on βc. This fact is used to extract the
βcalc

c values for experimentally measured I
dyn
r /I 0

c . Using the
expression Is = I − V/RN, we have tried to fit the measured
�Is/�Ic to the RCSJ model in Fig. 11. The fitted βc values
are listed in Table II together with the values extracted from
the values of the dynamic retrapping current I dyn

r . We see from
the fit that RCSJ does not fit well compared to the DTM.

[1] C. Granata and A. Vettoliere, Nano superconducting quantum
interference device: A powerful tool for nanoscale investiga-
tions, Phys. Rep. 614, 1 (2016).

[2] M. J. Martínez-Pérez and D. Koelle, NanoSQUIDs: Basics &
recent advances, Phys. Sci. Rev. 2, 20175001 (2017).

[3] W. Wernsdorfer, Single nanoparticle measurement techniques,
J. Appl. Phys. 87, 5094 (2000).

[4] W. Wernsdorfer, Classical and quantum magnetization reversal
studied in nanometer-sized particles and clusters, Adv. Chem.
Phys. 118, 99 (2001).

[5] R. Piquerel, O. Gaier, E. Bonet, C. Thirion, and W.
Wernsdorfer, Phase Dependence of Microwave-Assisted
Switching of a Single Magnetic Nanoparticle, Phys. Rev. Lett.
112, 117203 (2014).

[6] M. J. Martínez-Perez, B. Muller, D. Schwebius, D. Korinski,
R. Kleiner, J. Sese, and D. Koelle, NanoSQUID magnetometry
of individual cobalt nanoparticles grown by focused electron
beam induced deposition, Supercond. Sci. Technol. 30, 024003
(2017).

[7] C. Veauvy, K. Hasselbach, and D. Mailly, Scanning μ-
superconduction quantum interference device force micro-
scope, Rev. Sci. Instrum 73, 3825 (2002).

[8] A. Finkler, Y. Segev, Y. Myasoedov, M. L. Rappaport, L.
Ne’eman, D. Vasyukov, E. Zeldov, M. E. Huber, J. Martin, and
A. Yacoby, Self-aligned nanoscale SQUID on a tip, Nano. Lett.
10, 1046 (2010).

[9] D. Vasyukov, Y. Anahory, L. Embon, D. Halbertal, J. Cuppens,
L. Neeman, A. Finkler, Y. Segev, Y. Myasoedov, M. L.
Rappaport, M. E. Huber, and E. Zeldov, A scanning supercon-
ducting quantum interference device with single electron spin
sensitivity, Nat. Nanotechnol. 8, 639 (2013).

[10] L. Chen, H. Wang, X. Liu, L. Wu, and Z. Wang, A high-
performance nb nano-superconducting quantum interference
device with a three-dimensional structure, Nano. Lett. 16, 7726
(2016).

[11] J. E. Duvauchelle, A. Francheteau, C. Marcenat, F. Chiodi, D.
Débarre, K. Hasselbach, J. R. Kirtley, and F. Lefloch, Silicon
superconducting quantum interference device, Appl. Phys. Lett.
107, 072601 (2015).

[12] R. Wolbing, J. Nagel, T. Schwarz, O. Kieler, T. Weimann, J.
Kohlmann, A. Zorin, M. Kemmler, R. Kleiner, and D. Koelle,
Nb nano superconducting quantum interference devices with
high spin sensitivity for operation in magnetic fields up to 0.5 T,
Appl. Phys. Lett. 102, 192601 (2013).

174514-8

https://doi.org/10.1016/j.physrep.2015.12.001
https://doi.org/10.1016/j.physrep.2015.12.001
https://doi.org/10.1016/j.physrep.2015.12.001
https://doi.org/10.1016/j.physrep.2015.12.001
https://doi.org/10.1515/psr-2017-5001
https://doi.org/10.1515/psr-2017-5001
https://doi.org/10.1515/psr-2017-5001
https://doi.org/10.1515/psr-2017-5001
https://doi.org/10.1063/1.373259
https://doi.org/10.1063/1.373259
https://doi.org/10.1063/1.373259
https://doi.org/10.1063/1.373259
https://doi.org/10.1002/9780470141786.ch3
https://doi.org/10.1002/9780470141786.ch3
https://doi.org/10.1002/9780470141786.ch3
https://doi.org/10.1002/9780470141786.ch3
https://doi.org/10.1103/PhysRevLett.112.117203
https://doi.org/10.1103/PhysRevLett.112.117203
https://doi.org/10.1103/PhysRevLett.112.117203
https://doi.org/10.1103/PhysRevLett.112.117203
https://doi.org/10.1088/0953-2048/30/2/024003
https://doi.org/10.1088/0953-2048/30/2/024003
https://doi.org/10.1088/0953-2048/30/2/024003
https://doi.org/10.1088/0953-2048/30/2/024003
https://doi.org/10.1063/1.1515384
https://doi.org/10.1063/1.1515384
https://doi.org/10.1063/1.1515384
https://doi.org/10.1063/1.1515384
https://doi.org/10.1021/nl100009r
https://doi.org/10.1021/nl100009r
https://doi.org/10.1021/nl100009r
https://doi.org/10.1021/nl100009r
https://doi.org/10.1038/nnano.2013.169
https://doi.org/10.1038/nnano.2013.169
https://doi.org/10.1038/nnano.2013.169
https://doi.org/10.1038/nnano.2013.169
https://doi.org/10.1021/acs.nanolett.6b03826
https://doi.org/10.1021/acs.nanolett.6b03826
https://doi.org/10.1021/acs.nanolett.6b03826
https://doi.org/10.1021/acs.nanolett.6b03826
https://doi.org/10.1063/1.4928660
https://doi.org/10.1063/1.4928660
https://doi.org/10.1063/1.4928660
https://doi.org/10.1063/1.4928660
https://doi.org/10.1063/1.4804673
https://doi.org/10.1063/1.4804673
https://doi.org/10.1063/1.4804673
https://doi.org/10.1063/1.4804673


JOSEPHSON COUPLING IN THE DISSIPATIVE STATE … PHYSICAL REVIEW B 98, 174514 (2018)

[13] S. Mandal, T. Bautze, O. A. Williams, C. Naud, E. Bustar-
ret, F. Omnès, P. Rodière, T. Meunier, C. Bauerle, and L.
Saminadayar, The diamond SQUID, ACS Nano. 5, 7144
(2011).

[14] T. Schwarz, J. Nagel, R. Wölbing, M. Kemmler, R. Kleiner, and
D. Koelle, Low-noise nano superconducting quantum interfer-
ence device operating in tesla magnetic fields, ACS Nano. 7,
844 (2013).

[15] R. Russo, E. Esposito, A. Crescitelli, E. Di Gennaro,
C. Granata, A. Vettoliere, R. Cristiano, and M. Lisitskiy,
NanoSQUIDs based on niobium nitride films, Supercond. Sci.
Technol. 30, 024009 (2017).

[16] A. Ronzani, C. Altimiras, and F. Giazotto, Highly Sensitive
Superconducting Quantum-Interference Proximity Transistor,
Phys. Rev. Appl. 2, 024005 (2014).

[17] The SQUID Handbook, edited by J. Clarke and A. I. Braginski
(Wiley-VCH Verlag GmbH & Co. KGaA, Weiheim, 2004).

[18] M. Tinkham, Introduction to Superconductivity, 2nd ed.
(McGraw-Hill, New York, 1996).

[19] W. J. Skocpol, M. R. Beasley, and M. Tinkham, Self-heating
hotspots in superconducting thin-film microbridges, J. Appl.
Phys. 45, 4054 (1974).

[20] M. Tinkham, J. U. Free, C. N. Lau, and N. Markovic, Hysteretic
I-V curves of superconducting nanowires, Phys. Rev. B 68,
134515 (2003).

[21] H. Courtois, M. Meschke, J. T. Peltonen, and J. P. Pekola, Origin
of Hysteresis in a Proximity Josephson Junction, Phys. Rev.
Lett. 101, 067002 (2008).

[22] D. Hazra, L. M. A. Pascal, H. Courtois, and A. K. Gupta,
Hysteresis in superconducting short weak links and μ-SQUIDs,
Phys. Rev. B 82, 184530 (2010).

[23] T. Schwarz, R. Wölbing, C. F. Reiche, B. Müller, M. J.
Martínez-Pérez, T. Mühl, B. Büchner, R. Kleiner, and D.
Koelle, Low-Noise YBa2Cu3O7 Nano-SQUIDs for Performing
Magnetization-Reversal Measurements on Magnetic Nanopar-
ticles, Phys. Rev. Appl. 3, 044011 (2015).

[24] R. Arpaia, M. Arzeo, S. Nawaz, S. Charpentier, F. Lombardi,
and T. Bauch, Ultra low noise YBa2Cu3O7−δ nano supercon-
ducting quantum interference devices implementing nanowires,
Appl. Phys. Lett. 104, 072603 (2014).

[25] E. Y. Cho, Y. W. Zhou, J. Y. Cho, and S. A. Cybart,
Superconducting nano Josephson junctions patterned with a
focused helium ion beam, Appl. Phys. Lett. 113, 022604
(2018).

[26] V. V. Baranov, A. G. Balanov, and V. V. Kabanov, Dynamics
of resistive state in thin superconducting channels, Phys. Rev. B
87, 174516 (2013).

[27] N. Kumar, C. B. Winkelmann, S. Biswas, H. Courtois, and A.
K. Gupta, Controlling hysteresis in superconducting constric-
tions with resistive shunt, Supercond. Sci. Technol. 28, 072003
(2015).

[28] S. K. H. Lahm and D. L. Tilbrook, Development of a niobium
nanosuperconducting quantum interference device for the de-
tection of small spin populations, Appl. Phys. Lett. 82, 1078
(2003).

[29] G. Kimmel, A. Glatz, and I. S. Aranson, Phase slips in super-
conducting weak links, Phys. Rev. B 95, 014518 (2017).

[30] N. Shah, D. Pekker, and P. M. Goldbart, Inherent Stochasticity
of Superconductor-Resistor Switching Behavior in Nanowires,
Phys. Rev. Lett. 101, 207001 (2008).

[31] N. Kumar, T. Fournier, H. Courtois, C. B. Winkelmann, and
A. K. Gupta, Reversibility of Superconducting Nb Weak Links
Driven by the Proximity Effect in a Quantum Interference
Device, Phys. Rev. Lett. 114, 157003 (2015).

[32] D. Hazra, J. R. Kirtley, and K. Hasselbach, Retrapping Current
in Bridge-Type Nano-SQUIDs, Phys. Rev. Appl. 4, 024021
(2015).

[33] L.-K. Wang, D.-J. Hyun, and B. S. Deaver, Heating and flux
flow in niobium variable-thickness bridges, J. Appl. Phys. 49,
5602 (1978).

[34] L.-K. Wang, A. Callegari, B. S. Deaver, D. W. Barr, and R.
J. MattauchMicrowave mixing with niobium variable thickness
bridges, Appl. Phys. Lett. 31, 306 (1977).

[35] V. M. Krasnov, T. Golod, T. Bauch, and P. Delsing, Anticor-
relation between temperature and fluctuations of the switching
current in moderately damped Josephson junctions, Phys. Rev.
B 76, 224517 (2007).

[36] L. Angers, F. Chiodi, G. Montambaux, M. Ferrier, S. Guéron,
H. Bouchiat, and J. C. Cuevas, Proximity dc squids in the long-
junction limit, Phys. Rev. B 77, 165408 (2008).

[37] A. Ronzani, M. Baillergeau, C. Altimiras, and F. Giazotto,
Micro-superconducting quantum interference devices based
on V/Cu/V Josephson nanojunctions, Appl. Phys. Lett. 103,
052603 (2013).

[38] Y. Song, Origin of capacitance in superconducting micro-
bridges, J. Appl. Phys. 47, 2651 (1976).

[39] A. K. Gupta, N. Kumar, and S. Biswas, Temperature and phase
dynamics in superconducting weak links, J. Appl. Phys. 116,
173901 (2014).

[40] J. Bardeen, Two-Fluid Model of Superconductivity, Phys. Rev.
Lett. 1, 399 (1958).

[41] A. De Cecco, K. Le Calvez, B. Sacépé, C. B. Winkelmann,
and H. Courtois, Interplay between electron overheating and ac
Josephson effect, Phys. Rev. B 93, 180505(R) (2016).

[42] G. Berdiyorov, K. Harrabi, F. Oktasendra, K. Gasmi, A. I.
Mansour, J. P. Maneval, and F. M. Peeters, Dynamics of current-
driven phase-slip centers in superconducting strips, Phys. Rev.
B 90, 054506 (2014).

[43] S. L. Chu, A. T. Bollinger, and A. Bezryadin, Phase slips
in superconducting films with constrictions, Phys. Rev. B 70,
214506 (2004).

[44] M. W. Brenner, D. Roy, N. Shah, and A. Bezryadin, Dynamics
of superconducting nanowires shunted with an external resistor,
Phys. Rev. B 85, 224507 (2012).

[45] W. J. Skocpol, M. R. Beasley, and M. Tinkham, Phase-slip
centers and nonequilibrium processes in tin microbridges, J.
Low Temp. Phys. 16, 145 (1974).

[46] G. J. Dolan and L. D. Jackel, Voltage Measurements With
Nonequilibrium Region Near Phase-Slip Centers, Phys. Rev.
Lett. 39, 1628 (1977).

[47] Note that in the original paper introducing the DTM [39], we
used a different notation, I stat

r , for this current.
[48] A. I. Gubin, K. S. Il’in, S. A. Vitusevich, M. Siegel, and

N. Klein, Dependence of magnetic penetration depth on the
thickness of superconducting Nb thin films, Phys. Rev. B 72,
064503 (2005).

[49] I. Charaev, T. Silbernagel, B. Bachowsky, A. Kuzmin, S.
Doerner, K. Il’in, A. Semenov, D. Roditchev, D. Yu. Vodolazov,
and M. Siegel, Proximity effect model of ultranarrow NbN
strips, Phys. Rev. B 96, 184517 (2017).

174514-9

https://doi.org/10.1021/nn2018396
https://doi.org/10.1021/nn2018396
https://doi.org/10.1021/nn2018396
https://doi.org/10.1021/nn2018396
https://doi.org/10.1021/nn305431c
https://doi.org/10.1021/nn305431c
https://doi.org/10.1021/nn305431c
https://doi.org/10.1021/nn305431c
https://doi.org/10.1088/1361-6668/30/2/024009
https://doi.org/10.1088/1361-6668/30/2/024009
https://doi.org/10.1088/1361-6668/30/2/024009
https://doi.org/10.1088/1361-6668/30/2/024009
https://doi.org/10.1103/PhysRevApplied.2.024005
https://doi.org/10.1103/PhysRevApplied.2.024005
https://doi.org/10.1103/PhysRevApplied.2.024005
https://doi.org/10.1103/PhysRevApplied.2.024005
https://doi.org/10.1063/1.1663912
https://doi.org/10.1063/1.1663912
https://doi.org/10.1063/1.1663912
https://doi.org/10.1063/1.1663912
https://doi.org/10.1103/PhysRevB.68.134515
https://doi.org/10.1103/PhysRevB.68.134515
https://doi.org/10.1103/PhysRevB.68.134515
https://doi.org/10.1103/PhysRevB.68.134515
https://doi.org/10.1103/PhysRevLett.101.067002
https://doi.org/10.1103/PhysRevLett.101.067002
https://doi.org/10.1103/PhysRevLett.101.067002
https://doi.org/10.1103/PhysRevLett.101.067002
https://doi.org/10.1103/PhysRevB.82.184530
https://doi.org/10.1103/PhysRevB.82.184530
https://doi.org/10.1103/PhysRevB.82.184530
https://doi.org/10.1103/PhysRevB.82.184530
https://doi.org/10.1103/PhysRevApplied.3.044011
https://doi.org/10.1103/PhysRevApplied.3.044011
https://doi.org/10.1103/PhysRevApplied.3.044011
https://doi.org/10.1103/PhysRevApplied.3.044011
https://doi.org/10.1063/1.4866277
https://doi.org/10.1063/1.4866277
https://doi.org/10.1063/1.4866277
https://doi.org/10.1063/1.4866277
https://doi.org/10.1063/1.5042105
https://doi.org/10.1063/1.5042105
https://doi.org/10.1063/1.5042105
https://doi.org/10.1063/1.5042105
https://doi.org/10.1103/PhysRevB.87.174516
https://doi.org/10.1103/PhysRevB.87.174516
https://doi.org/10.1103/PhysRevB.87.174516
https://doi.org/10.1103/PhysRevB.87.174516
https://doi.org/10.1088/0953-2048/28/7/072003
https://doi.org/10.1088/0953-2048/28/7/072003
https://doi.org/10.1088/0953-2048/28/7/072003
https://doi.org/10.1088/0953-2048/28/7/072003
https://doi.org/10.1063/1.1554770
https://doi.org/10.1063/1.1554770
https://doi.org/10.1063/1.1554770
https://doi.org/10.1063/1.1554770
https://doi.org/10.1103/PhysRevB.95.014518
https://doi.org/10.1103/PhysRevB.95.014518
https://doi.org/10.1103/PhysRevB.95.014518
https://doi.org/10.1103/PhysRevB.95.014518
https://doi.org/10.1103/PhysRevLett.101.207001
https://doi.org/10.1103/PhysRevLett.101.207001
https://doi.org/10.1103/PhysRevLett.101.207001
https://doi.org/10.1103/PhysRevLett.101.207001
https://doi.org/10.1103/PhysRevLett.114.157003
https://doi.org/10.1103/PhysRevLett.114.157003
https://doi.org/10.1103/PhysRevLett.114.157003
https://doi.org/10.1103/PhysRevLett.114.157003
https://doi.org/10.1103/PhysRevApplied.4.024021
https://doi.org/10.1103/PhysRevApplied.4.024021
https://doi.org/10.1103/PhysRevApplied.4.024021
https://doi.org/10.1103/PhysRevApplied.4.024021
https://doi.org/10.1063/1.324482
https://doi.org/10.1063/1.324482
https://doi.org/10.1063/1.324482
https://doi.org/10.1063/1.324482
https://doi.org/10.1063/1.89679
https://doi.org/10.1063/1.89679
https://doi.org/10.1063/1.89679
https://doi.org/10.1063/1.89679
https://doi.org/10.1103/PhysRevB.76.224517
https://doi.org/10.1103/PhysRevB.76.224517
https://doi.org/10.1103/PhysRevB.76.224517
https://doi.org/10.1103/PhysRevB.76.224517
https://doi.org/10.1103/PhysRevB.77.165408
https://doi.org/10.1103/PhysRevB.77.165408
https://doi.org/10.1103/PhysRevB.77.165408
https://doi.org/10.1103/PhysRevB.77.165408
https://doi.org/10.1063/1.4817013
https://doi.org/10.1063/1.4817013
https://doi.org/10.1063/1.4817013
https://doi.org/10.1063/1.4817013
https://doi.org/10.1063/1.322985
https://doi.org/10.1063/1.322985
https://doi.org/10.1063/1.322985
https://doi.org/10.1063/1.322985
https://doi.org/10.1063/1.4900742
https://doi.org/10.1063/1.4900742
https://doi.org/10.1063/1.4900742
https://doi.org/10.1063/1.4900742
https://doi.org/10.1103/PhysRevLett.1.399
https://doi.org/10.1103/PhysRevLett.1.399
https://doi.org/10.1103/PhysRevLett.1.399
https://doi.org/10.1103/PhysRevLett.1.399
https://doi.org/10.1103/PhysRevB.93.180505
https://doi.org/10.1103/PhysRevB.93.180505
https://doi.org/10.1103/PhysRevB.93.180505
https://doi.org/10.1103/PhysRevB.93.180505
https://doi.org/10.1103/PhysRevB.90.054506
https://doi.org/10.1103/PhysRevB.90.054506
https://doi.org/10.1103/PhysRevB.90.054506
https://doi.org/10.1103/PhysRevB.90.054506
https://doi.org/10.1103/PhysRevB.70.214506
https://doi.org/10.1103/PhysRevB.70.214506
https://doi.org/10.1103/PhysRevB.70.214506
https://doi.org/10.1103/PhysRevB.70.214506
https://doi.org/10.1103/PhysRevB.85.224507
https://doi.org/10.1103/PhysRevB.85.224507
https://doi.org/10.1103/PhysRevB.85.224507
https://doi.org/10.1103/PhysRevB.85.224507
https://doi.org/10.1007/BF00655865
https://doi.org/10.1007/BF00655865
https://doi.org/10.1007/BF00655865
https://doi.org/10.1007/BF00655865
https://doi.org/10.1103/PhysRevLett.39.1628
https://doi.org/10.1103/PhysRevLett.39.1628
https://doi.org/10.1103/PhysRevLett.39.1628
https://doi.org/10.1103/PhysRevLett.39.1628
https://doi.org/10.1103/PhysRevB.72.064503
https://doi.org/10.1103/PhysRevB.72.064503
https://doi.org/10.1103/PhysRevB.72.064503
https://doi.org/10.1103/PhysRevB.72.064503
https://doi.org/10.1103/PhysRevB.96.184517
https://doi.org/10.1103/PhysRevB.96.184517
https://doi.org/10.1103/PhysRevB.96.184517
https://doi.org/10.1103/PhysRevB.96.184517


BISWAS, WINKELMANN, COURTOIS, AND GUPTA PHYSICAL REVIEW B 98, 174514 (2018)

[50] K. Il’in, D. Rall, M. Siegel, A. Engel, A. Schilling, A. Se-
menov, and H.-W. Huebers, Influence of thickness, width and
temperature on critical current density of Nb thin film struc-
tures, Phys. C (Amsterdam, Neth.) 470, 953 (2010).

[51] L. N. Cooper, Superconductivity in the Neighborhood of Metal-
lic Contacts, Phys. Rev. Lett. 6, 689 (1961).

[52] Ya. V. Fominov and M. V. Feigel’man, Superconductive prop-
erties of thin dirty superconductor-normal-metal bilayers, Phys.
Rev. B 63, 094518 (2001).

[53] P. Dubos, H. Courtois, B. Pannetier, F. K. Wilhelm, A. D.
Zaikin, and G. Schön, Josephson critical current in a long
mesoscopic S-N-S junction, Phys. Rev. B 63, 064502 (2001).

[54] E. de Wolf and R. de Bruyn Ouboter, The Josephson
supercurrent-phase relation, Phys. B (Amsterdam, Neth.) 176,
133 (1992).

[55] D. Hazra, J. R. Kirtley, and K. Hasselbach, Nano-
superconducting quantum interference devices with suspended
junctions, Appl. Phys. Lett. 104, 152603 (2014).

[56] K. Hasselbach, D. Mailly, and J. R. Kirtley, Micro-
superconducting quantum interference device characteristics, J.
Appl. Phys. 91, 4432 (2002).

[57] K. K. Likharev, Superconducting weak links, Rev. Mod. Phys.
51, 101 (1979).

[58] A. G. P. Troeman, H. Derking, B. Boerger, J. Pleikies, D.
Veldhuis, and H. Hilgenkamp, NanoSQUIDs based on niobium
constrictions, Nano Lett. 7, 2152 (2007).

[59] D. Pekker, A. Bezryadin, D. S. Hopkins, and P. M. Goldbart,
Operation of a superconducting nanowire quantum interfer-
ence device with mesoscopic leads, Phys. Rev. B 72, 104517
(2005).

174514-10

https://doi.org/10.1016/j.physc.2010.02.042
https://doi.org/10.1016/j.physc.2010.02.042
https://doi.org/10.1016/j.physc.2010.02.042
https://doi.org/10.1016/j.physc.2010.02.042
https://doi.org/10.1103/PhysRevLett.6.689
https://doi.org/10.1103/PhysRevLett.6.689
https://doi.org/10.1103/PhysRevLett.6.689
https://doi.org/10.1103/PhysRevLett.6.689
https://doi.org/10.1103/PhysRevB.63.094518
https://doi.org/10.1103/PhysRevB.63.094518
https://doi.org/10.1103/PhysRevB.63.094518
https://doi.org/10.1103/PhysRevB.63.094518
https://doi.org/10.1103/PhysRevB.63.064502
https://doi.org/10.1103/PhysRevB.63.064502
https://doi.org/10.1103/PhysRevB.63.064502
https://doi.org/10.1103/PhysRevB.63.064502
https://doi.org/10.1016/0921-4526(92)90604-Q
https://doi.org/10.1016/0921-4526(92)90604-Q
https://doi.org/10.1016/0921-4526(92)90604-Q
https://doi.org/10.1016/0921-4526(92)90604-Q
https://doi.org/10.1063/1.4871317
https://doi.org/10.1063/1.4871317
https://doi.org/10.1063/1.4871317
https://doi.org/10.1063/1.4871317
https://doi.org/10.1063/1.1448864
https://doi.org/10.1063/1.1448864
https://doi.org/10.1063/1.1448864
https://doi.org/10.1063/1.1448864
https://doi.org/10.1103/RevModPhys.51.101
https://doi.org/10.1103/RevModPhys.51.101
https://doi.org/10.1103/RevModPhys.51.101
https://doi.org/10.1103/RevModPhys.51.101
https://doi.org/10.1021/nl070870f
https://doi.org/10.1021/nl070870f
https://doi.org/10.1021/nl070870f
https://doi.org/10.1021/nl070870f
https://doi.org/10.1103/PhysRevB.72.104517
https://doi.org/10.1103/PhysRevB.72.104517
https://doi.org/10.1103/PhysRevB.72.104517
https://doi.org/10.1103/PhysRevB.72.104517



