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Superconductivity arising from layer differentiation in multilayer cuprates
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In order to theoretically identify the factors governing superconductivity in multilayer cuprates, a three-layer
Hubbard model is studied with the two-particle self-consistent (TPSC) approach so as to incorporate electron
correlations. The linearized Eliashberg equation is then solved for the gap function in a matrix form to resolve
the role of outer CuO2 planes (OPs) and inner plane (IP). We show that OPs dominate IP in the dx2−y2 -wave su-
perconductivity, while IP dominates in the antiferromagnetism. This comes from an electron correlation effect in
that the correlation makes the doping rates different between OPs and IP (i.e., a self-doping effect), which occurs
in intermediate and strong correlation regimes. Namely, the antiferromagnetic fluctuations in IP are stronger due
to a stronger electron correlation, which simultaneously reduces the quasiparticle density of states in IP with a
suppressed dx2−y2 -wave superconductivity. Intriguingly, while the off-diagonal (interlayer) elements in the gap
function matrix are tiny, interlayer pair scattering processes are in fact at work in enhancing the superconducting
transition temperature Tc through the interlayer Green’s functions. This actually causes the trilayer system to have
higher Tc than the single-layer in a weak- and intermediate-coupling regimes. This picture holds for a range of
values of the on-site Hubbard repulsion U that contains those estimated for the cuprates. The present result is
qualitatively consistent with nuclear magnetic resonance experiments in multilayer cuprate superconductors.
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I. INTRODUCTION

Despite a long history exceeding three decades, the high-Tc

superconductivity, one of the central interests in condensed
matter physics [1,2], still harbors a host of important ques-
tions. One salient feature in cuprate superconductors is that,
if we look at representative homologous series, e.g., Hg-
based multilayer cuprates HgBa2Can−1CunO2n+2+δ [called
Hg-12(n − 1)n], where n is the number of CuO2 layers within
a unit cell and δ is the doping, the superconducting (SC)
transition temperature Tc becomes the highest for multilayer
cases, which possess the highest Tc (�135 K for Hg-1223)
to date at ambient pressure [3–5]. The CuO2 plane can be de-
scribed by the Hubbard model with on-site Coulomb repulsion
along with electron hopping, where a competition between
the itinerancy and localization of electrons takes place due to
electron correlations.

If we look more closely at the n-layer cuprates, Tc system-
atically depends on n for each homologous series [6,7]: Tc in-
creases for 1 � n � 3 and decreases slightly and saturates for
n � 3. To explain the superconductivity and other electronic
properties, several pictures for the multilayer superconductor
have been theoretically proposed so far, among which are an
interlayer Josephson coupling arising from second-order pro-
cesses of the interlayer single-electron hopping [8,9], an in-
terlayer Josephson pair tunneling in a macroscopic Ginzburg-
Landau scheme [10], a Coulomb energy saving in the c-
axis structure [11,12], superconductivity enhanced in artificial
superlattices comprising underdoped and overdoped layers
[13,14], and an interlayer pair-hopping arising from higher-
order processes of the Coulomb interaction [15–17].

On the experimental side, nuclear magnetic resonance
(NMR) experiments exhibit layer-resolved results, where we
can distinguish between the outer CuO2 planes (OPs) and
inner planes (IPs) in multilayer cuprates. Thus the trilayer sys-
tem is not only the case of highest Tc but also the simplest case
accommodating OP and IP. The NMR experiments [7,18–20]
have in particular shown that the carrier concentration is dif-
ferent between OP and IP with more hole (electron) carriers in
OP (IP), which causes different electronic properties between
OP and IP: the antiferromagnetic (AF) moments in IPs are
much larger than those in OPs, and the antiferromagnetism
coexists with the superconductivity in the IPs even in the
optimally doped regions. It is further observed by resolving
the OP and IP components that the SC gaps seem to develop
in two steps where the bulk Tc is determined by a higher Tc

in OP, while IP has a proximity effect from OP up to the
overdoped regime. Thus the OP seems to dominate the dx2−y2

superconductivity, while IP dominates the antiferromagnetism
in multilayer cuprates. These different behaviors between OP
and IP have yet to be theoretically understood, and we are still
in need of a microscopic theory.

Recently, we have studied normal properties (carrier con-
centrations and magnetism) of OP and IP by investigating
the three-layer Hubbard model as an effective model for
Hg-1223, where we have employed the two-particle self-
consistent (TPSC) approach for multilayer systems [21]. The
TPSC approach, originally proposed by Vilk and Tremblay
[22–24], is a weak- and intermediate-coupling theory in which
the spin and charge susceptibilities, along with the double
occupancy, are determined self-consistently by assuming the
TPSC ansatz, and then the self-energy and Green’s function
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can be evaluated. When we applied this to the trilayer system,
we first found that the concentration of hole carriers tends to
be larger in OP than in IP with increasing on-site Coulomb
repulsion, which is an electron correlation effect. Then the AF
instability in the IP is shown to be always larger than in the
OP. These results are consistent with the NMR results on the
antiferromagnetism and carrier concentrations in OP and IP
mentioned above. In particular, the many-body charge transfer
between the OP and IP can be called a self-doping effect.

These have motivated us here to investigate the supercon-
ductivity itself in the multilayer cuprates. Thus the present pa-
per theoretically identifies the factors governing superconduc-
tivity in multilayer cuprates with a three-layer Hubbard model
in the TPSC approach. By solving the linearized Eliashberg
equation for the gap function in a matrix form to examine
the role of OP and IP, we shall show for the trilayer strongly
correlated system that OPs dominate in the dx2−y2 -wave super-
conductivity, while IP dominates in the antiferromagnetism.
This is caused by electron correlations because the crucial
factor for the differentiated doping rates between OPs and
IP, i.e., the self-doping effect, takes place in intermediate and
strong correlation regimes (U � 2 eV).

Physically, the self-doping makes the strengths of electron
correlation different between OP and IP: the AF spin fluctu-
ations in the IP are stronger than in the OP due to the layer
filling closer to half-filling in the IP, while the quasiparti-
cle density of states (DOS) is reduced for the same reason
around the antinodal regions in the IP, suppressing the dx2−y2 -
wave superconductivity. We also show that, although the off-
diagonal (interlayer) elements in the gap function matrix are
tiny, the interlayer pair scattering processes are actually at
work in enhancing Tc by comparing the results when these
processes are turned on and off. We further reveal that the
trilayer system has higher Tc than the single-layer system
in the weak and intermediate correlation regimes due to the
differentiation between OP and IP in a regime of the on-site
Hubbard interaction U that includes those estimated for the
cuprates. The present results are qualitatively consistent with
NMR experiments in multilayer cuprates superconductors.

II. FORMALISM

A. Three-layer Hubbard model

Let us consider a three-layer Hubbard model as a model for
the Hg-based three-layer cuprate Hg-1223, where the tight-
biding parameters are obtained from first-principles calcula-
tions. The Hamiltonian,

H = H0 + Hint, (1)

is composed of the kinetic part H0 and interaction part Hint.
The former is

H0 = −
∑
ab

∑
ij

∑
σ

tab
ij c

a†
iσ cb

jσ − μ
∑
aiσ

na
iσ , (2)

where c
a †
iσ creates an electron in the dx2−y2 orbital at site i

on each plane (square lattice) with spin σ (=↑,↓) in layer
a (= 1, 2, 3), tab

ij is the single-electron hopping from (j, b)

to (i, a), μ denotes the chemical potential, and na
iσ = c

a†
iσ ca

iσ

is the number operator. We here call layers a = 1, 3 the two

OP

IP OP

OP

OP

IP

IP

IP

OP

OP

IP

FIG. 1. (Left) Crystal structure of Hg-based three-layer cuprate
Hg-1223 with two OPs and one IP in an unit cell. (Right) TPSC
result for the layer fillings in the OP and IP, nOP (red circles) and nIP

(blue squares) respectively, against the on-site Hubbard interaction U

for various values of the average filling nav = 0.95, 0.90, 0.85, 0.80.
Here, the vertical dotted lines indicate the values of U = 3.0 and
6.0 eV, which are taken in the following discussions.

OPs and layer a = 2 the IP (see Fig. 1, left panel). The in-
tralayer single-electron hopping is taken into account up to the
third-neighbor hopping, while the interlayer single-electron
hopping is considered for adjacent layers (i.e., between OP
and IP). The interaction part is

Hint = U
∑
ai

na
i↑na

i↓, (3)

where U is the on-site Coulomb (Hubbard) interaction, which
is assumed to work within each layer.

The kinetic part H0 can be expressed in a Bloch basis ca
kσ =

(1/
√

N )
∑

i e−ik·Ri ca
iσ , with N being the total number of sites

and Ri the position of site i, as a 3 × 3 matrix,

H0 =
∑
kσ

�c †
kσ ξ̂k�ckσ

=
∑
kσ

(c1†
kσ c

2†
kσ c

3†
kσ

)

×

⎛
⎜⎝

εk − μ t⊥k 0

t⊥k εk − μ t⊥k
0 t⊥k εk − μ

⎞
⎟⎠

⎛
⎜⎝

c1
kσ

c2
kσ

c3
kσ

⎞
⎟⎠, (4)

where �c †
kσ = (c1†

kσ c
2†
kσ c

3†
kσ ) and ξ̂k is the energy dispersion ma-

trix defined by the last line. The intralayer energy dispersion
εk is

εk = −2t (cos kx + cos ky ) + 4t ′ cos kx cos ky

− 2t ′′(cos 2kx + cos 2ky ), (5)

where t , t ′, and t ′′ represent the intralayer nearest-, second-,
and third-neighbor hopping, respectively, while

t⊥k = −t⊥(cos kx − cos ky )2 (6)
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is the interlayer single-electron hopping between dx2−y2 or-
bitals via s orbital [17,21,25,26] in the crystal structure
shown in Fig. 1. These tight-binding parameters can be
evaluated from the standard downfolding in terms of the
maximally localized Wannier functions derived from the den-
sity functional theory (DFT) band calculations [27], where
the obtained values for the three-layer cuprate Hg-1223 are
(t, t ′, t ′′, t⊥) = (0.45, 0.10, 0.08, 0.05) eV. Other Hg-based
multilayer cuprates Hg-12(n − 1)n have similar parameters
[27]. Although the site potential in the IP evaluated from
the DFT band calculations is larger than that for the OP
by ∼0.1 eV [27], we have here ignored the difference for
simplicity since the effect on the band structure is small. One
can readily diagonalize the kinetic part H0 to have energy
eigenvalues Em

k (m = 1, 2, 3), where E
1,3
k = ξk ∓ √

2t⊥k and
E2

k = ξk, with E1
k � E2

k � E3
k because t⊥k � 0. The corre-

sponding field operators are a
1,3
kσ = (c1

kσ ∓ √
2c2

kσ + c3
kσ )/2

and a2
kσ = (c1

kσ − c3
kσ )/

√
2. The carrier doping is controlled

by the chemical potential μ through Green’s function as
shown later.

B. TPSC approach for multilayer systems

We next consider the TPSC approach for multilayer sys-
tems [21]. The TPSC approach [21–24,28–30] is developed
for weak- and intermediate-coupling regimes so as to respect
the conservation of spin and charge, the Mermin-Wagner the-
orem, the Pauli principle, the q-sum rule for spin and charge
susceptibilities, and the f -sum rule. The spin and charge
susceptibilities, along with the double occupancy, are deter-
mined self-consistently with the TPSC ansatz, from which the
self-energy and Green’s function are evaluated. Here we first
show how the TPSC approach can be applied to multilayer
Hubbard models.

We start with Green’s function for multilayer systems
defined as

Gab(k) = −
∫ β

0
dτ eiωnτ

〈
Tτ c

a
kσ (τ )cb†

kσ (0)
〉
, (7)

where a (=1, 2, 3) again denotes the layer index, k = (k, iωn)
with ωn = (2n + 1)π/β (n ∈ Z) being the Matsubara fre-
quency for fermions, β = 1/T (kB = 1) is the inverse tem-
perature, Tτ stands for the imaginary-time ordering, and 〈· · · 〉
represents the quantum statistical average. Let us consider
the spin and charge (orbital) susceptibilities in the multi-
layer systems. In terms of the spin operators in momen-
tum space, Sz a

q = (1/2)
∑

k(ca †
k↑ca

k+q↑ − c
a †
k↓ca

k+q↓), S− a
q =∑

k c
a †
k↓ca

k+q↑, and S+ a
q = ∑

k c
a †
k↑ca

k+q↓, and the charge oper-

ator, na
q = ∑

k(ca †
k↑ca

k+q↑ + c
a †
k↓ca

k+q↓), we define the longitu-
dinal (zz) and transverse (±) spin susceptibilities in a matrix
form as

χab
zz (q ) = 1

N

∫ β

0
dτ eiεmτ

〈
TτS

z a
q (τ )Sz b

−q (0)
〉
,

χab
± (q ) = 1

N

∫ β

0
dτ eiεmτ

〈
TτS

− a
q (τ )S+ b

−q (0)
〉
,

(8)

and the charge susceptibility as

χab
C (q ) = 1

N

∫ β

0
dτ eiεmτ 1

2

[〈
Tτn

a
q (τ )nb

−q (0)
〉 − 〈

na
q

〉〈
nb

−q

〉]
,

(9)

where q = (q, iεm) with εm = 2mπ/β (m ∈ Z) being the
Matsubara frequency for bosons. In the presence of spin
SU(2) symmetry, the longitudinal and transverse spin suscep-
tibilities satisfy 2χ̂zz = χ̂± ≡ χ̂S.

In the multilayer TPSC approach, the spin and charge
susceptibilities are respectively assumed to take the forms

χ̂S(q ) = χ̂0(q )

1 − χ̂0(q )ÛS
, χ̂C(q ) = χ̂0(q )

1 + χ̂0(q )ÛC
. (10)

Hereafter, matrices are displayed with hats, and the matrix
operations above are defined as [1 − χ̂0ÛS(C)]−1χ̂0, etc. The
polarization function χ0 is defined as

χab
0 (q ) = − 1

Nβ

∑
k

Gab
0 (q + k)Gba

0 (k) (11)

from the noninteracting Green’s function Ĝ0(k) = (iωn −
ξ̂k )−1. The spin- and charge-channel interactions for the tri-
layer system,

ÛS =

⎛
⎜⎝

UOP
S 0 0

0 U IP
S 0

0 0 UOP
S

⎞
⎟⎠,

ÛC =

⎛
⎜⎝

UOP
C 0 0

0 U IP
C 0

0 0 UOP
C

⎞
⎟⎠,

(12)

consisting of the OP and IP components, UOP
S(C) and U IP

S(C), are
determined self-consistently along with the double occupancy
〈na

↑na
↓〉 ≡ 〈na

i↑na
i↓〉 by the q-sum rule for the spin and charge

susceptibilities with the TPSC ansatz in multilayer systems:

1

Nβ

∑
q

2χaa
S (q ) = 〈na〉 − 2〈na

↑na
↓〉,

1

Nβ

∑
q

2χaa
C (q ) = 〈na〉 + 2〈na

↑na
↓〉 − 〈na〉2,

(13)

and

UOP
S = U

〈n1
↑n1

↓〉
〈n1

↑〉〈n1
↓〉 = U

〈n3
↑n3

↓〉
〈n3

↑〉〈n3
↓〉 , U IP

S = U
〈n2

↑n2
↓〉

〈n2
↑〉〈n2

↓〉 .

(14)

Here, 〈na〉 = 〈na
↑〉 + 〈na

↓〉 is the filling in layer a, where we
assume 〈na

σ 〉 = 〈na
iσ 〉 (translational symmetry) and 〈na

↑〉 =
〈na

↓〉 (paramagnetic state).
In the TPSC approach, the spin susceptibility χ̂S(q ) is first

determined along with the spin-channel interaction ÛS and
double occupancy 〈na

↑na
↓〉 using the expression for χ̂S(q ) in

Eq. (10), the q-sum rule for χ̂S(q ) in Eq. (13), and the TPSC
ansatz (14), where 〈na

σ 〉 is taken to be the noninteracting one.
The charge susceptibility χ̂C(q ) is also determined along with
the charge-channel interaction ÛC using the expression for

174508-3



NISHIGUCHI, TERANISHI, KUSAKABE, AND AOKI PHYSICAL REVIEW B 98, 174508 (2018)

χ̂C(q ) in Eq. (10), the q-sum rule for χ̂C(q ) in Eq. (13), and
the obtained double occupancy 〈na

↑na
↓〉.

Once the spin and charge susceptibilities are determined,
we can obtain the self-energy as

�ab(k) = 1

Nβ

∑
k′

[
Û + 3

4
Û χ̂S(k − k′)ÛS

+ 1

4
Û χ̂C(k − k′)ÛC

]ab

Gab
0 (k′), (15)

where the form of the self-energy (involving products of
matrix elements) comes from our assumption that the on-site
Hubbard interaction only works within each layer, and Û =
diag (U, U, U ) denotes the bare on-site Hubbard interaction.
Then the interacting Green’s function in the multilayer TPSC
is given as

Ĝ(k) = [
Ĝ−1

0 (k) − �̂(k)
]−1

. (16)

To evaluate the filling na in layer a, and also to determine
the chemical potential from the total filling, we can use the
relation between na and the Green’s function Ĝ(k),

na = 1

Nβ

∑
kσ

e−iωn0−
Gaa (k)

= 1

N

∑
kσ

[
2

β

∑
ωn>0

Re Gaa (k, iωn) + 1

2

]
. (17)

Now, superconductivity in multilayer systems can be stud-
ied by the linearized Eliashberg equation for singlet pairings,

λ�ab(k) =− 1

Nβ

∑
k′

∑
a′b′

V ab
P (k − k′)

× Gaa′
(k′)�a′b′

(k′)Gbb′
(−k′). (18)

Since we deal with multilayer systems, the SC gap function
�̂(k) is a matrix spanned by the layer indices (3 × 3 for
a trilayer system). There, different components are coupled
with each other via the matrix equation, so that we have a
single eigenvalue λ. The largest eigenvalue can be evaluated
numerically by the power-method iteration, and the SC tran-
sition corresponds to the temperature at which λ becomes
unity. The magnitude of λ can also be used as a measure
of superconductivity even for T � Tc. The singlet pairing
interaction VP can be given in a matrix form as [29,30]

V̂P(q ) = Û + 3
2 Û χ̂S(q )ÛS − 1

2 Û χ̂C(q )ÛC. (19)

III. NUMERICAL RESULTS

Let us now present the numerical results for SC prop-
erties of the three-layer Hubbard model. In our calcula-
tions, the number of discrete mesh of two-dimensional k
points (q points) and Matsubara frequency ωn (εm) are set
to be (kx, ky, ωn) = (qx, qy, εm) = (128, 128, 4096) through-
out, with a temperature T = 0.015 eV (∼150 K).

A. Self-doping effect arising from electron correlations

Before we examine the SC properties, we need to look at
the fillings in the OP and IP, nOP ≡ n1 = n3 and nIP ≡ n2,

respectively. Figure 1 displays nOP and nIP against the on-site
Hubbard interaction U for various values of the average filling
nav ≡ (1/3)

∑3
a=1 na = 0.95–0.80. For each nav, we can see

that the filling of OP decreases with U , whereas the filling
of IP, originally below the OP filling at U = 0, increases.
Namely, the two curves cross with each other at a certain U ,
causing nIP exceed nOP for U � 2.0 eV.

This is a self-doping effect arising from the electron cor-
relation [21]. In the trilayer system, the electrons tend to be
redistributed by the differentiation in the electron correlation
as described by the multilayer TPSC that determines the
self-energy within a one-shot calculation, where the electrons
(holes) are introduced into the IP (OP). The obtained doping
behavior is consistent with the NMR experiments [7,18–20],
where more hole carriers are shown to be introduced into the
OP than IP.

If we only consider the site potential difference between
the OP and IP, �ε = εIP − εOP > 0 coming from an effect
of the Madelung potential, this (with the many-body effect
ignored) would transfer the electrons from the IP into OP,
which is contrary to those observed in the NMR experiments.
Thus the layer-resolved filling is indeed an electron correla-
tion effect.

B. SC gap functions in OP and IP

Now we come to SC properties of the three-layer Hubbard
model. The present numerical results first confirm that the SC
gap function �̂(k) that has the maximum eigenvalues of the
linearized Eliashberg equation is the spin-singlet dx2−y2 -wave
(∼ cos kx − cos ky) pairing in the parameter range considered
here. This is natural, since the superconductivity is mediated
by the AF spin fluctuations [29,30], as also elaborated below.
An essential point for multilayer systems, however, resides in
the fact that the SC gap matrix �̂(k) contains off-diagonal
(interlayer) matrix elements arising from the interlayer pairing
on top of the diagonal (intralayer) matrix elements. The
present calculation shows that the amplitude of the interlayer
SC gap functions �ab(k) (a �= b) is much smaller than those
for the intralayer ones, �OP(k) ≡ �11(k) = �33(k) in OPs
and �IP(k) ≡ �22 in IP, where the ratio of their amplitudes is
quantitatively �ab(k)/�OP,IP(k) < 10−2 (a �= b). One might
then take that the dx2−y2 -wave superconductivity is isolated
within each layer, but this is not the case: We must realize that,
in the linearized Eliashberg equation Eq. (18), there exists
not only the intralayer pair scattering processes within each
layer, but also the interlayer pair scattering processes via the
off-diagonal (interlayer) elements of the Green function (Gab

with a �= b) that affects the intralayer gap functions. We may
regard the latter process as a kind of microscopic “interlayer
Josephson coupling” as opposed to macroscopic ones.

To single out the effect of the interlayer processes on
superconductivity, we can look at the effect of artificially
switching them off, which can be achieved by putting the off-
diagonal elements of the Green’s function to zero by hand in
solving the linearized Eliashberg equation. Figure 2 displays
the eigenvalues of the linearized Eliashberg equation of the
three-layer Hubbard model with and without the interlayer
processes for various values of the average filling nav. The
result, here displayed for the on-site Hubbard interaction U =

174508-4



SUPERCONDUCTIVITY ARISING FROM LAYER … PHYSICAL REVIEW B 98, 174508 (2018)

with inter-layer 
processes

without 
with inter-layer 
processes

without 

FIG. 2. Eigenvalues of the linearized Eliashberg equation for the
three-layer Hubbard model plotted against the average filling nav with
(red circles) and without (green squares) the interlayer processes
through the off-diagonal (interlayer) elements of the Green’s func-
tion. The on-site Hubbard interaction is U = 3.0 (left) and 6.0 eV
(right).

3.0 and 6.0 eV, shows that the superconductivity is signifi-
cantly suppressed when the interlayer scattering processes are
switched off. Thus the superconductivity is not isolated within
each layer, but the intralayer �OP(k) and �IP(k) are actually
connected with each other via the off-diagonal components of
the Green’s function. We can also observe that the suppression
of superconductivity for the turned-off interlayer scattering is
larger for intermediate U = 3.0 eV than for a stronger 6.0 eV.
We shall clarify the reason below in terms of the weight of the
SC gap functions in the OP and IP.

Now let us look into the layer-resolved SC gap function. To
quantify the OP and IP components, we can define an “aver-
aged” SC gap function by taking the summation over k (wave
number and Matsubara frequency) for each component as

〈�ab〉 ≡
∑

k

|�ab(k)| (20)

and for the total average as

〈�〉 ≡
∑
ab

〈�ab〉. (21)

Since the interlayer components 〈�ab〉 (a �= b) are much
smaller than the intralayer ones 〈�aa〉 according to our nu-
merical results, we have only to look at the intralayer SC gap
functions, resolved into the OP component 〈�OP〉 ≡ 〈�11〉 =
〈�33〉, and the IP component 〈�IP〉 ≡ 〈�22〉. Then we can
define “weights” of the OP and IP gap functions as 〈�OP〉/〈�〉
and 〈�IP〉/〈�〉, respectively.

The numerical result is shown in Fig. 3 against the on-site
Hubbard interaction U for various values of the average filling
nav = 0.95–0.80. The black dashed line in the figure marks
〈�OP〉/〈�〉 = 〈�IP〉/〈�〉 = 1/3, which would be the case if
the OP and IP had the same averaged amplitudes, as would
be the case when the interlayer single-electron hopping is
switched off (t⊥ → 0).

We can see, for each value of nav, that the OP compo-
nent increases with U , whereas the IP component decreases.
This causes 〈�OP〉/〈�〉 to dominate over 〈�IP〉/〈�〉 for U �
2.0 eV. The crossover U coincides with the crossing of
the OP and IP fillings due to the self-doping effect seen in
Fig. 1. Thus the OP gives a dominant gap function in the

FIG. 3. Weights of the OP and IP gap functions, 〈�OP〉/〈�〉
(red symbols) and 〈�IP〉/〈�〉 (blue), against the on-site Hub-
bard interaction U for various values of the average filling nav =
0.95, 0.90, 0.85, 0.80. The black horizontal line marks 1/3 (see text).

dx2−y2 -wave superconductivity in the three-layer cuprates for
intermediate or stronger electron correlation. The result is
qualitatively consistent with the NMR experiments [7,18–20],
where the OPs dominate the dx2−y2 -wave superconductivity
for the carrier concentrations up to the overdoped region. We
can note that, while we have taken the linearized Eliashberg
equation so that we cannot discuss finite amplitudes of the
gap functions 〈�OP〉 and 〈�IP〉, we can still look at their ratio.
Also, the gap function �̂(k) should not be confused with
the eigenvalue λ of the linearized Eliashberg equation that is
related with Tc, which will be discussed in Fig. 7 below.

The differentiation in the SC gap between the OP and IP
found here enables us to understand the feature revealed in
Fig. 2, where the suppression of the superconductivity caused
by the turned-off interlayer processes is greater for the on-site
Hubbard interaction U = 3.0 eV than for U = 6.0 eV. We can
namely interpret this as follows: for the weaker U = 3.0 eV
the SC gap functions �OP(k) and �IP(k) have really equal
weights, so that the interlayer pair scattering processes via the
off-diagonal (interlayer) elements of the Green function are
relatively important in enhancing the superconductivity, while
for the stronger U = 6.0 eV �IP(k) becomes smaller than
�OP(k) so that the contribution of the interlayer processes to
the whole superconductivity becomes less important.

C. Spin susceptibilities and spectral weights in OP and IP

To fathom the multilayer effects on superconductivity in
OP and IP, we can go back to the spin susceptibility and spec-
tral weight, which are respectively correlated with the pairing
interaction V̂P(q ) and the quasiparticle DOS, which affects
the pairing through Ĝ(k)Ĝ(−k) in the linearized Eliashberg
equation, Eq. (18). Figure 4 shows the spin susceptibility
decomposed into OP and IP, χOP

S ≡ χ11
S = χ33

S and χ IP
S ≡

χ22
S . One can see that the spin susceptibility around the nesting

vector Q = (π, π ) in the IP is larger than that in the OP, which
means that the AF instability in the IP is stronger than in
the OP. This behavior is seen over the ranges of the on-site
Hubbard interaction and the average filling studied here. This
implies that the electron correlation in the IP is stronger than
in the OP, and is again qualitatively consistent with the NMR
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FIG. 4. Spin susceptibilities, χOP/IP
S (q, iεm = 0), in the OP (left)

and IP (right) for U = 6.0 eV and nav = 0.90. The spin susceptibili-
ties are here normalized by the inverse nearest-neighbor hopping t to
make them dimensionless.

experiments [7,18–20], where the AF moments in the IPs are
found to be larger than those in the OPs.

Since the spin susceptibility, which is related to the d-wave
pairing interaction, is larger in the IP than OP, one might
assume that the superconductivity is always favored in the IP
than in the OP. However, the superconductivity is determined
not only by the pairing interaction but also by the quasipar-
ticle DOS. So let us look at the averaged spectral weight
z̃ [23,24,31], which is obtained from the imaginary-time
Green’s function Gab(k, τ ) = (1/β )

∑
iωn

e−iωnτGab(k, iωn)
as

z̃ab(k) ≡ −2Gab(k, β/2) =
∫ ∞

−∞

dω

2π

Aab(k, ω)

cosh (βω/2)
, (22)

where Aab(k, ω) = (−1/π )Im GR ab(k, ω) represents the
spectral function evaluated from the retarded Green’s function
GR ab(k, ω) = Gab(k, iωn)|iωn→ω+0+ . Figure 5 displays the
spectral weight decomposed into OP and IP, z̃OP ≡ z̃11 = z̃33

and z̃IP ≡ z̃22, here for U = 6.0 eV and nav = 0.90. One can
see in Fig. 5 that the averaged spectral weight is reduced
especially in the regions around X points in the Brillouin
zone called the “hot spots,” where the quasiparticle DOS is
originally large due to the van Hove singularity and dx2−y2 -
wave superconductivity has large amplitudes. If we examine
the layer-resolved result, the spectral weight in the IP z̃IP is
seen to be weaker than that in the OP z̃OP. This is always the
case for U � 2.0 eV where the filling in the IP nIP exceeds that
in the OP nOP. In other words, the averaged spectral weight in
the IP is much more suppressed than that in the OP due to
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FIG. 5. Averaged spectral weight in the OP (left) and IP (right),
for U = 6.0 eV and nav = 0.90 as in the previous figure.
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FIG. 6. Gap functions in the OP (left) and IP (right), normalized
by max[�OP(k, iπT )] here, for U = 6.0 eV and nav = 0.90 as in the
previous figures.

the strong electron correlation through the self-energy effects,
since the IP is closer to the half-filing owing to the self-doping
effect. As a result, the gap function in the OP is larger than that
in the IP, as mentioned above. Figure 6 displays the actual gap
functions in the OP and IP for U = 6.0 eV and nav = 0.90.

D. Tc compared between the three- and single-layer
Hubbard models

Finally, let us compare Tc between the three-layer and
Hubbard models to identify if and when multilayer cases
can be more favorable for superconductivity. Here the single-
layer Hubbard model refers to the three-layer one without the
interlayer single-electron hopping (t⊥ → 0). Figure 7 com-
pares the eigenvalue λ of the linearized Eliashberg equation

FIG. 7. Eigenvalue λ of the linearized Eliashberg equation
against the Hubbard interaction U for three-layer (top) and single-
layer (bottom) Hubbard models for various values of the average
filling n(av) = 0.800, 0.825, 0.850, 0.875, 0.900, 0.925, 0.950, 0.975.
Peak positions are marked with a yellow shading in each panel.
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3-layer

3-layer

1-layer

1-layer

FIG. 8. Eigenvalue λ of the linearized Eliashberg equation
against the (average) filling for the three-layer (red circles) and for
the single-layer (blue squares) for the on-site Hubbard interaction
U = 3.0 (left) or 6.0 eV (right).

for the three-layer and single-layer Hubbard models against
the on-site Hubbard interaction U for various values of the
(average) filling n(av) = 0.800–0.975. We can see that, for
each value of n(av), the eigenvalues have a dome structure
against U for both of the three-layer and single-layer Hubbard
models. If we have a closer look, however, the peak positions
(marked with yellow shadings in Fig. 7) for the three-layer
case are shifted to a smaller-U region as compared to those
for the single-layer case: the peaks of the dome in the three-
layer model are located in a range 4.4 � U � 4.7 eV, while
those for the single-layer model are in a range 5.0 � U �
5.5 eV.

Let us discuss relevant factors that determine the peak
structure for each model. The dome structure in Fig. 7 is
determined, as we have seen, by the competition between
the pairing interaction and quasiparticle DOS. The AF spin
fluctuations, hence the pairing interaction mediated by them,
increases with the on-site Hubbard interaction U , whereas
the quasiparticle DOS decreases with U owing to the in-
creased self-energy, so that we can interpret the dome as
arising from these two factors having opposite tendencies
with U .

One intriguing consequence of the peak positions shifted
to a smaller-U region in the three-layer model than in the
single-layer case is that the superconductivity can be en-
hanced in the three-layer case than in the single-layer one
in a weak U regime. In order to quantify this, we re-plot in
Fig. 8 the eigenvalue λ of the linearized Eliashberg equation
against the average filling n(av) to compare between the three-
and single-layer models, for the Hubbard interaction U =
3.0 eV and U = 6.0 eV. One can see that the eigenvalues
in the three-layer model are indeed significantly enhanced
above those in the single-layer model for U � 3.0 eV. Con-
versely, for a larger U � 6.0 eV, the λ for the single-layer
model becomes larger than in the three-layer model. This
is again due to the increased electron correlation (hence the
increased self-energy) in the IP compared to OP. The λs for
the three- and single-layer models cross with each other at
U � 4.5 eV.

The TPSC approach is a weak- and intermediate-coupling
theory, and incorporates the self-energy effect arising from
the increase of the AF spin fluctuations. However, the TPSC
approach is known to be incapable of describing the Mott

transition due to the insufficient treatment of local electron
correlations [22–24], so that the fitting lines in Fig. 8 should
become invalid toward the half-filling, n(av) → 1. In order to
extract the true behavior around n(av) → 1, the competition
between the SC and Mott insulating phases should be con-
sidered. As for the eigenvalue λ of the linearized Eliashberg
equation in Fig. 8, while the numerical results are for a fixed
temperature (at T = 0.015 eV here) with λ going below unity
in some regions, we can still regard λ as a measure of Tc, so
that the behavior of λ in the three- and single-layer models
for U � 3.0 and �6.0 eV in Fig. 8 should indicate that Tc for
the three-layer system exceeds that for the single-layer one for
an intermediate U � 3.0 eV, while the opposite occurs for a
strong U � 6.0 eV.

Since the eigenvalue λ (∼Tc) of the linearized Eliashberg
equation in Fig. 8 almost monotonically increases with ap-
proaching the half-filling n(av) → 1, we do not have Tc dome
structures observed in experiments, which is also due to the
insufficient treatment of the electron correlation in the TPSC
approach. In Fig. 5, one can see that the spectral weight
in the regions around the X points tends to vanish, i.e., a
pseudo-gap-like behavior. References [22–24] suggested that
an explicit gap opens in the TPSC approach at lower temper-
atures. The origin of this may be regarded as a precursor of
AF order as a self-energy effect arising from the divergent
behavior of AF spin susceptibility, which is considered to be
a candidate of pseudogap in electron-doped cuprates [32,33],
while hole-doped cuprates have other candidates including
preformed Cooper pairs, competing orders (charge or nematic
order), and proximity to the Mott insulator.

IV. SUMMARY AND DISCUSSIONS

To summarize, a three-layer Hubbard model as a model for
the cuprate Hg-1223 derived from first-principles calculations
is studied with the multilayer TPSC approach for incorpo-
rating electron correlations. There, the linearized Eliashberg
equation for the multilayer system is solved to capture the
superconductivity in the OP and IP. The present results show
that the dx2−y2 -wave superconductivity in the trilayer system
can be viewed in terms of the different strengths of electron
correlation in the OP and IP, which is caused by the many-
body charge transfer from the OP to IP as a self-doping
effect for U � 2.0 eV: the AF spin instability as well as the
SC pairing interaction are stronger in the IP than in the OP,
while for a more strongly correlated regime the quasiparticle
DOS becomes more suppressed in the IP due to the strong
electron correlation than in the OP. As a result, the OP
plays a dominant role in the d-wave superconductivity for
U � 2.0 eV, which can be grasped from the size of the gap
function 〈�OP/IP〉 in the OP and IP, while the IP dominates
the antiferromagnetism, as indicated from the strength of the
spin susceptibility χOP/IP

S . The eigenvalue of the linearized
Eliashberg equation λ (∼Tc), which should not be confused
with the size of the gap function 〈�OP/IP〉, becomes peaked
around 4.4 � U � 4.7 eV, where the left side of the peak
corresponds to the increasing pairing interaction while the
right side to the blurred spectral function. On the other hand,
the layer-resolved gap function 〈�OP/IP〉 serves as a measure
of the relative strength of the superconductivity in the OP and
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IP. These electronic and SC properties in the OP and IP, i.e.,
more hole (electron) carriers and stronger superconductivity
(antiferromagnetism) in OP (IP), are qualitatively consistent
with the NMR experimental results. We have also shown that
the three-layer model can have enhanced dx2−y2 -wave super-
conductivity over that in the single-layer model for a region
of the Hubbard interaction U � 4.5 eV, while the single-layer
one has stronger superconductivity for U � 4.5 eV.

The conclusion that an electron correlation effect leads to
stronger superconductivity (antiferromagnetism) in OP (IP)
is theoretically obtained here in terms of the self-doping
effect that comes from electron correlations for the multilayer
Hubbard model with the TPSC approach, which is a typical
weak- and intermediate-coupling theory. This conclusion is
robust against detailed choice of the values of the parameters
within the TPSC approach, although the region too close
to half-filling with the Mott insulating phase is out of the
applicability of the TPSC approach as mentioned above. In
addition to the TPSC approach, we have also investigated
the problem with other weak-coupling theories, i.e., random
phase approximation (RPA) and fluctuation exchange (FLEX)
approximation, for the three-layer Hubbard model. These
methods, however, cannot treat the self-doping effect, which
is crucial for the three-layer systems as we have revealed
in this study. For the superconductivity, we have employed
the effective interaction, Eq. (19), for the singlet pairing
in the Eliashberg equation (18), which is an extension of
Refs. [29,30] to multilayer systems. The behavior of the effec-
tive interaction is qualitatively the same as RPA and FLEX: it
increases monotonically with increasing on-site Hubbard U or
decreasing temperature T . However, the linearized Eliashberg
equation, which determines SC itself, behaves differently in
the TPSC than in the RPA and FLEX. This is precisely
because the Green’s function in the present TPSC approach in-
cludes the self-doping effect and disappearance of the spectral
weight.

In the strong-coupling limit, on the other hand, a model
can be a multilayer t-J model, where a possible scenario is
that the carriers are redistributed in the OP and IP due to a
difference in the disrupted exchange interactions between the
carrier doping in OP and IP, as mentioned in our previous
paper [21]: holes (electrons) tend to be introduced into the
OP (IP) upon doping so as to gain the energy from the
interlayer exchange interaction J⊥. Thus the present result on
the self-doping seems to encompass both the intermediate and
strong-coupling regimes. Details on the relation with the t-J
model, however, will have to be elaborated in the future.

As for the question of which correlation regime the
cuprates belong to, we can make the following discussion:
we have indicated in this study that Tc is higher for the
three-layer cuprate than in the single-layers for U � 4.5 eV.
Conversely, the single-layer should favor superconductivity
for U � 4.5 eV. Then we need an accurate estimate of the
on-site Hubbard interaction U , including its definition itself
in many-body systems. A standard numerical method is the
constrained random phase approximation (cRPA) [34–38].
Recent calculations [39–41] suggest that cuprate supercon-
ductors lie in a region 1.2 eV � U � 2.2 eV for the Hg-based
single-, double-, and triple-layer cuprates as far as cRPA
is concerned. While these estimations suggest that cuprate

superconductors sit in a weak-correlation regime, the self-
doping effect, hence the enhanced Tc for the triple-layer case,
only takes place for large enough electron correlation. Quite
recently, it is suggested that the cRPA vastly underestimates
the size of U , since the screening arising from the cRPA
contribution is canceled by other diagrams [42,43]. This may
be relevant to the present study suggesting that there exists an
intermediate-coupling region (2.0 eV � U � 4.5 eV), where
the dx2−y2 -wave superconductivity is enhanced in the three-
layer systems over the single-layer ones.

Another experimentally known fact is that hydrostatic pres-
sure can increase Tc in cuprate superconductors, typically in
multilayer cuprates [3–5]. An obvious effect of the pressure
is lattice compression within each layer, which implies an
increased bandwidth W , hence a decreased U/W , and the
electron correlations should be decreased by pressure as far as
this factor is concerned. If we turn to the Tc-dome structure
against the on-site Hubbard interaction U , the peak region
sits around U = 4.0–5.0 eV in the present study, as well as
in many theoretical literatures [44–46]. This implies that Tc

should rather decrease with pressure if we start from the left of
the peak (e.g., U � 2 eV) as estimated by the cRPA at ambient
pressure. This contradiction may suggest that here, too, the
underestimated U in the cRPA has to be reconsidered. Also,
microscopic pressure effects other than the lattice reduction
have to be considered as shown by Sakakibara et al. in a
model that incorporates dx2−y2 main orbitals along with the dz2

orbital [47–49]. They point out that, while the change in the
bandwidth W is indeed a large effect, we also have a pressure
effect on the Fermi surface nesting through a change in the
second and further neighbor transfers, and a pressure effect
on the level offset (band spacing) between the copper dx2−y2

and dz2 orbitals. So we may have to consider these factors,
on top of, or in relation to, the self-doping effect arising from
electron correlations discussed here.

Experimentally, uniaxial pressure effects [50] may give
further insights. Recently, Tc in multilayer cuprates is reported
to be increased not only by a-axial (in-plane) pressure but
also by c-axial (out-of-plane) one [51–54]. The result would
suggest that, as the in-plane (out-of-plane) pressure induces
the a-axis compression (expansion), the effective strength
U/W , hence Tc, may possibly change oppositely for the
in-plane and out-of-plane pressures. A first-principles band
calculation [54] for Hg-based three-layer cuprate suggests that
the pressure effects may cause a self-doping effect from the
HgO block to the CuO2.

In another avenue, the SC enhancement due to the differ-
entiation of OP and IP reminds us of the artificial superlattices
considered in previous studies [13,14], where multilayer Hub-
bard or t-J models composed of overdoped and underdoped
layers were used. There, with layer fillings fixed by hand, elec-
tron correlation effects are investigated with strong-coupling
theories such as the cellular dynamical mean-field theory,
dynamical cluster approximation, slave-boson mean-field the-
ory, and Gutzwiller-projected mean-field approximation. If
we regard the overdoped (underdoped) layer corresponding to
the OP (IP) in the present study, the SC enhancement found
in their previous studies may have some relevance to the
present result. However, we have to again recall that, while
the layer filling is fixed in the above studies, the fillings of

174508-8



SUPERCONDUCTIVITY ARISING FROM LAYER … PHYSICAL REVIEW B 98, 174508 (2018)

IP and OP are self-consistently determined by the electron
correlation as the present paper reveals. The high-Tc cuprates
are known to accommodate, besides superconductivity and
antiferromagnetism, various quantum phases such as density-
wave and pseudogap phases, and extension of the present
study to those will be another interesting future work.
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