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The density of low-energy particle-hole excitations is nonanalytic in a singular Fermi liquid, but it is
altered on entering a superconducting state in which, in the pure limit, it vanishes asymptotically at the
chemical potential and in general is analytic. The single-particle excitations in the superconducting states are
then quasiparticles so that a form of Landau theory may be constructed for thermodynamic and transport
properties in the superconducting state. In this theory, the renormalization of measurable properties due to
quasiparticle interactions, such as specific heat, compressibility, magnetic susceptibility, superfluid density, etc.,
changes in a temperature dependent fashion from the noninteracting theory. This is illustrated by showing the
renormalization of these quantities and the relation between the parameters introduced to account for their
temperature dependence. When the renormalizations in the normal state are large or singular, temperature
dependence of properties in the superconducting states are then in general not useful for identifying the nodal
character or symmetry of the superconducting state except for measurements at very low temperatures, the upper
limits of which are specified. The results obtained are expected to be useful in interpreting the experimental
results for the temperature dependence of various properties in the superconducting state born of singular Fermi
liquids.
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I. INTRODUCTION

The quasiparticle concept of Landau theory allows an un-
derstanding of thermodynamic properties and response func-
tions in a Fermi liquid. Its extension to the superconducting
state allows an understanding of renormalization of properties
in the superconducting state [1,2]. A microscopic basis of the
theory is the separation of the single-particle Green’s function
G(k, ω) into a coherent (or quasiparticle) part with poles and
an incoherent analytic part. The theory is at its most power-
ful for calculation of the correlation functions of conserved
quantities for which the incoherent part is shown to give no
contribution. Then the perturbative calculations in terms of the
quasiparticles and with analytic vertices or Landau parameters
give controlled results in powers of ω/Ef and (k − kF )/kF .
One can remain innocent of the subtleties while getting correct
results. In the quantum-critical fluctuation regime of metals,
where G(k, ω) have branch cuts, this innocence cannot be
maintained. Only calculations using the specific low-energy
singularities of G(k, ω) and of the vertices can give correct
results in such singular Fermi liquids. Fortunately, this is
possible for some forms of quantum criticality [3].

Although Landau theory cannot be applied to the singular
Fermi liquids [5], a form of Landau theory may still be applied
to the superconducting state born of such liquids, because the
density of low-energy excitations in the superconducting state
vanishes (in the pure limit) and together with that any low-
energy particle-hole singularities. The principles and methods
for determining such renormalizations is discussed here, with
application to the specific heat Cv (T ) and the London pene-
tration depth or the superfluid density ρS (T ). Other properties

may be calculated based on the same principles. There have
been some excellent experimental results for specific heat
and superfluid density [6–9] in several superconductors whose
normal state show evidence for a singular Fermi-liquid state.
The interpretation of the results is expected to be aided by this
paper.

Leggett [2,4] has called superconductors born of a Fermi
liquid as Fermi-liquid superconductors (FL superconductors).
One may refer to superconductors born of singular Fermi
liquids as singular Fermi-liquid superconductors (SFL super-
conductors).

The real (as opposed to virtual) scattering of fermions by
the singular fluctuations also decreases the superconducting
transition temperature [10]. The absence of such fluctuations
for T → 0 implies that the ratio of the zero-temperature gap
to the transition temperature is enhanced above the BCS value
[10]. The temperature dependence of the gap is then also quite
different from that in BCS [11]. This as well as the interactions
between the quasiparticles in the superconducting state leads
to temperature dependence in thermodynamic and transport
properties which are quite different from the theory with
noninteracting quasiparticles in the superconducting state.

In this paper, we also discuss the contrast between Cv (T ),
which depends only on the thermally accessible density of
states of excitations which give real scattering, and the ground
state superfluid density ρs (0), which depends on integrals over
the complete frequency dependence of the conductivity. The
temperature dependence of ρs (T ), however, is related to the
real scattering and therefore to the same parameters as the
temperature dependence of Cv (T ).
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This paper is organized as follows. First, the region close to
Tc is discussed to show that the opening up of superconducting
gap serves to cut-off the quantum-critical singularities and
that their entropy is released through the enhancement of
the specific heat at the superconducting transition. Then the
renormalizations in the specific heat, the compressibility and
the magnetic susceptibility are considered followed by the
renormalizations in the zero-temperature superfluid density
and in its temperature dependent part. We give the results
also for Galilean Fermi-liquid superconductors obtained by
Leggett [2], heavy Fermi-liquid superconductors in which the
renormalizations appear quite differently than in a Galilean
invariant superconductor [12], and the singular Fermi-liquid
superconductors.

II. FATE OF SINGULAR FERMI-LIQUID EFFECTS IN
GOING FROM THE NORMAL TO THE

SUPERCONDUCTING STATE

The necessary decrease of low-energy particle-hole exci-
tations in the superconducting state eliminates the singularity
associated with the putative quantum-critical point (QCP) of
the parent singular Fermi liquid. Consequences for this on the
thermodynamic properties just below Tc may be estimated
through the procedure in Ref. [13] adapted for a general
singularity in the quantum-critical response.

The change of renormalizations just below Tc for fluctua-
tions of an order parameter M (r) can be studied adequately, if
the superconducting transition has mean-field correlations, by
a Ginzburg-Landau free-energy functional:

F (�,M ) = V
[
a(Tc0 − T )|�|2 + b|�|4+ 1

V

∑
k

× 1

2

[
χ−1

MM (k, T ) + λ|�|2]|M (k)|2 + . . .
]
. (1)

The effect of biquadratic couplings between order parame-
ters on the phase diagrams are of-course well known and
have been considered for the AFM-superconducting cou-
plings [14]. The effect of the quasiclassical critical fluctu-
ations at finite T in the free-energy has been specified by
the static value of the real part of the temperature dependent
susceptibility χMM (k, T ) of M . The effect of the high-energy
virtual fluctuations in promoting superconductivity and in
direct coupling to M2 is assumed to be taken into account in
the coefficients a, b, λ, and in Tc0.

Following Ref. [13], on integrating over the fluctuations of
M in the free-energy, one obtains the effective free-energy for
superconductivity for dimension d,

Fsc(�) = a∗(Tc − T )|�|2 + b∗|�|4, (2)

a∗(T − Tc ) = a(T − Tc0) + d

2
T χ̃ (T ), (3)

b∗ = b − T 2 d

2
χ̃2(T ), (4)

χ̃ (T ) =
∑

k

λχ (k, T ). (5)

These results are derived with the assumption that the change
in free-energy due to the coupling λ is small compared to the
value for λ = 0.

The critical fluctuations in M just below Tc are also altered
so that the equivalent susceptibility in the superconducting
state is

χ−1
MMs (k, T ) = χ−1(k, T ) + λ|�|2(T ). (6)

The parameter λ > 0 because the thermal fluctuations of M

are always pair-breaking. Therefore the M2|�|2 coupling
suppresses the region of the ordered phase of M as well as the
superconducting transition temperature. The quantum-critical
point of M is displaced to inside the region of order in the
absence of superconductivity.

From Eq. (2), one finds that the superconducting transition
temperature is depressed from the mean-field value Tc0 to

Tc ≈ Tc0

1 + λ ˜χ (Tc0)
, (7)

and that the mean-field specific heat jump at the transition
increases by

�γ ∗

�γ
= (a∗)2/b∗

(a)2/b
≈ 1 + λTcχ̃ (Tc0) + 2λ2T 2

c χ̃2(Tc0). (8)

This was used earlier [13] to understand the large jump in
the specific heat at the superconducting transition in CeCoIn5

using a particular form of χ (k, T ), which is not quantum crit-
ical. Evidence is now available that this crystal is in fact close
to quantum criticality. The large jump appears also in cuprates
as well as in superconductors in the vicinity of an AFM
quantum critical point [15,16]. For the case of the topological
fluctuations [17,18], which give rise to the marginal Fermi
liquid [19], the critical fluctuations are product of functions
of q and of ω/T . The static long-wave-length susceptibility
χ̃ (T ) then is proportional to log(ωc/T ), where ωc is the
ultraviolet cutoff of the fluctuations.

The results above are only valid for T close to Tc. The
details of the low-temperature properties, since they depend
on the low-energy excitations in the superconducting state,
cannot be obtained from such considerations. However, the
enhanced jump in the specific heat at Tc also gives necessary
information on the low-temperature thermodynamics through
the requirement of entropy conservation and analyticity in the
temperature dependence of properties, as we shall see below.
The decrease of Tc in Eq. (7) is due to real or quasithermal
scattering of the critical fluctuations. Similar results have been
derived from more detailed considerations earlier [10].

While there still exists a QCP in the superconducting
state, the singularities in the properties of fermions at low
energy must be strongly diminished for reasons given above.
This may not be true in the unlikely case where quasistatic
fluctuations of M might induce a gapless superconducting
state with a decreased transition temperature [20]. This is
unlikely because the effect of such fluctuations is expected to
be overcome by the effective pairing interaction through the
virtual fluctuations in M . We do not consider this subtle but
unlikely situation here.

The diminution of the thermally accessible critical fluctu-
ations in the superconducting state implies that the T → 0
superconducting gap �(0) is not much changed from that
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in their absence. This means that the ratio of �(0)/Tc is
enhanced with respect to the BCS value, as well as that the
temperature dependence of the gap [11] �(T ) is quite differ-
ent from BCS. This as well as interaction between supercon-
ducting quasiparticles changes the temperature dependence of
physical quantities from that in a theory which ignores these
considerations.

On the other side of the coin, the order parameter correla-
tions χ̃ (k, ω, T ) must show singularities of a different kind
from the continuation of those above Tc because the effect
of coupling to the fluctuations of fermions, in particular the
dissipation, changes. The T → 0 order parameter correlation
singularities are likely to be akin to the singularities in corre-
lations of a similar order parameter in an insulator.

III. THERMODYNAMIC PROPERTIES

A. Renormalization of specific heat

We will consider the renormalization of the specific heat
at some length: the renormalization of the compressibility and
the magnetic susceptibility follows from the same develop-
ment. For noninteracting excitations in a superconductor, the
specific heat is given in terms of the excitation energy [4]

Ek(T ) =
√

(εk − μ)2 + �2
k(T ) (9)

by

Cv0(T ) = −2νN

∫
dk̂

4π

∫
E>�(k,T)

dE
E2√

E2 − �2(k, T )

×
(

E

T
− dE

dT

)
df (E)

dE
, (10)

where f (E) is the Fermi-distribution function, and νN is the
density of single-particle excitations in the normal state, νN =
m∗kF /π2.

First consider a FL superconductor. Here we must dis-
tinguish the case of Galilean Fermi liquids, as in the orig-
inal Landau theory and its variants in lattices, especially
the so called “heavy Fermi liquids” where the renormaliza-
tion of physical properties by Landau parameters is quite
different [12].

In the former, for example liquid 3He, the leading low
temperature dependence of the specific heat does not explicitly
[21] depend on the Landau parameters either in its normal
state or in its superfluid state. The specific heat coefficient
γ = Cv (T )/T is given in terms of the density of states or
1/|vF |, which is defined as a ground state property. In Landau
theory for a Galilean invariant Fermi liquid, no questions are
permitted to be asked about the ground state. [However, using
Galilean invariance, it is shown that the current carrying ve-
locity of quasiparticle excitations is renormalized by m/m∗ =
(1 + F s

1 /3)−1.] In the superconducting state, the same 1/|vF |
must enter in Eq. (10).

On the other hand, for heavy Fermi liquids, in which
the assumption that the single-particle self-energy �(k, ω)
is a weak function of momentum compared to energy is
valid [12], there is an enhancement of the specific heat by
z−1 ≈ (1 + F s

0 ). Here, z is the quasiparticle renormalization
amplitude (which cancels out against vertices, i.e., through

Ward identities enforcing particle number conservation in
low-energy properties in a Galilean invariant Fermi liquid,
but not in a heavy Fermi liquid) and F s

0 is the s-wave spin
symmetric Landau parameter. Higher F ′s are much smaller
than F s

0 , which is equivalent to the much weaker momentum
dependence of �(k, ω) on k than on ω.

Since F s
0 depends on quasiparticle interactions, the specific

heat renormalization depends on the density of excited quasi-
particles through the density of states in the superconducting
state and the temperature. Since the compressibility depends
both on the specific heat mass as well as independently on F s

0 ,
it remains unrenormalized.

In a singular Fermi liquid, the leading temperature depen-
dence of the specific heat depends on the density of states at
the chemical potential through the velocity renormalization
factor z(T )zk (T ), where

z−1 =
(

1 − ∂ (Re �(k, ω, T ))
∂ω

)∣∣∣∣
k=kF ,ω=μ

,

zk = 1 + v−1
F (k) · ∂ (Re �(k, ω, T ))

∂k

∣∣∣∣
k=kF ,ω=μ

. (11)

For example, in a marginal Fermi liquid, z−1(T ) = 1 +
λ ln(ωc/πT ). zk ≈ 1, because the self-energy again has neg-
ligible momentum dependence. If one is tuned close to crit-
icality, such velocity or density of states renormalizations
account for the logarithmic rise of the Cv (T )/T as the tem-
perature is decreased in the normal state. Such logarithmic
enhancements of the entropy are directly observed in heavy-
fermion [22] and cuprate quantum criticality [23] and indi-
rectly through measurements of thermopower in the Fe-based
superconductors [16] near AFM quantum criticality.

For T < Tc, the density of particle-hole excitations → 0 at
ω → 0. So such renormalization comes to a halt at T < Tc.
However, since this effect comes from the real part of the self-
energy, which depends through the Kramers-Kronig relation
on the absorptive part integrated over the complete frequency
range, its value at Tc, i.e., z−1(Tc ) continues essentially un-
changed in the renormalization of the quasiparticle velocities
of the superconducting state down to T → 0. The leading
temperature dependence of the specific heat is then given
by the density of states of the noninteracting particles of the
superconducting state with the single particle density of states
enhanced by z−1(Tc ). This is true only with the assumption
that Tc is much less than the high-frequency cutoff of the
singular fluctuations. The factor z−1(Tc ) multiplies the lead-
ing low-temperature dependence of the specific heat Cv (T ),
which is given by the density of states of the superconductor—
exponential for a gapped state, ∝ T 2 for a state with points
of zeros in two dimensions, etc. Therefore since Cv0(T ) is
proportional to m∗,

Lim(T → 0)
Cv (T )

Cv0(T )
≈ 1. (12)

We take m∗/m = z−1 to include constant Fermi-liquid cor-
rections in the normal state, which are also inevitably present
beside the nonanalytic terms.

We must now consider the next order temperature de-
pendent corrections due to interactions between excited
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quasiparticles in the superconducting states. Traditionally,
such corrections are avoided in Landau Fermi-liquid theory
since the theory gives only the leading temperature dependent
properties in T/EF , to which there are no corrections if the
density of excitations goes to 0 faster than (T/EF )2 as in
s-wave type superconductors. We need them in the supercon-
ducting states if measurements are done at temperatures com-
parable to the superconducting gap, which sets the scale rather
than the Fermi energy so that higher powers of T/�(T ) than
the lowest need to be considered in order to compare with the
experiments. The additional renormalizations come from the
growth of renormalizations as the density of thermally excited
quasiparticles rises and from the temperature dependence of
�(T ). Except very close to Tc, the results in this paper are
significant for experiments only for superconductors where
the density of states of excitations is a power law and not for
s-wave type superconductors.

There are no general arguments for the magnitude of the
renormalizations in the superconducting state. Approximate
analytical calculations may be done. More effective is to
present an expansion of the energy in powers of the density
of excitations and in terms of parameters to be determined. As
explained below, knowing the results in the normal state puts
constraints on the parameters.

Since the energy in the superconducting state is expected
to be analytic as a function of temperature, a power series
expansion for it in powers of the deviation of the distribution
function from that at T = 0 following Landau theory is
permissible:

δE =
∑
k,σ

Ekδfσ (Ek ) + 1

2

∑
k,σ

∑
k′,σ ′

gσ,σ ′ (k, k′)

× δfσ (Ek )) δfσ ′ (Ek′ ) + O(δf )3, (13)

where δfσ (Ek ) is the deviation of the distribution function
from that of the ground state, and is given by the Fermi distri-
bution δfσ (Ek ) = 1/[eβEk + 1] because limT →0 δfσ (Ek ) = 0
except just at the nodes of Ek, which give only constant contri-
bution at most to the ground state energy. Note that the chem-
ical potential for the quasiparticles in the superconducting
state should be zero because the number of thermally excited
quasiparticles is determined so as to minimize the free energy.
Hereafter for considerations of the specific heat and for sim-
plicity, we assume the interaction is contact type and spin-
independent so that it is approximated as gσ,σ ′ (k, k′) ≈ gs .

To evaluate (13), we need the density of states in the
superconducting state which depends on its symmetry as
well as several details. As a general form in the pure limit,
applicable to gapless superconductors, we take the density of
states measured from the chemical potential as defined by an
exponent η through

νS (E) =
∑
k,σ

δ(E − Ek ) ≈ AνN |E|η/�η. (14)

where A is a dimensionless constant of O(1), and the approx-
imate relation in the second equality is valid for E � �. With

the use of the identity for arbitrary function W (E)
∑
kσ

W (Ek ) =
∫ ∞

0
dE W (E)

∑
kσ

δ(E − Ek )

=
∫ ∞

0
dE νS (E)W (E), (15)

the specific heat from the first term in (13) is

Cv0(T ) = d

dT

∫ ∞

0
dEνS (E)

E

eβE + 1

= A1(η)νN

T η+1

�η
(η + 2 − ηD�/T ); (16)

D�/T ≡
∣∣∣∣d ln �

d ln T

∣∣∣∣; (17)

A1(η) ≡ A(η + 1)!

(
1 − 1

2η+1

)
ζR (η + 2), (18)

where ζR (y) is the Reimann zeta function. This term is the
leading temperature dependence of the specific heat in which
as argued by Eq. (12), the density of states or the effective
mass is renormalized approximately by z−1(Tc ). Therefore in
relation to noninteracting density of states νN0, the interacting
density of states is

νN ≈ z−1(Tc )νN0. (19)

Then, δns0(T ), the density of un-renormalized excitations at a
temperature T is given by

δns0(T ) ≡
∫ ∞

0
dE νS (E)

1

eβE + 1
= A2(η)νN

T η+1

�η
; (20)

A2(η) = Aη!

(
1 − 1

2η

)
ζR (η + 1). (21)

The interaction term in (13) is

1

2
gs[δns0(T )]2. (22)

The specific heat from the interaction term in (13), Cv1(T ),
is calculated by differentiating (22) with respect to T . Also
Cv0(T ) may be written as

Cv0(T ) = A1(η)

A2(η)
(η + 2 + ηD�/T ) δns0(T ), (23)

assuming a gap monotonically decreasing as temperature is
raised towards Tc.

Adding Cv1(T ) to Cv0(T ) and dividing by T ,

Cv (T )

T
=

(
1 + gs

[
A2(η)

A1(η)

]2 (η + 1 + ηD�/T )

(η + 2 + ηD�/T )2

× Cv0(T )

T
+ · · ·

)
Cv0

T
(24)

=
(

1+gs

A2(η)

A1(η)

(η + 1 + ηD�/T )

(η + 2 + ηD�/T )

δns0(T )

T
+ · · ·

)
Cv0

T
.

(25)

As temperature increases additional powers of the thermal
excitation density δns0(T ) contribute which themselves are
renormalized because of the interactions. The specific heat
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calculated for T < Tc should match the value at Tc and the
total integrated entropy up to Tc should equal the normal state
entropy at Tc. Moreover, the slope for T just below Tc should
match the slope calculated from (8). These conditions can be
met by using δns0(T ) as a temperature-dependent mean-field
function and writing the power series in Eqs. (24) and (25) as

Cv (T )

T
≈

(
1

1 − gsF (η,�)Cv0
T

)
Cv0

T
, (26)

where F (η,�) = [A2(η)
A1(η) ]

2 (η+1+ηD�/T )
(η+2+ηD�/T )2 . The form in (26) is

necessarily approximate since interactions involving higher
powers of density will in general have different coefficients.

It is meaningful also to define a temperature-dependent
quasiparticle renormalization amplitude zs (η, T ) in the super-
conducting state

Cv (T )

Cv0(T )
	 z−1

s (η, T ). (27)

The definition and utility of zs (T ) may be appreciated from
the fact that Cv (T )/T is proportional to the single-particle
density of states, which in the approximation that the normal
single-particle self-energy has negligible momentum depen-
dence compared to its energy dependence is renormalized by
a quasiparticle renormalization amplitude.

Cv (T ) must satisfy two conditions: Cv (Tc ) be equal to the
value of the specific heat as T approaches Tc from below, and
integral of Cv (T )/T from 0 to T must equal the integral of
the equivalent quantity extrapolated from the normal state to
T → 0 containing the normal state renormalization amplitude
z−1(T ). The two parameters in Eq. (27), gs and D�/T ≡
|d ln �/d ln T | may be determined from these two conditions
using the normal state values. Note that close below Tc, D�/T

may be a temperature dependent parameter. This is of-course
not very satisfactory but inevitable given that one is looking
here at the “high-temperature” part of the superconducting
state where no good expansions are possible.

Since Cv (T )/T for fermions is generally related to the
density of single-particle excitations, we may also write
that a renormalized δn∗

s (T ) is related to the noninteracting
δns0(T ) by

δn∗
s (T )

δns0(T )
= z−1

s (η, T ). (28)

In other words, the density of states νs (E) in Eq. (20) can be
regarded as being renormalized by the same renormalization
factor z−1

s (η, T ) for the specific heat in Eq. (27). This relation
will be useful in the discussion on the superfluid density.

The results here imply that for singular renormalization in
the normal state, and the requirements that the renormaliza-
tions are strongly reduced in the superconducting state and
must go over as T → Tc to the renormalizations in the normal
state, it is in general incorrect to deduce the symmetry of
pairing from the power laws in various properties unless the
leading T/Tc << 1 results are obtained in experiment and are
unchanging in their temperature dependence over a credible
range.

B. Compressibility and magnetic susceptibility

As befitting specific heat, we have characterized g(k, k′)
by an s-wave parameter, which includes both the contribution
of the spin-symmetric and the spin-antisymmetric channels.
Compressibility is essentially unrenormalized in the case
where strong local correlation exists as in heavy fermion
metals, which is compatible with the fact that the self-energy
is almost momentum independent [12]. This implies that
the renormalization of the single-particle density of states,
z−1
s (T ), which determines the specific heat is exactly canceled

by a factor which may be called [1 + F0s (T )].
For the magnetic susceptibility, the leading term and in-

teraction terms in the coupling energy to magnetic field are
functions of (δnp↑ − δnp↑). Then ga , the antisymmetric spin
coefficient, should be used to get the change from the nonin-
teracting values. Other than this change, the renormalization
remain similar to that in Eq. (27).

IV. RENORMALIZATION OF SUPERFLUID DENSITY

The zero frequency contribution to the conductivity of a
superconductor, e2

m2 ρS (T )δ(ω) defines the superfluid density
ρS (T ). The text-book expression for the superfluid density
for noninteracting electrons in the clean limit for a FL-
superconductor, i.e., for scattering rate τ−1 << �0, is

ρ
αβ

S (T ) = ρδαβ − m

e2
Limq→0Re C

αβ

jj (q, 0; T ). (29)

The density ρ is the diamagnetic contribution which alone is
present at zero temperature in a noninteracting system. The
second term is the paramagnetic contribution given by the
current-current correlation function C

αβ

jj and is the normal

fluid density (ρN )αβ (T ), which is related to the current carried
by thermal excitations. The London penetration depth �L is
given by

(
�−2

L

)αβ
(T ) = 4πe2

m2c2
ρ

α,β

S (T ). (30)

The normal fluid density in the pure and noninteracting
limits is

ρ
αβ

N0(T ) = δαβ

m

e2
Re C

α,β

jj (q, 0, T ) = mŶ (T ); (31)

Yα,β (T )=6
∫

dk̂

4π
k̂αk̂β

∫ ∞

�(k̂)

E√
E2 − �2(k)

[
−df (E)

dE

]
dE

(32)

≈ δαβ

k2
F

m

∫ ∞

0
dEνS0(E)

[
−df (E)

dE

]
(33)

= δαβAρ (η)
k2

F

m
νN0

T η

�(T )η
; (34)

Aρ (η) = Aη!

(
1 − 1

2η−1

)
ζR (η) for η ≥ 2

= ln 2 for η = 1. (35)

We now recall that the noninteracting density of states of
quasiparticles νN may be written as νN = 3ρ/k2

F. Therefore,
for noninteracting quasiparticles in the superconducting state,
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the normal fluid density given as

ρN0(T ) = 3πρAρ (η)
T η

�(T )η
. (36)

In order to discuss renormalizations for various models, with
the use of Eq. (20), we write the normal fluid density as

ρN0(T ) = 3πρ
Aρ (η)

A2(η)

δns0(T )

T νN

. (37)

In a Galilean invariant Fermi-liquid superconductor, there
is no renormalization of the bare mass entering the superfluid
density at T = 0 because the current operator commutes with
the Hamiltonian. The same result may be derived by satisfying
the continuity equation. However, the quasiparticle or normal
fluid contribution has a back-flow correction to the current due
to interaction between quasiparticles. Leggett has derived the
correction to the normal fluid density in this case, such that
the mass entering in the finite temperature reduction of ρ̂s (T )
is modified due to the Landau parameter F s

1 [2,4]:

ρ̂s (T ) = ρ[1̂ − Ŷ (T )]

[
1̂ + F s

1

3
Ŷ (T )

]−1

. (38)

This is effectively an interpolation between the bare mass at
T → 0 and the Fermi-liquid mass m∗ = m(1 + F s

1 /3).
For heavy Fermi liquids [24] (or for electron-phonon in-

teractions in the pure limit), i.e., Fermi liquids in which the
self-energy is a strong function of energy but a weak function
of momentum [12], the continuity equation is satisfied with
a renormalization of the mass by z−1 = (1 + F s

0 ). As a re-
sult, m∗ = md (1 + F s

1 /3) with a dynamical mass md ≡ mz−1,
appears instead of m in the density ρ in Eq. (38) for the
superfluid density tensor.

Now consider the effects of interactions between quasipar-
ticles in the superconducting state on ρN (T ). Given Eqs. (37)
and (28), the essential temperature dependence of ρN (T )
should be the same as of the density of single-particle exci-
tations δns0(T ) or Cv0(T )/T . Also noted in Eq. (28) is that,
due to the interactions in the superconducting state, δns0(T ) is
renormalized effectively to δn∗

s (T ) = z−1
s (T )δns0(T ). Doing

that leaves only the Leggett corrections due to F1s . These may
be included, but they are known to be quite small both in
heavy fermions and in singular Fermi liquids compared to z−1.
Using Eq. (38), the expression for the normal fluid density
tensor for non-interacting particles is

ρ̂N0(T ) = ρ

(
1 + F s

1

3

)
Ŷ (T )

[
1̂ + F s

1

3
Ŷ (T )

]−1

≈ ρ Ŷ (T ).

(39)

We may now approximately include the effects of higher
powers of δns0(T ), as in the renormalization of the specific
heat. Ignoring the small difference between Aρ (η) and A2(η),

ρ̂N (T ) ≈ ρ̂N0(T )[zs (η, T )]−1, (40)

where the renormalization factor zs (η, T ) is given through
Eqs. (26)–(28). The measured ρN (T ) and Cv (T ) can be used
to test that the renormalization is by the same z−1

s (T ) in both
quantities.

Zero temperature

We now briefly discuss the zero temperature superfluid
density, which has been a focus of some recent experiments
[7,8] and calculations [9]. For superconductors with elastic
or impurity scattering, including gapless superconductors, the
paramagnetic term is not 0 at T → 0, and so the superfluid
density is reduced in that limit. However, there is an additional
contribution in SFL superconductors. The singularity in the
self-energy in the normal state in cuprates leads to the normal
state conductivity σN (ω, T ), which is proportional to 1/ω

[3,19], which is cutoff at low energies by the impurity scatter-
ing rate and at high frequencies both by the logarithmic cor-
rection to the mass and the ultraviolet cut-off ωc in the singular
fluctuation spectra. [Ignoring the necessary high-frequency
cutoff in the predicted scale invariant optical conductivity [19]
has led to peculiar power law [25] fits to the σ (ω) at high
frequencies by some experimentalists and theorists.] The part
of the paramagnetic conductivity with ω >> 2�(T ) persists
in the superconducting state down to T → 0. To be in accord
with the sum rule on the total conductivity, ρS (T = 0) is then
reduced by about

m∗
2
π
e2

∫ ωc

≈2�

dω σN (ω). (41)

This is closely related to z−1
s (T = 0) introduced as a renor-

malization of the mass in the superconducting state at T = 0.
Some discrepancies [7,8] were noted recently in the super-

fluid density in overdoped cuprate La2−xSrxCuO4 at various
x. Overdoped cuprates also have paramagnetic conductivity
extending well above the superconducting gap, as befits a
material with a crossover from a singular Fermi liquid to
a Fermi liquid but only for low enough frequencies. The
discrepancies appear to have been accounted for qualitatively
by calculations of the effects of impurities [9] in d-wave
superconductors. We suggest that the considerations above,
including the renormalization of the superfluid density may be
useful in getting quantitative agreement with the experiments.

V. SUMMARY AND CONCLUSIONS

In this paper, we have considered the renormalization of
measurable properties such as specific heat, magnetic suscep-
tibility, compressibility, and superfluid density in the super-
conducting states for metals (in the pure limit), which have
large Fermi-liquid renormalizations (heavy Fermi liquids) in
the normal state or those which are near quantum-critical
points of an order parameter competing with superconductiv-
ity (singular Fermi liquids). The analysis is restricted to situ-
ations in which the self-energy of the fermions is weakly mo-
mentum dependent compared to the frequency dependence.
Many interesting metallic compounds being studied fall into
this category (but liquid He-3 does not). For the case of singu-
lar Fermi liquids, besides the cuprates, rare-earth compounds,
and the superconducting Fe based compounds in the vicinity
of their antiferromagnetic instability also appear to belong
to this category [3]. The signature for this is their common
linear in T contribution to the low-temperature resistivity in
the normal state accompanied by a T ln T specific heat whose
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TTc0Tc

Cv(T )/T

CN (T )/Tc0

||

-

0
|

T

FIG. 1. Figure illustrating the renormalizations in the specific
heat coefficient Cv/T , and by the arguments of this paper in other
properties, in a heavy fermion superconductor. The T → 0 renormal-
ization of this quantity is similar to the Fermi-liquid renormalization
for T � Tc. However, due to the depression of Tc due to the large
inelastic scattering and the consequent high �Cv/T at the super-
conducting transition, the specific heat decreases rapidly below Tc

compared to the noninteracting case. The temperature dependence of
physical quantities is unlike those of the noninteracting power laws
unless measurements are made below T ′, estimated in the paper.

magnitude is consistent with a real part of the self-energy
∝ ω ln ωc

ω
coming from the entire Fermi surface.

This paper was motivated by excellent experiments, which
were fitted to give power laws over limited temperatures for
various properties in the superconducting states which are
however hard to understand, for instance in Refs. [6]. An
essential result of this work is that fit to a power law should
not be expected, except at very low temperatures, in the
systems being discussed because of the necessarily chang-
ing renormalization with temperature in the superconduct-
ing state. These changes are qualitatively and quantitatively
different for heavy Fermi liquids (i.e., systems with a small
z in the normal state) and singular Fermi liquids in which
z → 0 logarithmically as temperature goes towards 0. In the
latter case, the cut-off in the logarithmic singularity in the
superconducting state introduces new features not found in
the former case. The effect of this persists down to quite
low temperatures. In both cases, the decrease in Tc due to
inelastic scattering of fermions from fluctuations induces a
large jump (in mean-field theory) on the specific heat at
the superconducting transition. To balance the entropy, the
specific heat decreases very rapidly below Tc.

The two cases are illustrated by schematic sketches of
Cv (T )/T in this section. In Fig. 1, the heavy-Fermi-liquid
case is sketched. T ′ denotes the upper limit of the temperature
below which the power laws are those expected from the sim-
ple noninteracting quasiparticle theory. This is obtained from
Eq. (26). At low temperatures, the � dependence of F (η,�)
is unimportant. T ′ is estimated simply from gsCv0(T ′)/T ′ ≈
1. This gives

T ′ ≈ �0
η + 2

AgsνNη!

[
ζR (η + 2)

ζR (η + 1)

2η+1 − 1

2η+1 − 2

]
. (42)

FIG. 2. Figure illustrating the renormalization in the specific
heat coefficient Cv/T , and by the arguments of this paper in other
properties, in a singular Fermi-liquid superconductor. Beside the
considerations for heavy-Fermi-liquid superconductors, there is the
additional fact that the continuation of the normal Cv/T to low
temperatures has a ln(ωc/T ) singularity. The superconductor must
then have additional temperature dependence to make up the sum
rule on the entropy integrated to Tc.

The factors depending on η give only O(1) and are not so im-
portant as gsνN . The reduction of T ′/�0 is inversely as gsνN .
This does not account for the change from the noninteracting
specific heat at higher temperatures due to the larger jump at
Tc due to the renormalizations and the reduction Tc/Tc0 given
in Eqs. (8) and (7).

In Fig. 2, a singular Fermi-liquid case is sketched. The
normal state specific heat and its extrapolation below Tc is
shown as a dashed line. In this case, there is the additional
consideration of the sum rule on the entropy up to Tc that
the singular Fermi liquid Cv/T extrapolated to the supercon-
ducting state has a ln(ωc/T ) dependence, where ωc is the
upper cutoff in the singularity in the normal state fluctuation
spectrum. This will be distributed from low temperatures all
the way to Tc. In general then the low-temperature limit of
a pure power law is reduced further below the value given
in (42).

To compare the detailed temperature dependence of the
specific heat with the calculations, it is necessary to use
Eq. (26) and use the procedure given there to estimate the
coefficients. However, given the measurement of one property,
other properties may be obtained more easily. From Figs. 1
and 2, one may estimate z−1

s (T ) using Eq. (27), and estimate
variation in the temperature dependence of other properties,
such as superfluid density or magnetic susceptibility, due to
the changing renormalizations, from the results given above.
A recent comparison of the measured renormalizations in
specific heat and the normal fluid density [26] are consistent
with both being given by the same temperature dependent
factor.
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