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Low-temperature magnetization curves and thermodynamics of a frustrated spin- 1
2 Heisenberg triangular

bilayer with the antiferromagnetic intradimer interaction and either ferromagnetic or antiferromagnetic in-
terdimer interaction are investigated in a highly frustrated parameter region, where localized many-magnon
eigenstates provide the most dominant contribution to magnetothermodynamics. Low-energy states of the highly
frustrated spin- 1

2 Heisenberg triangular bilayer can be accordingly found from a mapping correspondence
with an effective triangular-lattice spin- 1

2 Ising model in a field. A description based on the effective Ising
model implies that the frustrated Heisenberg triangular bilayer with the ferromagnetic interdimer coupling
displays in a zero-temperature magnetization curve discontinuous magnetization jump, which is reduced upon
increasing of temperature until a continuous field-driven phase transition from the Ising universality class is
reached at a certain critical temperature. The frustrated Heisenberg triangular bilayer with the antiferromagnetic
interdimer coupling contrarily exhibits multistep magnetization curve with intermediate plateaus at 1

3 and 2
3 of

the saturation magnetization, whereas discontinuous magnetization jumps observable at zero temperature change
to continuous field-driven phase transitions from the universality class of three-state Potts model at sufficiently
low temperatures. Exact results and Monte Carlo simulations of the effective Ising model are confronted with
full exact diagonalization data for the Heisenberg triangular bilayer in order to corroborate these findings.
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I. INTRODUCTION

The theorem due to Mermin and Wagner [1] claims that
temperature-driven phase transitions associated with a spon-
taneous breaking of the continuous symmetry of the isotropic
Heisenberg model can be excluded in low spatial dimensions
one and two on assumption that an external magnetic field
is absent. However, temperature-driven phase transitions of
the low-dimensional Heisenberg model cannot be definitely
ruled out in presence of the magnetic field because the
magnetic field breaks a time-reversal symmetry and Mermin-
Wagner theorem is inapplicable [1]. From this perspective, the
isotropic Heisenberg model often displays in presence of the
magnetic field much greater diversity of classical and quantum
phase transitions than its zero-field counterpart.

Zero- and low-temperature magnetization curves of the
isotropic Heisenberg model on several low-dimensional lat-
tices may thus involve a lot of unconventional features [2],
which come from field- or temperature-driven phase transi-
tions closely connected with appearance of fractional magne-
tization plateaus [3,4], magnetization jumps [5,6], magnetiza-
tion ramps [7,8], or quantum spin-liquid states [9–11].

Over the past few years, a great deal of attention has
been paid to the Heisenberg bilayers, which exhibit a great
variety of quantum phases and phase transitions [12–27]. The
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frustrated spin- 1
2 Heisenberg square bilayer for instance dis-

plays a peculiar zero-field ground-state phase diagram includ-
ing two lines of discontinuous and continuous phase transi-
tions, which meet together at a peculiar quantum critical end
point [27]. Moreover, the frustrated spin- 1

2 Heisenberg square
[28–32] and honeycomb [33,34] bilayers belong to a valuable
class of frustrated quantum spin systems, which exhibit a
magnon-crystal state manifested in zero- and low-temperature
magnetization curves as the last intermediate plateau emer-
gent below the saturation field. The magnon-crystal phase is
in its essence localized many-magnon eigenstate, which can
be comprehensively described through a classical lattice-gas
model or an equivalent Ising model within the framework
of the localized-magnon approach (see Refs. [35–37] and
references therein).

In this work we will investigate in detail low-temperature
magnetization curves and thermodynamics of the quantum
spin- 1

2 Heisenberg triangular bilayer, which will display out-
standing critical points falling either into the universality
class of two-dimensional Ising model or two-dimensional
three-state Potts model. It will be shown hereafter that the
type of critical behavior depends fundamentally upon the
character of the interdimer interaction. To verify this conjec-
ture, we will take advantage of several powerful analytical
and numerical methods such as the variational technique,
the localized-magnon approach, the many-body perturbation
theory, the exact diagonalization, and classical Monte Carlo
simulations.
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STREČKA, KARĽOVÁ, BALIHA, AND DERZHKO PHYSICAL REVIEW B 98, 174426 (2018)

The organization of this paper is as follows. The quantum
spin- 1

2 Heisenberg triangular bilayer is introduced in Sec. II
along with basic steps of analytical and numerical methods
used for its treatment. The most interesting results for the
magnetization process and low-temperature thermodynamics
are discussed in Sec. III. Finally, several concluding remarks
and future outlooks are mentioned in Sec. IV. Some lengthy
calculations are put into two appendices.

II. HEISENBERG TRIANGULAR BILAYER

Let us consider the frustrated spin- 1
2 Heisenberg triangular

bilayer (see a schematic illustration depicted on the left of
Fig. 1) defined through the Hamiltonian

Ĥ = J1

L∑
i,j=1

2∑
l=1

(Ŝ1,i,j + Ŝ2,i,j ) · (Ŝl,i+1,j + Ŝl,i,j+1

+ Ŝl,i+1,j+1) + J2

L∑
i,j=1

Ŝ1,i,j · Ŝ2,i,j − h

L∑
i,j=1

2∑
l=1

Ŝz
l,i,j ,

(1)

where Ŝl,i,j ≡ (Ŝx
l,i,j , Ŝ

y

l,i,j , Ŝ
z
l,i,j ) denotes a spin- 1

2 operator
placed at a lattice site unambiguously determined by three
subscripts. The first subscript l = 1, 2 determines a trian-
gular layer, while the second (third) subscript specifies row
(column) within a given layer (see the left panel in Fig. 1).
The coupling constant J1 labels the Heisenberg interdimer
interaction between the nearest-neighbor spins within each
triangular layer (see thin blue lines in the left panel of Fig. 1)
and the next-nearest-neighbor spins from different triangular
layers (not drawn in the left panel of Fig. 1). The coupling
constant J2 labels the Heisenberg intradimer interaction be-
tween the nearest-neighbor spins from different layers and,
finally, the Zeeman’s term h � 0 accounts for a magnetostatic
energy of magnetic moments in an external magnetic field.
In all subsequent calculations we will consider a triangular
bilayer with the linear size L and the total number of ver-
tical dimers N = L2 (i.e., the total number of spins 2N ) by
imposing the periodic boundary conditions for convenience.
The Hamiltonian (1) can be solved by making use of several

FIG. 1. Left: a small segment from the triangular bilayer. Thick
(green) lines represent the intradimer coupling J2, while thin (blue)
lines correspond to the interdimer coupling J1 within individual
triangular layers. The interdimer couplings J1 between the next-
nearest-neighbor spins from different layers are not drawn for clarity.
Right: a schematic illustration of all interaction terms of two neigh-
boring spin dimers forming an elementary square plaquette.

complementary analytical and numerical approaches, which
will be dealt with in what follows.

A. Variational method

The frustrated spin- 1
2 Heisenberg triangular bilayer may

exhibit in a highly frustrated parameter region J2 � |J1| a
singlet-dimer ground state:

|SD〉 =
L∏

i,j=1

1√
2

(|↑〉1,i,j |↓〉2,i,j − |↓〉1,i,j |↑〉2,i,j ), (2)

which is constituted by a product of singlet states formed
between the nearest-neighbor spins from adjacent layers. A
rigorous criterion for appearance of the singlet-dimer ground
state (2) can be found through the variational principle
[38,39]. To this end, the total Hamiltonian (1) of the frustrated
spin- 1

2 Heisenberg triangular bilayer can be first decomposed

into the local Hamiltonians of square subunits Ĥ = ∑3N
t=1 Ĥt ,

whereas each local Hamiltonian of a square subunit involves
all the interaction terms of two nearest-neighbor spin dimers:

Ĥt = J1(Ŝ1,i,j + Ŝ2,i,j ) · (Ŝ1,k,l + Ŝ2,k,l )

+ J2

6
(Ŝ1,i,j · Ŝ2,i,j + Ŝ1,k,l · Ŝ2,k,l )

− h

6

(
Ŝz

1,i,j + Ŝz
2,i,j + Ŝz

1,k,l + Ŝz
2,i,j

)
(3)

(see the right panel in Fig. 1). The factor 1
6 at the intradimer

interaction J2 and the magnetic-field term h avoids over-
counting of these interactions terms, which are symmetrically
split into six different local Hamiltonians of square subunits.
The variational procedure then provides the lower bound for
the ground-state energy of the frustrated spin- 1

2 Heisenberg
triangular bilayer:

E0 = 〈�0|Ĥ|�0〉 = 〈�0|
3N∑
t=1

Ĥt |�0〉 �
3N∑
t=1

ε0
t (4)

because the ground-state energy E0 corresponding to the
eigenvector |�0〉 must be necessarily greater than or equal to
the sum of the lowest-energy eigenvalues of the square sub-
units ε0

t . The eigenenergies of the spin- 1
2 Heisenberg square

with the coupling constants J1 and J2/6 defined by Eq. (3)
can be expressed in terms of four quantum spin numbers St ,
Si,j , Sk,l , and Sz

t :

εt = J1

2
[St (St + 1) − Si,j (Si,j + 1) − Sk,l (Sk,l + 1)]

+ J2

12
[Si,j (Si,j + 1) + Sk,l (Sk,l + 1)] − J2

4
− h

6
Sz

t , (5)

which determine eigenvalues for the total spin of two nearest-
neighbor spin pairs Ŝi,j = Ŝ1,i,j + Ŝ2,i,j and Ŝk,l = Ŝ1,k,l +
Ŝ2,k,l coupled through the intradimer interaction J2, the total
spin of a square subunit Ŝt = Ŝi,j + Ŝk,l and its z component
Ŝz

t = Ŝz
i,j + Ŝz

k,l , respectively. The lowest-energy eigenvalues
of the spin- 1

2 Heisenberg square subunit are listed below for
admissible combinations of quantum spin numbers in the
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following order εt (St , Si,j , Sk,l, S
z
t ):

εt (0, 0, 0, 0) = −J2

4
, (6)

εt (1, 0, 1, 1) = εt (1, 1, 0, 1) = − J2

12
− h

6
, (7)

εt (0, 1, 1, 0) = −2J1 + J2

12
, (8)

εt (1, 1, 1, 1) = −J1 + J2

12
− h

6
, (9)

εt (2, 1, 1, 2) = J1 + J2

12
− h

3
. (10)

It is worthwhile to remark that the lower bound for the ground-
state energy obtained from the eigenenergy (6) coincides with
the energy of the singlet-dimer phase (2), which consequently
represents the true ground state of the frustrated spin- 1

2
Heisenberg triangular bilayer whenever the eigenenergy (6)
is lower than all the other ones (7)–(10). If one considers the
spin- 1

2 Heisenberg triangular bilayer with the ferromagnetic
interdimer coupling J1 < 0 to be further referred to as FM/AF
bilayer, one consequently obtains the following sufficient
condition J2 > 3|J1|, h < J2 − 3|J1| for the appearance of
the singlet-dimer ground state (2). On the other hand, the
sufficient condition for emergence of the singlet-dimer ground
state (2) is shifted to a more frustrated parameter space J2 >

6J1, h < J2 for the spin- 1
2 Heisenberg triangular bilayer with

the antiferromagnetic interdimer coupling J1 > 0 to be further
referred to as AF/AF bilayer.

B. Exact one-magnon eigenstates

Exact eigenstates of the frustrated spin- 1
2 Heisenberg trian-

gular bilayer can be rigorously obtained within one-magnon
subspace with the z component of the total spin Sz

T = N − 1.
If the energy of one-magnon eigenstates E

(j )
k (j = 1, 2) is

quoted relative to the energy of fully polarized ferromagnetic
state EFM = N ( 1

4J2 + 3J1 − h), then, one obtains after diago-
nalization of the Hamiltonian (1) in the one-magnon subspace
(see Appendix A) the following relative eigenenergies ε

(j )
k =

E
(j )
k − EFM:

ε
(1)
k = −J2 − 6J1 + h, (11)

ε
(2)
k = 2J1[cos ka + cos kb + cos (ka + kb ) − 3] + h

= 8J1

(
cos

ka

2
cos

kb

2
cos

ka + kb

2
− 1

)
+ h. (12)

Here, ka = kx and kb = −kx/2 + √
3ky/2 (the triangle side

length a0 = 1). It is quite obvious that the one-magnon en-
ergy spectrum of the frustrated spin- 1

2 Heisenberg triangular
bilayer consists of two energy bands, whereas the former
band (11) is completely flat (dispersionless) in opposite to the
latter dispersive band (12). It could be easily checked that the
flat band with the relative eigenenergy (11) corresponds to a
singlet-dimer state:

|s〉i,j = 1√
2

(|↑〉1,i,j |↓〉2,i,j − |↓〉1,i,j | ↑〉2,i,j ), (13)

which represents localized one-magnon state at one vertical
dimer connected through the intradimer interaction J2. The

FIG. 2. One-magnon bands of the spin- 1
2 Heisenberg triangular

bilayer by considering zero magnetic field and (a) ferromagnetic
interdimer interaction J1 < 0 and the relative ratio J2/|J1| = 6; (b)
antiferromagnetic interdimer interaction J1 > 0 and the relative ratio
J2/J1 = 3. A projection of the dispersive band (12) into ka-kb plane
is also shown as a contour plot, while the interaction ratio was chosen
for two particular values when the flat band (11) touches the lowest
energy of the dispersive band (12).

dispersive energy band (12) gives the lowest energy ε
(2)
k,min = h

at ka = kb = 0 for the frustrated FM/AF bilayer with the
ferromagnetic interdimer coupling J1 < 0 and ε

(2)
k,min =

−9J1 + h at ka = kb = ±2π/3 for the frustrated AF/AF bi-
layer with the antiferromagnetic interdimer coupling J1 > 0.
Owing to this fact, the flat band becomes the lowest-energy
one-magnon eigenstate in the parameter region J2 > 6|J1| for
the FM/AF bilayer with J1 < 0 and J2 > 3J1 for the AF/AF
bilayer with J1 > 0 as displayed in the upper and lower panels
of Fig. 2, respectively.

C. Localized many-magnon eigenstates

Localized many-magnon eigenstates of the frustrated spin-
1
2 Heisenberg triangular bilayer can be obtained from the
fully polarized FM state by populating localized one-magnon
(singlet-dimer) state (13) on some of its vertical dimers. Such
a construction of exact many-magnon eigenstates relies on
the fact that the total spin of the vertical dimers represents
a conserved quantity because the corresponding spin operator
Ŝi,j = Ŝ1,i,j + Ŝ2,i,j commutes with the Hamiltonian (1). It is
therefore quite convenient to reexpress the Hamiltonian (1) of
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the frustrated spin- 1
2 Heisenberg triangular bilayer in terms of

the total spin of vertical dimers:

Ĥ = J1

L∑
i,j=1

Ŝi,j · (Ŝi+1,j + Ŝi,j+1 + Ŝi+1,j+1)

+ 1

2
J2

L∑
i,j=1

Ŝ
2
i,j − h

L∑
i,j=1

Ŝz
i,j − 3

4
NJ2, (14)

which directly implies that flat excitation bands can be con-
structed from the fully polarized FM state by making use
of the bound one-magnon (singlet-dimer) state (13). It is of
principal importance that a spin pair in the singlet state (13)
is effectively decoupled from other spins and, hence, the com-
pletely flat many-magnon eigenstates can be constructed from
the fully polarized FM state by an independent placing of the
bound one-magnon state (13) on some of vertical dimers of
a fully frustrated triangular bilayer. If two singlets are placed
on the vertical dimers, which do not interact with each other
through the interdimer interaction J1, then, the overall energy
is just a simple sum of eigenenergies of two independent local-
ized one-magnon states (11). It should be realized, however,
that an occupation of singlets on two adjacent vertical dimers
causes a double counting of energy contributions arising from
four common interdimer couplings J1. Bearing all this in
mind, the localized many-magnon eigenstates of the frustrated
spin- 1

2 Heisenberg triangular bilayer can be represented in
the language of the classical lattice-gas model defined on a
triangular lattice through the Hamiltonian

H = J1

L∑
i,j=1

(ni,jni+1,j + ni,j ni,j+1 + ni,jni+1,j+1)

−μ

L∑
i,j=1

ni,j + EFM. (15)

The particular value of the occupation number ni,j =
1 (ni,j = 0) corresponds to the singlet (polarized triplet) state
and the chemical potential μ = J2 + 6J1 − h relates to an
energy penalty associated with a creation of the singlet state
(13) on a ferromagnetic background. The first term provides
correction to an energy of independent localized one-magnon
states, which is relevant for two singlets placed on adjacent
vertical dimers.

For further convenience, it is advisable to pass from the
effective lattice-gas model given by the Hamiltonian (15) to
the equivalent Ising model which can be achieved by relating
the occupation number ni,j = 0, 1 with the two-valued Ising
variable σi,j = ±1 through the transformation ni,j = (1 +
σi,j )/2. The localized many-magnon eigenstates of the spin- 1

2
Heisenberg triangular bilayer can be accordingly found from
a mapping correspondence with the classical Ising model on a
triangular lattice given by the effective Hamiltonian

H = Jeff

L∑
i,j=1

(σi,j σi+1,j + σi,j σi,j+1 + σi,j σi+1,j+1)

−heff

L∑
i,j=1

σi,j + N

(
3

4
J1 − 1

4
J2 − 1

2
h

)
. (16)

The parameters Jeff and heff represent the effective nearest-
neighbor interaction and the effective field of the Ising model
on a triangular lattice, whereas they are explicitly given by

Jeff = J1

4
, heff = J2 + 3J1 − h

2
. (17)

It is worthwhile to remark that the spin state σi,j = +1 (σi,j =
−1) of the effective Ising model corresponds to a singlet
(polarized triplet) state on a given vertical dimer. Hence,
it follows that the magnetization of the spin- 1

2 Heisenberg
triangular bilayer can be calculated from the magnetization of
the effective Ising model on a triangular lattice according to

m ≡ 1
2

〈
Ŝz

1,i,j + Ŝz
2,i,j

〉 = 1
2 (1 − 〈ni,j 〉) = 1

4 (1 − 〈σi,j 〉). (18)

It is obvious that the Hamiltonian (16) of the effective
Ising model has Z2 symmetry in contrast to SU(2) symmetry
of the isotropic Heisenberg model. This apparent contradic-
tion reflects a fundamental property of the frustrated spin- 1

2
Heisenberg triangular bilayer, which can be easily understood
from the alternative reformulation of the investigated model
system in the dimer basis (14). The singlet and polarized
triplet states of each vertical dimer accordingly represent
the only relevant states of the dimeric unit cell in a highly
frustrated parameter region, and this binary degree of freedom
can be subsequently described by the Ising variable reflecting
two different irreducible representations of the total spin of
the dimeric unit cell.

Moreover, the effective Hamiltonian given by Eqs. (16)
and (17) may be obtained in a different manner by using
the many-body perturbation theory when starting from a
strong-coupling limit [40,41]. In fact, one may alternatively
consider a set of N noninteracting spin- 1

2 Heisenberg dimers
at the particular magnetic field h0 = J2 when the energies
of the polarized triplet state |t〉i,j = |↑〉1,i,j |↑〉2,i,j and the
singlet (one-magnon) state |s〉i,j given by Eq. (13) coincide.
The Hamiltonian of this main part is denoted as Ĥ0. Treat-
ing the rest terms in the Hamiltonian (1) as a perturbation
V̂ = Ĥ − Ĥ0, one may calculate the effective Hamiltonian
according to the formula [40] Ĥeff = P (Ĥ0 + V̂ )P + · · · ,
where P = ∏

i,j (|t〉〈t | + |s〉〈s|)i,j is the projector onto the
2N -fold degenerate space upon which the effective Hamil-
tonian Ĥeff acts. Introducing (pseudo)spin- 1

2 operators T̂ z =
(|t〉〈t | − |s〉〈s|)/2, T̂ + = |t〉〈s|, and T̂ − = |s〉〈t | for each
spin- 1

2 Heisenberg dimer given by site indices i and j , one
finds that Ĥeff is the effective Ising model on a triangular
lattice defined through the Hamiltonians (16) and (17) upon
identifying σi,j = −2T̂ z

i,j .
All basic magnetothermodynamic quantities of the effec-

tive Ising model on a triangular lattice given by Eqs. (16)
and (17) such as magnetization, susceptibility, and specific
heat can be obtained by exact calculations for small finite-size
systems (see Appendix B) or by performing classical Monte
Carlo (MC) simulations implementing standard Metropolis
sampling for larger system sizes. In addition, a few exact
results are known for the Ising model on a triangular lattice
on assumption that the effective field or temperature becomes
zero. Let us make a few implications arising from those
rigorous results. It can be readily understood from Eq. (17)
that the spin- 1

2 Heisenberg FM/AF triangular bilayer with the
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ferromagnetic interdimer coupling J1 < 0 is mapped onto
the effective triangular Ising ferromagnet (Jeff < 0), which
exhibits just two ground states with all spins being “up” for
heff > 0 or all spins being “down” for heff < 0. The for-
mer ground state apparently corresponds to the singlet-dimer
phase (2), while the latter ground state corresponds to the fully
polarized ferromagnetic phase. According to Eq. (17), the
singlet-dimer ground state (2) is favored before the ferromag-
netic one at zero magnetic field h = 0 for J2/|J1| > 3 in con-
cordance with the variational arguments. Moreover, the effec-
tive Ising triangular ferromagnet exhibits a continuous phase
transition from the Ising universality class at the critical tem-
perature kBTc/|Jeff | = 4/ ln 3 on assumption that the effective
field equals zero heff = 0 [42–45]. This result would imply
the Ising-type critical point (singularity) in the isothermal
magnetization curve of the frustrated Heisenberg FM/AF tri-
angular bilayer at the critical temperature kBTc/|J1| = 1/ ln 3
and the critical field hc = J2 − 3|J1| for J2/|J1| > 3. In addi-
tion, the effective triangular Ising ferromagnet displays at low
enough temperatures T < Tc and zero effective field heff = 0
a spontaneous long-range order, which is characterized by
nonzero spontaneous magnetization acquiring two different
values equal in magnitude but of opposite sign. A double
solution for the spontaneous magnetization indicates for the
spin- 1

2 Heisenberg FM/AF triangular bilayer a phase coex-
istence due to a discontinuous field-induced phase transition
at the critical field hc = J2 − 3|J1| if considering sufficiently
low temperatures T < Tc. An exact result for the spontaneous
magnetization of the triangular Ising ferromagnet [46] thus
enables a rigorous calculation of two magnetization values:

m± = 1

4

{
1 ±

[
1 − 16x2

(1 + 3x2)(1 − x2)3

] 1
8
}

, x = e−2βJeff

(19)

which determine a size of the magnetization jump at the
discontinuous field-driven phase transition.

On the other hand, the spin- 1
2 Heisenberg AF/AF trian-

gular bilayer with the antiferromagnetic interdimer coupling
J1 > 0 is mapped according to Eq. (17) onto the effective
triangular Ising antiferromagnet (Jeff > 0), which displays
four possible ground states with all spins being “up,” all spins
being “down,” or with a period-three sequence of “up-up-
down” or “up-down-down” states. Two former ground states
repeatedly correspond to the singlet-dimer and the fully polar-
ized ferromagnetic phases, while the latter two ground states
correspond to a regular period-three alternation of the singlet
and polarized triplet dimer states “singlet-singlet-triplet” and
“singlet-triplet-triplet,” respectively. All these ground states
exhibit a spontaneous long-range order of spin states of the
vertical dimers, whereas elementary excitation spectra can be
straightforwardly obtained upon converting one singlet-dimer
state to the polarized triplet state or vice versa.

It should be emphasized that the effective triangular Ising
antiferromagnet does not display at zero effective field heff =
0 the critical behavior from the Ising universality class due
to a geometric spin frustration [44,45]. However, it has been
firmly established that the triangular Ising antiferromagnet
shows outstanding criticality closely connected with a break-

down of the period-three “up-up-down” (or “up-down-down”)
ground state manifested in a low-temperature magnetization
process as an intermediate 1

3 plateau, which disappears upon
rising temperature at critical points from the universality class
of three-state Potts model. At zero temperature, the satu-
ration fields heff/Jeff = ±6 of the effective triangular Ising
antiferromagnet are thus consistent with the appearance and
disappearance of the intermediate 1

3 and 2
3 magnetization

plateaus of the Heisenberg AF/AF triangular bilayer. The 1
3

magnetization plateau should thus emerge at the critical field
hc1 = J2, while the 2

3 magnetization plateau should terminate
at the critical field hc3 = J2 + 6J1. An abrupt magnetization
jump associated with a field-driven phase transition between
the intermediate 1

3 and 2
3 plateaus of the Heisenberg AF/AF

triangular bilayer appears at zero effective field heff = 0,
which implies the following critical value of the magnetic
field: hc2 = J2 + 3J1. Note that the universality class of this
phase transition at finite temperatures is still under debate, but
there are strong indications of Kosterlitz-Thouless–type phase
transition [47–49]. It should be pointed out, moreover, that
the magnetic behavior of the Heisenberg AF/AF triangular
bilayer should be symmetric with respect to the critical field
hc2 = J2 + 3J1, which represents zero effective field for the
effective triangular Ising antiferromagnet.

D. Mapping to hard-hexagon model

It is quite clear from Eq. (17) that the ferromagnetic
interdimer coupling J1 < 0 leads to an effective attraction
between the singlets from neighboring dimers, while the
antiferromagnetic interdimer coupling J1 > 0 gives rise to
an effective repulsion between the neighboring singlets. This
latter observation would suggest that singlets residing on
neighboring dimers should be forbidden below the satura-
tion field of the Heisenberg AF/AF triangular bilayer in the
asymptotic limit of zero temperature due to an extra energy
penalty. Owing to the symmetry, the polarized triplet states
on neighboring dimers also repel each other above the first
critical field connected with a breakdown of the singlet-dimer
ground state (2). Hence, it follows that the magnetic behavior
of the Heisenberg AF/AF triangular bilayer can be reasonably
well approximated at low enough temperatures by a hard-
hexagon model on a triangular lattice, which is retrieved from
the effective lattice-gas model given by Eq. (15) in the limit
of infinitely large repulsion J1 → ∞. The partition function
of the spin- 1

2 Heisenberg triangular AF/AF bilayer at low
temperatures can be thus obtained from the grand-canonical
partition function of a hard-hexagon model on a triangular
lattice:

Z (β, J1, J2) = exp(−βEFM)�hh(μ), (20)

where μ = J2 + 6J1 − h (μ = h − J2) is a chemical potential
of the hexagon particles obeying hard-core potential below the
third (above the first) critical field hc3 = J2 + 6J1 (hc1 = J2).
The hard-hexagon model on a triangular lattice has been
exactly solved due to Baxter [50,51] and the exact result
for critical fugacity (activity) zc = 1

2 (11 + 5
√

5) affords the
following critical conditions for the spin- 1

2 Heisenberg AF/AF
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triangular bilayer:

Tc = h − hc1

kB ln zc

for h � hc1 = J2,

Tc = hc3 − h

kB ln zc

for h � hc3 = J2 + 6J1, (21)

which determine low-temperature asymptotes of the critical
temperature in a close vicinity of the first and third critical
fields.

E. Exact diagonalization

To corroborate reliability of the developed approach for
a description of the low-temperature magnetization process
and thermodynamics, we have performed a full exact diag-
onalization (ED) of the spin- 1

2 Heisenberg triangular bilayer
with the linear size L = 3 and the total number of spins
2N = 18 under the periodic boundary conditions by adapting
the subroutines from the ALPS project [52]. The ED data for
the spin- 1

2 Heisenberg triangular bilayer with L = 3 will be
confronted with exact results for the effective triangular Ising
model with the same linear size L (see Appendix B). The
full ED data will bring insight into a range of applicability
of the effective Ising model and, moreover, they provide a
useful benchmark for the numerical data obtained from the
MC simulations of the effective Ising model on a triangular
lattice of much larger linear size. It will be demonstrated
hereafter that the ED data of the Heisenberg triangular bilayer
with a rather limited size L = 3 fit surprisingly well results
obtained from MC simulations of the effective triangular Ising
model for much larger system size (typically L = 180).

III. RESULTS AND DISCUSSION

In this section, we will perform a comprehensive anal-
ysis of the most interesting results for the low-temperature
magnetization process and thermodynamics of the spin- 1

2
Heisenberg triangular bilayer by considering the antiferro-
magnetic intradimer interaction (J2 > 0) and either ferro-
magnetic (J1 < 0) or antiferromagnetic (J1 > 0) interdimer
interaction.

A. FM/AF bilayer ( J1 < 0, J2 > 0)

At first let us compare exact results for the effective 3 × 3
triangular Ising ferromagnet with the full ED data for the
spin- 1

2 Heisenberg FM/AF triangular bilayer with L = 3 (i.e.,
2 × 3 × 3 = 18 spins). The isothermal magnetization curves
of both these models are depicted in Fig. 3(a) for the inter-
action ratio J2/|J1| = 6 and a few different temperatures. It
is worthwhile to recall that a validity of the localized many-
magnon approach is restricted by the condition J2/|J1| > 3 so
that the selected value of the interaction ratio J2/|J1| = 6 falls
deep inside of this parameter space. The zero-temperature
magnetization curve of the spin- 1

2 Heisenberg FM/AF trian-
gular bilayer with L = 3 exhibits zero magnetization plateau,
which terminates just at the critical field hc/|J1| = J2/|J1| −
3 where the magnetization jumps to its saturation value. It
should be emphasized that a true magnetization jump does not
appear at any finite temperature because rising temperature

FIG. 3. The isothermal magnetization curves of the spin- 1
2

Heisenberg triangular bilayer with the linear size L for the particular
case J2/|J1| = 6 and a few different temperatures. (a) Full ED data
for the Heisenberg bilayer with L = 3 (open symbols) are compared
with the exact results for the effective Ising model (solid lines); (b)
MC simulations for the effective Ising model with L = 180. Open
symbols display the magnetization at a critical field as obtained
from the exact result (19) of the corresponding Ising model at zero
effective field.

generally causes a gradual smoothing of the magnetization
curve. It can be seen from Fig. 3(a) that the full ED data for
the spin- 1

2 Heisenberg triangular bilayer with L = 3 are in a
perfect agreement with exact results for the effective 3 × 3
triangular Ising ferromagnet up to moderate temperatures
kBT/|J1| � 1.2.

With this background, it is quite plausible to suspect that
the magnetization curve of the spin- 1

2 Heisenberg FM/AF
triangular bilayer with much larger system size can be rea-
sonably well approximated at low enough temperatures by
the effective triangular Ising ferromagnet. For this purpose,
the isothermal magnetization curves as obtained from MC
simulations of the ferromagnetic Ising model on a triangular
lattice with the linear size L = 180 are depicted in Fig. 3(b)
for three different temperatures. The magnetization curve of
the spin- 1

2 Heisenberg FM/AF triangular bilayer still exhibits
zero magnetization plateau, but a discontinuous magnetization
jump persists at low enough temperatures. It actually turns
out that the size of discontinuous magnetization jump is just
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FIG. 4. The isothermal field dependence of the susceptibility of
the spin- 1

2 Heisenberg triangular bilayer with the linear size L for
the particular case J2/|J1| = 6 and a few different temperatures. (a)
Full ED data for the Heisenberg bilayer with L = 3 (open symbols)
are compared with the exact results for the effective Ising model
(solid lines); (b) MC simulations for the effective Ising model with
L = 180. The inset shows the susceptibility at the lowest temperature
kBT/|J1| = 0.5 in an enhanced scale.

gradually suppressed upon increasing of temperature until a
continuous field-driven phase transition from the Ising univer-
sality class is reached at the critical temperature kBTc/|J1| =
1/ ln 3 ≈ 0.91. Above the critical temperature, the magnetiza-
tion varies continuously upon strengthening of the magnetic
field without any type of singularity. It should be pointed
out that the numerical results obtained from MC simulations
of the effective triangular Ising ferromagnet with the linear
size L = 180 are in an excellent coincidence with the exact
analytical result (19) for the magnetization available in the
thermodynamic limit L → ∞ at the critical field (i.e., zero
effective field).

The ED data of the isothermal susceptibility of the spin- 1
2

Heisenberg FM/AF triangular bilayer with L = 3 are plotted
in Fig. 4(a) against the magnetic field along with exact results
for the corresponding effective triangular Ising ferromagnet.
As one can see, the susceptibility of the spin- 1

2 Heisenberg
FM/AF triangular bilayer with L = 3 exhibits at the criti-
cal field hc/|J1| = J2/|J1| − 3 (heff = 0) a round maximum,

which becomes higher and sharper upon lowering tempera-
ture. The susceptibility data obtained from the effective trian-
gular Ising ferromagnet with L = 3 coincide with the relevant
ED data up to moderate temperatures kBT/|J1| � 1.2. MC
simulations of the effective triangular Ising ferromagnet with
L = 180 shown in Fig. 4(b) thus bring insight into the sus-
ceptibility of the spin- 1

2 Heisenberg FM/AF triangular bilayer
with much larger system size. The isothermal susceptibility of
the spin- 1

2 Heisenberg FM/AF triangular bilayer accordingly
displays at sufficiently low temperatures a sharp cusp with
discontinuous derivative, which becomes higher and narrower
upon increasing temperature until a power-law divergence
from the Ising universality class is reached at the critical
temperature. Above the critical temperature, the susceptibil-
ity displays a smooth temperature dependence with a round
maximum without any singularity.

Last but not least, ED data for the specific heat of the
spin- 1

2 Heisenberg FM/AF triangular bilayer with L = 3 are
depicted in Fig. 5(a) as a function of the magnetic field
together with exact results derived from the effective 3 × 3
triangular Ising ferromagnet. Although the results stemming
from both these models display qualitatively the same tem-
perature dependencies with a double-peak structure of the
specific heat around a critical field, the reliable quantitative
match between the data is found just at lower temperatures
kBT/|J1| � 0.6. It actually follows from Fig. 5(a) that a height
of the double peak as well as the zero-field limit of the
specific heat as obtained from the effective triangular Ising
ferromagnet (solid lines) are slightly underestimated above
temperature kBT/|J1| � 0.6 in comparison with full ED data
of the spin- 1

2 Heisenberg triangular bilayer with L = 3 even
though a position of double peaks is still adequate. A physical
origin of two peaks emergent in a vicinity of the critical field
lies in vigorous thermal excitations of vertical dimers from a
singlet ground state towards a low-lying polarized triplet state
(a peak at h < hc) or vice versa (a peak at h > hc).

Temperature variations of the specific heat as obtained
from MC simulations of the effective Ising model on a trian-
gular lattice with linear size L = 180 are plotted in Fig. 5(b)
in order to shed light on the respective behavior of the spin- 1

2
Heisenberg triangular bilayer of a much larger system size.
The specific heat of the frustrated spin- 1

2 Heisenberg FM/AF
triangular bilayer displays at low temperatures a finite cusp,
which increases in height upon increasing temperature until
a logarithmic divergence from the Ising universality class
is reached at the critical temperature kBTc/|J1| = 1/ ln 3 ≈
0.91. The specific heat thus displays at low enough temper-
atures essential differences in the magnetic-field dependen-
cies in comparison with the relevant behavior of small-size
systems [cf. Figs. 5(a) and 5(b)], which can be attributed to
a cooperative nature of the spontaneous long-range order of
the singlet and polarized triplet states of the vertical dimers
that is of course elusive for small-size systems. Above the
critical temperature, the magnetic-field dependencies of the
specific heat are reminiscent of the ones of small-system sizes
with two round maxima emergent close to a critical field
because the spontaneous long-range order of the singlet and
polarized triplet states is absent and there are just short-range
correlations in their abundance that are quite typical also for
small-size systems.
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STREČKA, KARĽOVÁ, BALIHA, AND DERZHKO PHYSICAL REVIEW B 98, 174426 (2018)

FIG. 5. The isothermal field dependence of the specific heat of
the spin- 1

2 Heisenberg triangular bilayer with the linear size L for
the particular case J2/|J1| = 6 and a few different temperatures. (a)
Full ED data for the Heisenberg bilayer with L = 3 (open symbols)
are compared with the exact results for the effective Ising model
(solid lines); (b) MC simulations for the effective Ising model with
L = 180. The inset shows the specific heat at the lowest temperature
kBT/|J1| = 0.5 in an enhanced scale.

B. AF/AF bilayer ( J1 > 0, J2 > 0)

In the following part we will investigate a magnetic be-
havior of the frustrated spin- 1

2 Heisenberg triangular bilayer
by considering the antiferromagnetic interdimer (J1 > 0) and
intradimer (J2 > 0) interactions. ED data for the isothermal
magnetization curves of the spin- 1

2 Heisenberg AF/AF tri-
angular bilayer with the linear size L = 3 are confronted in
Fig. 6(a) with exact results for the effective triangular Ising
antiferromagnet. According to this plot, the stepwise magne-
tization curve with intermediate plateaus at zero, 1

3 , and 2
3 of

the saturation magnetization and the respective magnetization
jumps observable strictly at zero temperature are gradually
smeared out upon increasing of temperature. Besides, the
results presented in Fig. 6(a) serve in evidence that a descrip-
tion based on the effective triangular Ising antiferromagnet is
faithful up to moderate temperatures kBT/|J1| � 0.5.

Bearing this in mind, the results derived from MC simu-
lations of the effective triangular Ising antiferromagnet with

FIG. 6. The isothermal magnetization curves of the spin- 1
2

Heisenberg triangular bilayer with the linear size L for the particular
case J2/J1 = 3 and a few different temperatures. (a) Full ED data
for the Heisenberg bilayer with L = 3 (open symbols) are compared
with the exact results for the effective Ising model (solid lines); (b)
MC simulations of the effective Ising model with L = 180. Open
circles denote critical points.

much larger linear size L = 180 should provide a reliable
estimate of the isothermal magnetization curves of the spin- 1

2
Heisenberg triangular bilayer in this temperature range [see
Fig. 6(b)]. The magnetization curve of the frustrated spin-
1
2 Heisenberg AF/AF triangular bilayer accordingly displays
intermediate magnetization plateaus at zero, 1

3 , and 2
3 of the

saturation magnetization, whereas the latter two magnetiza-
tion plateaus are conformable with two aforedescribed period-
three ground states with a regular alternation of “singlet-
singlet-triplet” and “singlet-triplet-triplet” dimer states,
respectively. Most strikingly, the magnetization curve of the
frustrated spin- 1

2 Heisenberg AF/AF triangular bilayer in-
volves at sufficiently low temperatures four singular points
shown in Fig. 6(b) as open circles, which bear evidence of
continuous field-driven phase transitions between the individ-
ual ground states.

It might be quite helpful to examine a difference between
the magnetization curve of the spin- 1

2 Heisenberg AF/AF
triangular bilayer at two markedly different system sizes.
The full ED data for the magnetization curves of the spin-
1
2 Heisenberg triangular bilayer with the linear size L = 3
are consequently compared in Fig. 7 with MC simulations
of the effective triangular Ising antiferromagnet of much
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FIG. 7. A comparison of the isothermal magnetization curves of
the spin- 1

2 Heisenberg triangular bilayer with J2/J1 = 3 as obtained
from full ED calculations for L = 3 and MC simulations of the
effective Ising model for L = 180 at two different temperatures: (a)
kBT/J1 = 0.1; (b) kBT/J1 = 0.2.

larger linear size L = 180. A sound quantitative agreement
notwithstanding of a considerable difference in a system size
is rather surprising. The only substantial difference between
the magnetization curves eventually appears in a close vicinity
of the continuous field-driven phase transitions, which are
of course missing in the relevant magnetization curves for
small system sizes such as L = 3 displaying at any nonzero
temperature only a crossover phenomenon instead of the
actual field-induced phase transitions.

Next, our attention will be paid to magnetic-field variations
of the susceptibility of the spin- 1

2 Heisenberg triangular bi-
layer with the linear size L = 3, which were calculated using
the full ED method and exact calculations for the effective
triangular Ising antiferromagnet, respectively. It can be seen
from Fig. 8(a) that the results acquired from both these rigor-
ous techniques are in a reasonable accordance up to moderate
temperatures kBT/|J1| � 0.5. In fact, a round maximum of
the susceptibility allocated at each transition field gradually
diminishes upon increasing of temperature, whereas a descrip-
tion based on the effective triangular Ising antiferromagnet
correctly reproduces the peak’s height as well as position.
It could be therefore anticipated that MC simulations of the

FIG. 8. The isothermal field dependence of the susceptibility
data of the spin- 1

2 Heisenberg triangular bilayer for the particular
case J2/J1 = 3 and a few different temperatures. (a) Full ED data
for the Heisenberg bilayer with L = 3 (open symbols) are compared
with the exact results for the effective Ising model (solid lines); (b)
MC simulations of the effective Ising triangular lattice with L = 180.

effective triangular Ising antiferromagnet with the linear size
L = 180 presented in Fig. 8(b) afford a proper description of
the susceptibility of the spin- 1

2 Heisenberg triangular bilayer
with much larger system size. Obviously, the susceptibility
of the larger system size displays at sufficiently low tem-
peratures a markedly different dependence on a magnetic
field compared to its small-size counterpart due to a critical
behavior accompanying each field-induced phase transition.
The susceptibility accordingly diverges at four field-driven
phase transitions, whereas one also detects two round maxima
located below the first and above the fourth transition field.
The latter two round maxima indicate low-lying excitations
out of the singlet dimer and the fully polarized ferromagnetic
ground states. Note furthermore that similar findings have
been reported on previously also for the fully frustrated spin- 1

2
Heisenberg square bilayer [28,29].

Last but not least, let us investigate typical magnetic-field
dependencies of the specific heat of the spin- 1

2 Heisenberg
triangular bilayer, which are plotted in Fig. 9(a) for the finite-
size bilayer with the linear size L = 3. It is quite obvious that
the specific heat exhibits a remarkable field dependence with
a sequence of three double peaks emerging in a vicinity of
the transition fields. Note furthermore that ED data for the
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FIG. 9. The isothermal field dependence of the specific heat
of the spin- 1

2 Heisenberg triangular bilayer for the particular case
J2/J1 = 3 and a few different temperatures. (a) Full ED data for the
Heisenberg bilayer with L = 3 (open symbols) are compared with
the exact results for the effective Ising model (solid lines); (b) MC
simulations of the effective Ising triangular lattice with L = 180.

Heisenberg triangular bilayer with the linear size L = 3 are
in a feasible quantitative accordance with exact results of the
effective triangular Ising antiferromagnet only at lower tem-
peratures kBT/|J1| � 0.2 because the specific heat at higher
temperatures is underestimated by the effective triangular
Ising model on account of neglected energy levels.

The results based on MC simulations of the effective
triangular Ising antiferromagnet with the linear size L = 180
shown in Fig. 9(b) should thus provide a reliable estimate of
the specific heat of the spin- 1

2 Heisenberg triangular bilayer at
least at low enough temperatures. The magnetic-field depen-
dence of the specific heat of the spin- 1

2 Heisenberg triangular
bilayer consequently exhibits at low enough temperatures four
marked divergences from the universality class of three-state
Potts model, whereas two additional round maxima can be
detected below the first and above the fourth field-driven
phase transition. To gain an insight into a cooperative nature
of the field-driven phase transitions, the specific heat of the
spin- 1

2 Heisenberg triangular bilayer as obtained from MC
simulations of the effective triangular Ising antiferromagnet
with the linear size L = 180 is compared in Fig. 10 with the
full ED data of the spin- 1

2 Heisenberg triangular bilayer with

FIG. 10. A comparison of the specific heat of the spin- 1
2

Heisenberg triangular bilayer with J2/J1 = 3 as obtained from full
ED calculations for L = 3 and MC simulations of the effective Ising
model for L = 180 at two different temperatures: (a) kBT/J1 = 0.1;
(b) kBT/J1 = 0.2.

the linear size L = 3. As one can see, the relevant temperature
dependencies of the specific heat have apparent similarities
as far as the position of emergent maxima is concerned.
The main difference thus lies in a height of the specific-heat
maxima, which is of course finite for any finite-size system
but they rise steadily upon increasing of the system size at the
field-driven phase transitions.

C. Phase diagrams of FM/AF and AF/AF bilayers

Let us conclude our survey of the most interesting results
by constructing global phase diagrams of the frustrated spin- 1

2
Heisenberg triangular bilayer in the field-temperature plane as
obtained from a mapping correspondence (16) and (17) with
the effective Ising model on a triangular lattice. The phase
diagram of the spin- 1

2 Heisenberg FM/AF triangular bilayer
can be descended from exact results for the effective trian-
gular Ising ferromagnet [42], while the phase diagram of the
spin- 1

2 Heisenberg AF/AF triangular bilayer has been derived
by making use of the results of phenomenological scaling
reported in Ref. [47] (MC results reported in this work are
within error bars consistent with this critical line). The global
phase diagram of the frustrated spin- 1

2 Heisenberg FM/AF
triangular bilayer with the ferromagnetic interdimer interac-
tion J1 < 0 depicted in Fig. 11(a) involves a special critical
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FIG. 11. The global phase diagram of the frustrated spin- 1
2

Heisenberg triangular bilayer in the field-temperature plane as ob-
tained from the exact analytical results for the effective spin- 1

2 Ising
model on a triangular lattice with the ferromagnetic interaction
J1 < 0 [Fig. 11(a)] and the phenomenological scaling adapted from
Ref. [47] for the effective spin- 1

2 Ising model on a triangular lattice
with antiferromagnetic interaction J1 > 0 [Fig. 11(b)]. A broken line
in Fig. 11(a) allocates discontinuous field-driven phase transitions
terminating at a critical point from the Ising universality class, while
solid lines in Fig. 11(b) allocate continuous field-driven phase transi-
tions approaching at sufficiently low temperatures critical boundaries
(dotted lines) of a hard-hexagon model on a triangular lattice with the
universality class of three-state Potts model. Two domes correspond
to intermediate 1

3 and 2
3 magnetization plateaus with a regular alter-

nation of “singlet-singlet-triplet” (s-s-t) and “singlet-triplet-triplet”
(s-t-t) dimer states, respectively.

point terminating a vertical line of discontinuous field-driven
phase transitions between two nondegenerate phases, which
are accompanied with an abrupt magnetization jump emerging
at the critical field hc/|J1| = J2/|J1| − 3. The abrupt mag-
netization jump, which reflects a direct field-driven phase
transition from the singlet-dimer phase towards the classical
ferromagnetic phase without any intermediate state with a
fractional value of the magnetization, bears relation to the
ferromagnetic character of the interdimer interaction J1 < 0
that favors eigenstates with identical states of the dimeric
unit cell. It should be stressed, however, that a size of the

magnetization jump diminishes upon increasing of tempera-
ture until a continuous field-driven phase transition is reached
at a special critical point from the Ising universality class
with the locus [hc/|J1|; kBTc/|J1|] = [J2/|J1| − 3; 1/ ln 3]. It
is worthwhile to recall that the isothermal magnetization
curve at higher temperatures (i.e., T > Tc) is free from any
magnetization discontinuities or singularities.

The global phase diagram of the frustrated spin- 1
2 Heisen-

berg AF/AF triangular bilayer with the antiferromagnetic
interdimer interaction J1 > 0 is much more complex because
it involves apart from the singlet-dimer and ferromagnetic
phases two additional quantum phases with a period-three al-
ternation of singlet and polarized triplet states [see Fig. 11(b)].
Consequently, there appear at zero temperature three discon-
tinuous magnetization jumps at the critical fields hc1/J1 =
J2/J1, hc2/J1 = J2/J1 + 3, and hc3/J1 = J2/J1 + 6, which
are, however, replaced by four different continuous field-
induced phase transitions at finite (nonzero) temperatures. It
is noteworthy that the global phase diagram is symmetric with
respect to the second critical field hc2/J1 = J2/J1 + 3 be-
cause this particular value of the magnetic field corresponds to
a zero effective field (heff = 0) of the effective triangular Ising
antiferromagnet. It is quite obvious from Fig. 11(b) that the
first and fourth critical fields are approaching at low enough
temperatures critical boundaries (21) of a hard-hexagon model
on a triangular lattice (dotted lines), which bears evidence of
the universality class of three-state Potts model for these two
particular field-driven phase transitions. Two phases emergent
above and below the first and fourth critical boundaries can
be viewed as two different states of one species (either the
singlet-dimer or the polarized triplet state) of different density.
On the other hand, the precise nature of field-induced phase
transitions inherent to the second and third critical fields
is more puzzling because there are strong indications that
they should be of the three-state Potts’ universality class at
higher temperatures and likely of Kosterlitz-Thouless type
at lower temperatures [47–49]. Notwithstanding this unclear
nature, two domes of continuous field-driven phase transitions
separate two period-three quantum phases with a regular al-
ternation of “singlet-singlet-triplet” or “singlet-triplet-triplet”
dimer states, which manifest themselves in the respective
magnetization curves as intermediate 1

3 and 2
3 magnetization

plateaus, respectively.

IV. CONCLUSION

This work deals with the magnetization process and
low-temperature thermodynamics of the frustrated spin- 1

2
Heisenberg triangular bilayer, which has been treated by
means of various analytical and numerical techniques. The
variational method has been adapted in order to find rigorous
bounds for the singlet-dimer ground state, while the numerical
ED has been used to get exact results for a relatively small
(3 × 3 × 2) finite-size triangular bilayer. Besides, we have de-
veloped the localized-magnon approach in order to establish
a mapping correspondence with the classical Ising model on
a triangular lattice, which has been subsequently analyzed
either by exact calculations for small system sizes or by MC
simulations for larger system sizes. It should be noticed that a
validity of the localized-magnon approach is restricted merely
to a highly frustrated parameter region J2 > 3|J1|, where the
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localized many-magnon states determine the low-lying part of
the energy spectrum.

Among other matters, it has been demonstrated that the
nature of the interdimer interaction J1 fundamentally influ-
ences a magnetic behavior of the frustrated spin- 1

2 Heisenberg
triangular bilayer. The FM/AF bilayer with the ferromagnetic
interdimer interaction exhibits at low enough temperatures a
discontinuous field-driven phase transition accompanied with
a finite cusp of the susceptibility, the specific heat, and an
abrupt magnetization jump, which gradually diminishes upon
increasing temperature until a continuous field-driven phase
transition from the Ising universality class is reached at a crit-
ical temperature. Contrary to this, the AF/AF bilayer with the
antiferromagnetic interdimer interaction displays a sequence
of three discontinuous field-driven phase transitions only at
zero temperature, which change into four continuous field-
driven phase transitions at sufficiently low but nonzero tem-
peratures. Two continuous field-induced transitions closely
connected with a breakdown of the singlet-dimer phase and
an onset of the saturated ferromagnetic state are from the uni-
versality class of three-state Potts model, while another two
continuous field-driven phase transitions retain this character
at higher temperatures and are likely of Kosterlitz-Thouless
type at lower temperatures.
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APPENDIX A: ONE-MAGNON ENERGY SPECTRA

Consider the frustrated spin- 1
2 Heisenberg model on a

triangular bilayer lattice. The position of the lattice cells is
given by

R = maa + mbb =
(

ma − mb

2

)
a0i + mb

√
3

2
a0 j,

ma = 0, 1, . . . , L − 1, mb = 0, 1, . . . , L − 1 (A1)

where a0 is the triangle side length (see Fig. 12 and Ref. [33]).
The lattice consists of 2N sites and N = L2 is the number of
cells, i.e., the number of vertical J2 bonds. The Hamiltonian

FIG. 12. The basis vectors a = a0(1, 0) and b = a0(− 1
2 ,

√
3

2 )
of one triangular layer (a0 = 1 is the triangular side length) used
for a calculation of the one-magnon energy spectra presented in
Appendix A.

(1) of the frustrated spin- 1
2 Heisenberg model on a triangular

bilayer in the one-magnon subspace reads as

Ĥ =
L−1∑
ma=0

L−1∑
mb=0

(
J2h1,ma,mb ;2,ma,mb

+ J1h1,ma,mb ;1,ma+1,mb
+ J1h2,ma,mb ;2,ma+1,mb

+ J1h1,ma,mb ;2,ma+1,mb
+ J1h2,ma,mb ;1,ma+1,mb

+ J1h1,ma,mb ;1,ma,mb+1 + J1h2,ma,mb ;2,ma,mb+1

+ J1h1,ma,mb ;2,ma,mb+1 + J1h2,ma,mb ;1,ma,mb+1

+ J1h1,ma,mb ;1,ma+1,mb+1 + J1h2,ma,mb ;2,ma+1,mb+1

+ J1h1,ma,mb ;2,ma+1,mb+1 + J1h2,ma,mb ;1,ma+1,mb+1
)
,

hi;j = 1
2 (Ŝ−

i Ŝ+
j + Ŝ−

j Ŝ+
i ) − 1

2 (Ŝ−
i Ŝ+

i + Ŝ−
j Ŝ+

j ) + 1
4 . (A2)

Next, we perform the Fourier transformation:

Ŝ+
l,ma,mb

= 1

L

∑
ka

∑
kb

exp [i(kama + kbmb )]Ŝ+
l,k,

Ŝ−
l,ma,mb

= 1

L

∑
ka

∑
kb

exp [−i(kama + kbmb )]Ŝ−
l,k,

l = 1, 2,

ka = 2π

L
za, za = 0, 1, . . . , L − 1,

kb = 2π

L
zb, zb = 0, 1, . . . , L − 1,

k = ka

a0
i + ka + 2kb√

3a0

j. (A3)

Clearly,

L−1∑
ma=0

L−1∑
mb=0

J2h1,ma,mb ;2,ma,mb

=
∑

k

[
J2

2
(Ŝ−

1,kŜ
+
2,k + Ŝ−

2,kŜ
+
1,k )

− J2

2
(Ŝ−

1,kŜ
+
1,k + Ŝ−

2,kŜ
+
2,k )

]
+ N

J2

4
, (A4)

L−1∑
ma=0

L−1∑
mb=0

(
J1h1,ma,mb ;1,ma+1,mb

+ J1h2,ma,mb ;2,ma+1,mb

+ J1h1,ma,mb ;2,ma+1,mb
+ J1h2,ma,mb ;1,ma+1,mb

)
=

∑
k

[J1(cos ka − 2)(Ŝ−
1,kŜ

+
1,k + Ŝ−

2,kŜ
+
2,k )

+ J1 cos ka (Ŝ−
1,kŜ

+
2,k + Ŝ−

2,kŜ
+
1,k )] + NJ1, (A5)

etc. Therefore, the Hamiltonian can be cast into

Ĥ =
∑

k

(
Ŝ−

1,k Ŝ−
2,k

)(H11 H12

H21 H22

)(
Ŝ+

1,k

Ŝ+
2,k

)

+N

(
J2

4
+ 3J1

)
,
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H11 = H22 = J1[cos ka + cos kb + cos (ka + kb )]

− 6J1 − J2

2
,

H12 = H21 = J1[cos ka + cos kb + cos (ka + kb )] + J2

2
.

(A6)

One-magnon energies ε
(1,2)
k = H11 ∓ H12 are as follows:

ε
(1)
k = −J2 − 6J1,

ε
(2)
k = 2J1[cos ka + cos kb + cos (ka + kb ) − 3]

= 8J1

(
cos

ka

2
cos

kb

2
cos

ka + kb

2
− 1

)
. (A7)

APPENDIX B: EXACT RESULTS FOR THE EFFECTIVE
3 × 3 TRIANGULAR ISING MODEL

In this appendix we will adapt the graph-theoretical ap-
proach developed in Ref. [53] in order to find an exact
solution of the effective 3 × 3 triangular Ising model given
by the Hamiltonian (16) with the specific value of linear size
L = 3 (see Fig. 13 for a schematic illustration). It should
be mentioned that each individual spin configuration can be
represented according to Ref. [53] by an induced subgraph
and the overall energy can be calculated from the formula

E = Jeff (27 − 2d̃t ) − heffST , (B1)

where d̃t determines the total number of unlike oriented
adjacent spin pairs and ST represents the total spin for a given
spin configuration. Note that the total spin ST = 9 − 2nt can
be related to the total number of vertices nt within a given
induced subgraph and d̃t determines the sum of their comple-
mentary degrees. The induced subgraphs corresponding to all
available spin configurations of the effective 3 × 3 triangular
Ising model are listed in Table I and schematically illustrated
in Fig. 14.

A summation over the overall energy spectrum affords the
following exact result for the partition function of the effective

1 2 3

654

7 98

13

4

7 7

7

8 9

FIG. 13. A schematic illustration of the effective 3 × 3 triangular
Ising model under the periodic boundary conditions.

TABLE I. Spin configurations of the effective 3 × 3 triangular
Ising model classified according to the total spin ST � 0, the total
number of flipped Ising spins (nt ), the degeneracy (deg), the total
number of unlike oriented adjacent spin pairs (d̃t ), the overall energy,
and the corresponding induced subgraph (see Fig. 14 for schematic
illustration of induced subgraphs). The values nt and d̃t coincide with
the total number of vertices in a given subgraph and the sum of their
complementary degrees, respectively.

ST nt deg d̃t Energy Subgraph

9 0 1 0 27Jeff − 9heff 0
7 1 9 6 15Jeff − 7heff 1A
5 2 9 12 3Jeff − 5heff 2A
5 2 27 10 7Jeff − 5heff 2B
3 3 3 18 −9Jeff − 3heff 3A
3 3 54 14 −Jeff − 3heff 3B
3 3 27 12 3Jeff − 3heff 3C
1 4 27 16 −5Jeff − heff 4A
1 4 81 14 −Jeff − heff 4B
1 4 18 18 −9Jeff − heff 4C

3 × 3 triangular Ising model:

Z = 2 exp (−27βJeff ) cosh(9βheff )

+ 18 exp (−15βJeff ) cosh(7βheff )

+ 18 exp (−3βJeff ) cosh(5βheff )

+ 54 exp (−7βJeff ) cosh(5βheff )

+ 6 exp (9βJeff ) cosh(3βheff )

+ 108 exp (βJeff ) cosh(3βheff )

+ 54 exp (−3βJeff ) cosh(3βheff )

+ 54 exp (5βJeff ) cosh(βheff )

+ 36 exp (9βJeff ) cosh(βheff )

+ 162 exp (βJeff ) cosh(βheff ). (B2)

The exact result (B2) can be straightforwardly used for a
calculation of the free energy, magnetization, susceptibility,
and specific heat by standard means.

1A 2B2A

3C3A 3B

4A 4B 4C

0

FIG. 14. A schematic illustration of the induced subgraphs,
which correspond to all possible spin configurations of the effective
3 × 3 triangular Ising model.
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