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Direct measurement of foldover in cavity magnon-polariton systems
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An approach to directly measure the nonlinear foldover effect for cavity magnon polaritons is demonstrated
by placing a nonlinear medium (yttrium iron garnet) into a Fabry-Perot-like microwave cavity. The resulting
bistability features can exhibit clockwise, counterclockwise, and butterflylike hysteresis loops and are solely
dependent on the relative weight of the magnonlike and photonlike components. In addition to accurately
describing our experimental observations, our model also allows us to calculate the crucial system conditions
required to produce photonlike foldover effects. Though the photon subsystem has no nonlinear components
of its own, these photonlike foldover effects are produced through light-matter interactions with a nonlinear
magnetic subsystem. Our model’s description of these nonlinear light-matter interactions and their effects is not
limited to ferromagnetic systems and should be generally applicable to other coherent coupled systems.
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I. INTRODUCTION

Systems undergoing nonlinear dynamics differ dramati-
cally from their linear counterparts. One ubiquitous example,
found across mechanical [1], optical [2,3], charge dynamic
[4,5], magnetic systems [6–9], and two-dimensional material
[10,11] is that the system’s dynamic properties will be mod-
ified in response to an applied driving force. One signature
of nonlinear dynamics is that they can significantly modify
the structure of resonance curves, producing amplitude de-
pendent shifts of the resonance frequency from its “natural”
value and distorting of the resonance line shape to produce
a foldover effect [1,6,12–15]. These nonlinear effects impact
not only our physical understanding of a system’s dynamics
but also have important technological implications in modern
electronics [5], advanced optical devices for controlling light
with light [2], novel spintronic devices in data storage [16]
and microwave applications [17,18], as well as developed
mechanical devices for energy harvesting [19,20].

Placing such a nonlinear medium inside a cavity, the strong
coupling interactions between light and matter can produce
entirely new nonlinear dynamics [21], such as enhanced
cooling efficiency in cavity optomechanics [22,23]. Recently,
the first magnon-polariton bistabilities have been observed
by inserting a small yttrium iron garnet (YIG) sphere into a
high-Q 3D microwave cavity [24]. Here the cavity magnon-
polariton (CMP) is generated by the strong coupling between
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the magnons and cavity microwave photons [25–36]. In the
nonlinear experiment presented in Ref. [24], their cavity is
specially designed with a third port connected to a loop an-
tenna in the vicinity of the YIG sphere which efficiently drives
the magnon mode. They also found that optical bistabilities
can be achieved through light-matter interactions with bistable
magnetic systems. This observation indicates that CMPs can
serve as a bridge or transducer between optical and magnetic
bistabilities, introducing new techniques for using one effect
to manipulate and control the other.

Inspired by this new discovery, we created a nonlinear
CMP system by placing a highly polished YIG sphere in the
center of a Fabry-Perot-like cavity [36]. In our experiment a
high power microwave generator drives the cavity subsystem,
and the fields produced by the cavity resonance mode are then
used to excite resonance in the YIG. At high input power this
excites the coupled CMP system to nonlinear regimes, whose
dynamics can then be detected with a spectrum analyzer. This
implementation allows us to use the same frequency for the
driving and probing fields and to perform an in-tune two-port
measurement. From our measurements, we found that distinct
bistability features appear among magnonlike, photonlike,
and mixed CMP states, each of which can be explained by
our model. While the rich array of CMP bistability features
is beyond what can be seen in uncoupled magnon systems
during foldover, the power dependence of the critical foldover
values is the same for both coupled and uncoupled systems, as
seen in our model and experimental observations. This model
indicates that the coupling strength and damping of the cavity
should be carefully designed in order to produce foldover
effects for photonlike CMPs.
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II. THEORETICAL MODEL

To derive the dynamics of nonlinear foldover in a strongly
coupled magnon-photon system, we start with a model Hamil-
tonian [24] that explicitly takes into account both the non-
linear Kerr effect of the magnon excitation and the strong
interaction between the cavity microwave photons and the
magnons in a YIG sphere (in reduced units with h̄ ≡ 1):

H = ωca
†a + ωmb†b + Kb†bb†b + g(a†b + ab†)

+�(a†e−iωt + aeiωt ). (1)

Here a† (a) and b† (b) are the creation (annihilation) oper-
ators of the cavity photon at ωc and of the magnon at ωm,
respectively. K is the Kerr coefficient of the magnon mode
and g is the coupling strength between the cavity photon and
the magnon. The last term in the above equation describes
the oscillating external drive field with amplitude � = S

√
P

and frequency ω, where P is input microwave power. S is a
coefficient that describes the conversion between input power
P and the field � driving the cavity resonance mode. The
magnitude of S is frequency dependent, which is influenced
by the cavity design and cable loss in measurement circuit.

Since the dissipation function Q can be classically defined
as:

Q = da†

dt

da

dt
(β + β ′a†a) + db†

dt

db

dt
(α + α′b†b), (2)

where β and α, respectively, describe the intrinsic linear
damping parameters of the cavity photon and magnon, and
β ′ and α′ are the nonlinear damping parameters [9,14]. As
damping within our cavity system is not expected to have a
significant nonlinear component, we set β ′ = 0 in our further
calculations.

With both Eq. (1) and Eq. (2), the nonlinear dynamics of
the coupled magnon-photon system follow:

i
da

dt
= ∂H

∂a† + ∂Q

∂ (da†/dt )
(3)

i
db

dt
= ∂H

∂b†
+ ∂Q

∂ (db†/dt )
. (4)

For this coupled anharmonic oscillator system, the complete
analytical solutions describing the dynamics are complicated
and not always available. Thus for simplicity, we initially
solve this coupled differential system by neglecting damping
terms and assuming that the responses of the system have a pe-
riodic solution, with a = A exp(−iωt ) and b = B exp(−iωt ),
where A and B are the complex amplitudes of the cavity
and the magnon mode, respectively. Reinserting this periodic
solution into Eqs. (3) and (4), now including both linear
and nonlinear damping terms, we find the stationary solution
satisfies:

A = −�

ωc − ω − iβω − g2

ωm − ω + 2K|B|2 − iω(α + α′|B|2)

, (5)

B = g�

(ωc − ω − iβω)[ωm − ω + 2K|B|2 − iω(α + α′|B|2)] − g2
. (6)

Equations (5) and (6) look similar to those for linear
CMP dynamics if we assume ωm + 2K|B|2 = ω′

m and α +
α′|B|2 = αm; however for a sufficiently large � qualitatively
different dynamic properties appear. Using Eq. (6) and its
complex conjugate expression, one can obtain a cubic equa-
tion of |B|2 expressed as:

p0 + p1|B|2 + p2|B|4 + p3|B|6 = 0. (7)

This is the frequency response equation of the Duffing
equation (which describes an oscillator with cubic nonlin-
earity [37,38]) using harmonic balance. All coefficients of
Eq. (7) are real and can be expressed as p0 = −η�2, p1 =
[ωm − ω − η(ωc − ω)]2 + ω2(α + ηβ )2, p2 = 4K[ωm − ω −
η(ωc − ω)] + 2α′ω2[α + ηβ], and p3 = 4K2 + (α′ω)2. Here
the parameter η is defined as:

η = g2

(ωc − ω)2 + β2ω2
. (8)

The parameter η characterizes the transfer efficiency of
the excitation energy into the magnon system, which is deter-
mined by the coupling strength g, frequency detuning ωc − ω,
and the damping parameter β of the cavity. While the param-
eter η does not change the fundamental foldover behavior of
the anharmonic oscillator, as experimentally demonstrated in

the next section, it provides a way to manipulate the line shape
of the foldover effect through varying the frequency detuning
ωc − ω, resulting in several distinguishable bistable behaviors
in the coupled system.

The real roots of Eq. (7) give the oscillation amplitude of
the magnon in the coupled system. When � exceeds a critical
value of �t there is a range of frequencies where |B|2 has
three real roots. This range corresponds to the bistable range
seen in foldover resonance [1] and is a signature of the anhar-
monic oscillator. The borders of this range are determined by
the condition d|B|/d(ω − ωm) = ∞. Differentiating Eq. (7)
with respect to ω − ωm, one can obtain a quadratic equation
of |B|2 as p1 + 2p2|B|2 + 3p3|B|4 = 0, allowing the borders
of the bistable state to be deduced for the case when � � �t .
Assuming α′ is small and hence neglecting the higher order α′
term, the upper and lower foldover borders are described by:

ω − ωm = 3 3

√
2Kη�2

4 + (α′ω/2K )2
+ η(ω − ωc ), (9)

and

−
[
αω + ηβω − α′ω

2K
(ωm − ω − η(ωc − ω))

]2

× (ωm − ω − η(ωc − ω)) = 2Kη�2. (10)
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The � dependence of Eq. (10) is seen to be dependent on
the value of ωm − ω − η(ωc − ω). In our coupled nonlinear
CMP system this value represents the shift of the magnon
resonance mode due to linear and nonlinear effects. For low
drive powers the magnon frequency shift will be small, and
the nonlinear damping term of Eq. (10) can be ignored.
Conversely, at high drive powers the ωm − ω − η(ωc − ω)
term will become dominant and the linear damping terms
in Eq. (10) can be approximated as relatively small. Thus
the foldover upper border described in Eq. (10) will have
very different dependences on input power � depending on
whether the nonlinear damping (dependent on the driving field
�) is dominant.

ω − ωm ≈ 2Kη�2

(αω + ηβω)2
+ η(ω − ωc ), (small �) (11)

ω − ωm ≈ 3

√
2Kη�2

(
2K

α′ω

)2

+ η(ω − ωc ). (large �) (12)

The critical drive field �t corresponds to the double
root ω − ωm = √

3sign(K )(αω + ηβω) + η(ω − ωc ) of the
quadratic equation, where the borders of the bistable state are
equivalent, and is thus (assuming small � and small α′):

�2
t ≈ 4

√
3

9|K|
[αω + ηβω]3

η
. (13)

At relatively low drive fields, Eqs. (9) and (11) can be
distinguished by their different field (�) and hence power
(P = �2/S2) dependences, with Eq. (9) having ω − ωm ∝
P 1/3 and Eq. (11) having ω − ωm ∝ P . These dependencies
are exactly the same as those seen in uncoupled anharmonic
oscillators and are typical of results produced by a nonlinear
restoring force [14]. This difference disappears as the drive
field becomes stronger and the nonlinear damping terms in
Eq. (11) become dominant, eventually leading to ω − ωm ∝
P 1/3 for both foldover limits at very high � values.

At the resonance condition ω = ωc a large η value (large g

and/or small β), will produce two effects in the CMP system,
(a) an enhanced driving field for magnon precession, due
to increased energy transfer from the photon subsystem to
the magnon subsystem, and (b) enhanced magnon damping,
due to additional energy losses from the magnon subsystem
during coupling to the photon subsystem. The competition
between these effects results in a minimum critical microwave
power Pt (∝ �2

t ) required in order to observe foldover effects
in CMPs. For the calculations in Fig. 1, we use a typical
damping parameter α = 1 × 10−4 for the YIG sphere and
vary both β and g within their typical ranges. In Fig. 1(a),
the calculated results at ω = ωc clearly show the conditions
where Pt is minimized (white dotted line), this relation can be
deduced from Eq. (13) and is described by g = √

αβ/2ω. For
strong coupling, where g2 � αβω2

c , the critical microwave
power Pt is proportional to g4/β at ω = ωc. This indicates
that coupling strength plays a crucial role in generating CMP
foldover effects, especially near ω = ωc, and moreover that

FIG. 1. (a) The critical microwave power (Pt ∝ �2
t ) required for

observation of the foldover effect, calculated as a function of the
coupling strength g and the damping parameter β of the cavity.
The dotted line indicates the lower limit of Pt versus β. (b) Pt

as a function of the frequency detuning ω − ωc for several g at
β = 0.008. The dotted line indicates the lower limit of Pt . (c) Pt

as a function of the frequency detuning ω − ωc for several β at
g/2π = 20 MHz. In all calculations Pt is rescaled by it lowest value
in (a) for ωc/2π = 12 GHz and α = 1 × 10−4.

high-Q cavities are not always optimal for producing foldover
effects in coupled CMP systems.

Far from the resonance condition at ω = ωc, the lower limit
of Pt occurs at η(ω, g) = α/2β corresponding to �2

t |K| =
3
√

3α2βω3; this is plotted (dotted line) in Fig. 1(b) as
a function of the frequency detuning ω − ωc. For small
g/2π (=5 MHz) the αω term dominates in Eq. (13) and as
a consequence Pt shows a minimum at ω = ωc due to the
effective energy transfer between systems at this resonance
condition. In contrast, at larger g/2π (=20 and 40 MHz) the
dominant term in Eq. (13) becomes ηβω and a pronounced
peak in Pt appears at ω = ωc, due to enhanced damping near
this frequency.

In Fig. 1(c), Pt versus ω − ωc is plotted for several β val-
ues, using g/2π = 20 MHz. Here it is clearly seen that a lower
β value results in a larger Pt for on-resonance conditions but
will produce a smaller Pt away from resonance. This contrast
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FIG. 2. (a) Schematic diagram of the experimental setup, where
a YIG sphere is placed in the center of the midplane of a waveguide
assembly cavity, and a static magnetic field is applied along the [110]
direction of the YIG sphere. The dynamics of this coupled system are
measured using the microwave transmission through this setup. (b)
Transmission mapping of the hybridized CMP system, demonstrat-
ing level repulsion, with solid lines indicating the calculated CMP
dispersion. Fixed field cuts (symbols) made (c) far below and (d) at
the coupling point, ωm = ωc, with solid lines being calculations for
each field based on Eq. (14).

between on and off resonance behavior is generally valid for
any coupled system in the nonlinear range.

III. EXPERIMENTAL RESULTS AND DISCUSSION

The experimental setup of our measurement system is
schematically shown in Fig. 2. The microwave cavity used in
this work is a Fabry-Perot-like cavity based on the Ku band
(12–18 GHz) assembled waveguide apparatus, where circular
waveguides are connected through circular-rectangular transi-
tions to coaxial-rectangular adapters, and the two transitions
are rotated by an angle of 45◦. A detailed discussion of
this waveguide setup can be found in Ref. [36]. A 1 mm
diameter highly-polished YIG sphere was placed in the center
of the midplane of this quasi-one-dimensional cavity. During
measurements a static magnetic field H was applied along the
[110] direction of the YIG crystal.

The wave propagation in this ferrite loaded cavity under a
magnetic bias has been analytically solved in the linear range
[36]. We generalize the deduced transmission coefficient S21

in the nonlinear range as

S21 ∝ 1 − ξ

i(ωc − ω) + βω + g2

i(ωm−ω+2K|B|2 )+ω(α+α′ |B|2 )

.

(14)

Here the amplitude of the magnon mode |B| can be cal-
culated according to Eq. (6). As this equation is based on
an approximation of ω ≈ ωc, in order to explain features far
away from this resonance condition, we introduce a fitting
parameter ξ , which can be deduced from the low power
measurement.

The physical reason for using this kind of cavity to study
nonlinear behaviors is due to its low input/output losses be-
tween the microwave ports and the cavity system. This allows
higher microwave energies to be sent into the CMP system,
permitting foldover effects to be seen both near to and far
from cavity resonance. As will be demonstrated in Sec. III B
the nonlinear behaviors of the CMP system are dependent
on ωc − ω, thus measurements of bistability effects over a
wide range of frequencies are necessary to understand the full
dynamics of nonlinear CMP systems.

A. Characterization of the coupled magnon and cavity mode
in the linear range

We first characterize the photon-magnon system using
a vector network analyzer in linear conditions, so that the
contribution of 2K|B|2 is negligible. For our cavity resonance
we use the h mode (where the microwave magnetic field
is maximum at the midplane of our cavity) at ωc/2π =
12.082 GHz. The ferromagnetic resonance frequency of the
YIG sample in our experiments follows the dispersion ωm =
γ (Hr + HA), where γ /2π = 26.9 μ0GHz/T is the gyromag-
netic ratio, μ0HA = 10.4 mT is the anisotropy field, and Hr

is the biased static magnetic field at resonance. The standard
level repulsion of the hybridized modes was measured and
is shown in Fig. 2(b). Using g/2π = 18.0 MHz, determined
by the separated gap at ωm = ωc in Fig. 2(d), the calculated
dispersion (solid line) agrees very well with the measured
data.

As the damping parameters play an important role in
nonlinear foldover effects, we have deduced them from mea-
surements taken at μ0H = 398.8 mT, where |ωc − ωm| � g

and coupling effects are negligible. As shown in Fig. 2(c) the
line shape of the cavity resonance can be well fitted using
Eq. (14) by setting β = 8.4 × 10−3 and ξ/2π = 99 MHz.
Similarly, we also deduce α = 1.1 × 10−4 for the YIG sphere
far from ωc. Using these values we calculate the microwave
transmission according to Eq. (14) at μ0H = 438.8 mT (cor-
responding to ωm = ωc) using ξ/2π = 99 MHz. This calcula-
tion reproduces the measurement results at a strongly coupled
condition, as shown in Fig. 2(d).

B. Bistability of magnonlike and photonlike CMPs

In this section, we present and compare nonlinear ef-
fects in our coupled magnon-cavity system for on-resonance
and far off-resonance frequencies. Here high microwave
powers provided by a microwave generator are used to
drive the large angle precession of the magnon, while the
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FIG. 3. (a)–(d) ω/2π = 12.450 GHz. |S21|2 versus H at (a) P = 0.1 mW and (b) P = 200 mW. (c) |S21|2 versus P at μ0H = 452.7 mT.
(d) The jump position versus P . (e)–(h) ω/2π = ωc/2π = 12.082 GHz. |S21|2 versus H at (e) P = 0.1 mW and (f) P = 400 mW. (g) |S21|2
versus P at μ0H = 439.025 mT. (h) The jump position versus P . (i)–(l) ω/2π = 11.800 GHz. |S21|2 versus H at (i) P = 0.1 mW and (j)
P = 200 mW. (k) |S21|2 versus P at μ0H = 428.54 mT. (l) The jump position versus P . Blue (red) symbols are experimental results of forward
(backward) H field scans. The solid curves in (a)–(c), (e)–(g), and (i)–(k) are theoretical results calculated using Eq. (14). Dashed lines indicate
the jumping positions. The solid curves in (d), (h), and (l) are theoretical results fitted using Eqs. (9) and (10) for forward and backward scans,
respectively.

transmission signal is measured using a signal analyzer. We
start our measurements in the linear range by setting the
output power of the microwave generator to be 0.1 mW.
Fixing the microwave frequency at ω/2π = 12.450 GHz,
12.082 GHz, and 11.800 GHz, the transmission coefficients
|S21|2 were measured as a function of the biased static mag-
netic field H as shown in Figs. 3(a), 3(e) and 3(i), respectively.
At conditions A (ω/2π = 11.800 GHz) and E (ω/2π =
12.450 GHz), where the CMP is magnon dominated, the spec-
tra show a minimum transmission at the resonance condition
(H = Hr ) because of strong absorption due to the magnon
excitation. In contrast, the spectrum shows a maximum trans-
mission at condition C (ω = ωc). This is due to the nature
of the our Fabry-Perot-like microwave resonator, where the
microwaves will be more effectively absorbed by the cavity
near ω = ωc than at off-resonance conditions [36]. Strongly
coupling this cavity to a YIG magnon mode at ω = ωc will
thus result in a maximum transmission signal at H = Hr , with
only a single transmission peak visible due to the fact that only
the YIG subsystem is influenced by changes to H [39].

Additionally, the linewidth of the peak at ω = ωc is seen to
be significantly larger, with measured linewidths of 1.6 MHz
(0.06 mT), 4.5 MHz (0.17 mT), and 1.7 MHz (0.06 mT) at
ω/2π = 12.450 GHz, 12.082 GHz, and 11.800 GHz, respec-
tively. This effect can be explained as an effective damping
of αω + ηβω in coupled magnon-cavity systems. The higher
damping near ω = ωc is related to the redistribution of mi-
crowave density of states within the cavity [35]. We can fur-
ther calculate the line shape of the resonance (solid lines) ac-
cording to Eq. (14) by adjusting ξ/2π = 180 MHz, 89 MHz,
and 175 MHz for ω/2π = 12.450 GHz, 12.082 GHz, and
11.800 GHz, respectively. Comparisons between the mea-
surement results (symbols) and calculations (lines) are shown

in Figs. 3(a), 3(e) and 3(i). An additional feature on the
low-field side of the resonance corresponds to a high order
magnon mode and has been studied in detail elsewhere, in
both linear [24] and nonlinear [40] power ranges; it is not of
immediate interest for our line shape discussion of nonlinear
CMP foldover effects.

Increasing the microwave power, the resonance gradually
shifts toward higher H because the Kerr term is negative for a
[110] magnetized YIG sphere [24]. At sufficiently high pow-
ers the foldover effect appears, and Eq. (7) has three solutions,
two of them stable and an additional unstable mode. In the
experimental data, two abrupt jumps occur at different static
magnetic H field biases and correspond to abrupt transitions
between these two stable states. As a result, a hysteresis loop
is clearly seen in the up- and down-sweep traces shown in
Figs. 3(b), 3(f) and 3(j). The difference of the transmission
amplitudes between two stable states as well as the inner area
of the hysteresis loop will increase with microwave power.

Because of the difference in the implementation of exper-
imental setup when compared with the previous report [24],
the bistable behaviors are seen to be very different between
magnonlike and photonlike CMPs in our magnon-cavity sys-
tem [41]. When |ω − ωc| � g the field hysteresis loops for
magnonlike CMPs [Figs. 3(b) and 3(j)] are counterclockwise,
when considering the up- and down-sweep direction of the
static magnetic field. However, at ω = ωc the field hysteresis
loop for the photonlike CMP in Fig. 3(f) is clockwise. The
power hysteresis loops, which measure the transmission at
fixed ω and H as microwave power P is swept, also demon-
strate this difference. We find the power hysteresis loops for
magnonlike CMPs in Figs. 3(c) and 3(k) to be clockwise,
when considering the direction of increasing and decreasing
microwave power sweeps, and the power hysteresis loop for
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the photonlike CMP at ω = ωc in Fig. 3(g) to be counterclock-
wise.

In order to quantitatively model the above experimental
observations, we require the values of S and K . Although
these parameters cannot be determined individually in present
experiments, the product parameter KS2 can be determined
by the H field jump positions according to Eqs. (9) and
(10). Figures 3(d), 3(h) and 3(i) show the jump positions as
a function of the microwave power at ω/2π = 12.450 GHz,
12.082 GHz, and 11.800 GHz, respectively. As expected the
up-sweep jump (symbols) follows a linear P dependence
(solid line) and the down-sweep jump (symbols) follows
a P 1/3 dependence (solid line), with KS2 = 5.77 × 10−8,
3.75 × 10−8, and 1.58 × 10−8 GHz3/mW for 12.450, 12.082,
and 11.800 GHz, respectively. The disagreement between
experimental data and linear fittings for the up-swept jumps
at high powers is a result of the nonlinear damping terms in
Eq. (10) becoming larger as power is increased, and the power
dependence of the jump point moving towards the ω − ωm ∝
P 1/3 described in Eq. 12, similar to the results found in
uncoupled ferromagnetic systems described by Ref. [14].

The parameter KS2 was deduced according to Eq. (11),
where the linear damping term is dominant and a linear power
dependence for the up-swept jumps is found. Then we can
simulate the CMP bistability using Eq. (14) in this power
range by assuming α′ = 0, which reproduces the experimental
observations in Fig. 3. From this agreement, the validation
of our generalized model describing CMP foldover effects in
this quasi-one-dimensional cavity is clearly seen. Two stable
states with different transmissions can be switched between
by sweeping either the static magnetic field or the microwave
power. In regards to how the number of CMPs present in
the system changes during the transition, the dynamics of
photonlike and magnonlike CMPs are exactly opposite.

C. Butterflylike CMP hysteresis loops

In addition to the foldover behaviors seen at on-resonance
(ω = ωc) and far-from-resonance (|ω − ωc| � g) conditions,
a distinctly different CMP foldover hysteresis loop is seen at
intermediate frequencies above and below ωc. In Sec. III B we
saw that at low microwave powers the microwave transmis-
sion line shape |S21(H )|2 of CMPs have a typical Lorentzian
peak characteristic at ω = ωc and a Lorentzian dip charac-
teristic for |ω − ωc| � g. However, in general |S21(H )|2 will
have an asymmetric lineshape [42] in the linear range, with
the polarity of this asymmetry reversing as ω crosses ωc. This
asymmetric line shape observed by sweeping the applied field
at fixed frequency is described as Fano-like resonance [42].

We first perform measurements at an intermediate fre-
quency below ωc (ω/2π = 11.938 GHz) in the linear range
by setting the output microwave power of the microwave
generator to be 0.1 mW. As shown in Fig. 4(a), the field swept
line shape is asymmetric with a dip at the right side of Hr .
As microwave power is increased, the resonant structure is
observed to shift to higher fields. When this shift is sufficiently
large a sharp jump appears, whose position is determined by
the field sweep direction. Although the positions of these up
and down sweep jumps (experimental data not shown) have
power dependences described by Eqs. (9) and (10), the same

FIG. 4. Microwave |S21(H )|2 transmission measurements below
ωc (ω/2π = 11.938 GHz). (a) Field swept transmissions measured
at increasing microwave powers. The line over the lowest power
measurement is a fitting result to Eq. (14) used to determine ξ , which
was then used to calculate the S21 spectra at higher powers shown
in (b). (c) and (d) show the measured and calculated power swept
hysteresis loops at μ0H = 433.67 mT.

power dependences as seen in the measurements discussed in
Sec. III B, these jumps are seen to produce distinctly different
field swept hysteresis loops. In Sec. III B the hysteresis loops
observed can be described as either clockwise or counter-
clockwise, because one jump corresponds to the transition
from a small number to a large number of CMPs within
the coupled system, while the other jump corresponds to the
reverse transition. However, at the intermediate frequency
shown in Fig. 4(a) both jumps correspond to the transition
from a small to large number of CMPs, resulting in a butter-
flylike hysteresis loop.

The measured data at low power (P = 0.1 mW) can be
well fitted by Eq. (14) with ξ/2π = 107 MHz as shown
in Fig. 4, where the symbols are experimental data and
solid lines are fitting results. The parameter KS2 = 2.3 ×
10−8 GHz3/mW was deduced from the power dependent
jump positions according to Eqs. (9) and (10). For a clearer
comparison, particularly at higher powers, we plotted the
calculated results in Fig. 4(b), where the unstable mode is
indicated by a dotted line. These calculated results show that
the butterflylike hysteresis loops we measure are the result of
nonlinear foldover at intermediate frequencies near ωc. We
can further compare the measured [Fig. 4(c)] and calculated
[Fig. 4(d)] hysteresis loops for our power sweep results. Here
we again see a butterflylike loop, which can be accurately
described by our model. These butterflylike hysteresis fea-
tures we have described show a bistable behavior that is not
found in previous studies of either magnetic [14] or coupled
magnon-cavity [24] systems.

Interestingly, the polarity of the butterflylike hysteresis
loop changes if the microwave frequency is set at interme-
diate frequencies above ωc. Setting ω/2π = 12.136 GHz and
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FIG. 5. Microwave |S21(H )|2 transmission measurements above
ωc (ω/2π = 12.136 GHz). (a) Field swept transmissions measured
at increasing microwave powers. The line over the lowest power
measurement is a fitting result to Eq. (14) used to determine ξ , which
was then used to calculate the S21 spectra at higher powers shown
in (b). (c) and (d) show the measured and calculated power swept
hysteresis loops at μ0H = 441.08 mT.

measuring at low microwave power we find the field swept
line shape is again asymmetric but with a maximum on the
right side of Hr . The experimental data (symbols) can be
well fitted (solid lines) by Eq. (14) using ξ/2π = 47 MHz.
The evolution of the field swept line shape is simulated
in Fig. 5(b) using the deduced nonlinear parameter KS2 =
1.95 × 10−8 GHz3/mW, deduced from the power dependent
jump positions. At these intermediate frequencies above ωc,
butterflylike hysteresis loops can be observed and simulated
for both field and power swept measurement, as shown in
Fig. 5. As both observed jumps correspond to a transition
from a large number to a small number of CMPs, a reversed
butterflylike hysteresis loop results.

When compared with the results discussed in Sec. III B,
we can conclude that observation of butterflylike bistabilities
is caused by the asymmetric component of the resonance line
shape, which has also shown in our model. In an uncoupled
magnon system, similar bistable features can be expected
to occur in ferromagnetic resonance measurements using
electrical detection methods, as manipulating the relative
phase of the microwave signal in these systems can produce
asymmetric lineshapes similar to those seen in our system
at intermediate frequencies [43]. We also believe that the
butterflylike bistablity features we measure are not limited
to magnon-related systems but should be observable across
many areas of physics and engineering because the Fano-like
resonance is a general wave phenomenon.

D. “Phase diagram” of CMP power hysteresis loops

The general features of power swept loops in a coupled
magnon-cavity system are summarized in Fig. 6, where the
green lines indicate the CMP dispersion. The CMPs will have

FIG. 6. “Phase diagram” of CMP power hysteresis loops of neg-
ative Kerr term, where the gray color indicates the region where CMP
bistability is observed. Distinct bistable behaviors are observed:
clockwise, butterflylike, counterclockwise, reversed butterflylike,
and clockwise hysteresis loops appear as the measured frequency
of the system is increased from far above to far below ωc. Arrows
indicate the sweeping direction of the microwave power.

more photonlike properties as their dispersion approaches
ω = ωc (horizontal dotted line) and will take on more
magnonlike properties as they approach ωm = γ (Hr + HA)
(vertical dotted line). For K < 0 the foldover effect can only
be observed in the gray area because the resonance position
is shifted to higher fields as microwave power increases. The
low-field border (black line) is the critical field determined by

H = Hr + −√
3sign(K )(αω + ηβω) + η(ω − ωc )

γ
. (15)

This resonancelike feature is sharply different from the critical
field condition of H = Hr − √

3αω/γ seen in uncoupled
magnetic systems [14]. The larger shift of the border toward
higher H can be attributed to the enhanced damping of the
magnon resonance near ω = ωc [35].

In contrast to previous reports studying either uncoupled
magnetic systems [14] or coupled magnon-cavity systems
[24], multiple bistable features are seen to exist in our coupled
CMP system. As shown in Fig. 6 distinct bistable behav-
iors are observed: clockwise, butterflylike, counterclockwise,
reversed butterflylike, and clockwise hysteresis loops as the
measured frequency of the system is increased from far above
to far below ωc. These foldover features remain for K > 0,
but in this case the foldover effects occur below Hr and the
polarity of all hysteresis loops will reverse.

IV. CONCLUSIONS

In conclusion, we have theoretically and experimentally
studied the foldover dynamics of CMPs in a coupled magnon-
cavity system. Our carefully designed CMP system allows us
to measure CMP foldover effects at frequencies below, at, and
above ωc. While many CMP foldover properties, such as H

field swept jump positions, have behavior similar to those in
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uncoupled magnon systems, distinct differences appear in the
bistability features. We observe the power hysteresis loops
to be clockwise for photonlike CMPs, counterclockwise for
magnonlike CMPs, and butterflylike (reversed butterflylike)
for intermediate frequencies above (below) ωc where the
CMPs have a mixed photon-magnon state.

With this multitude of available CMP bistability features,
the coupled magnon-cavity system can provide a versatile
platform for understanding and developing novel low-energy
switching devices. Moreover, because the Fano-like resonance
lineshape produced by CMP coupling is a general wave
phenomenon, the nonlinear features observed in our study
range may be reproducible across many areas of physics and
engineering.
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