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The Ising antiferromagnet on a face-centered cubic (fcc) lattice with nearest-neighbor interaction only is well
known to exhibit a macroscopic (exponential in the system size L) ground-state degeneracy. With increasing
temperature, this degeneracy is expected to be lifted and the model undergoes a first-order phase transition.
For a model with an exponential degeneracy in the whole low-temperature phase, it was recently found that
the finite-size scaling behavior is governed by leading correction terms ~L~2 instead of ~L~3 as usual. To
test the conjecture that such a transmuted behavior may effectively persist also for the fcc antiferromagnet
up to some crossover system size, we have performed parallel multicanonical Monte Carlo simulations for

lattices of linear size L < 18 with periodic boundary conditions and determined various inverse pseudo phase
transition temperatures, as well as the extremal values of the specific heat and the energetic Binder parameter.
We indeed find that, for the simulated lattice sizes, the conjectured transmuted finite-size scaling ansatz fits the
data better than the standard ansatz. On this basis, we extrapolate for the transition temperature an estimate of

Ty = 1.735047(46).

DOI: 10.1103/PhysRevB.98.174413

I. INTRODUCTION

The ordering of the Ising antiferromagnet on a face-
centered cubic (fcc) lattice presents a long-standing prob-
lem which has received extensive attention since the 1930s
[1-16]. Initially, the model was employed and examined as
an approximation of ordering binary alloys. For sufficiently
small exterior magnetic field || and ferromagnetic or vanish-
ing next-nearest neighbor interaction, the fcc Ising antiferro-
magnet can describe magnetic alloys with the metallurgist’s
“AB” or “L1y” structure [13,17] which are currently widely
studied since they represent promising materials for the heat-
assisted magnetic recording (HAMR) technology for ultra-
high-density magnetic recording media [18-21].

Yet another motivation for the research on the fcc Ising
antiferromagnet is the interest in frustrated magnetism in
general which mainly prompted the later publications on this
model [10—12,14—-16]. Due to the conjunction of the antiferro-
magnetic nearest-neighbor interaction and the geometry of the
fcc lattice, it is impossible to satisfy all interaction bonds of
the fcc Ising antiferromagnet simultaneously which is referred
to as geometrical frustration [22]. Frustrated systems are
subject to numerous investigations since they, in general, give
rise to interesting, complex properties while being difficult
to solve [15]. Besides, the behavior of frustrated systems
is hoped to shed some light on spin glasses which, too,
show frustration but are even more complicated since they,
in addition, involve randomness.

Here the attention is dedicated to the model with van-
ishing external magnetic field # = 0 and nearest-neighbor
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interaction only. That is, the system given by the Hamiltonian
H=—J) sis (1)
(i.J)

is regarded where the sum ranges over the nearest-neighbor
Ising spins s; = %1 on an fcc lattice with periodic boundary
conditions and J < O denotes the coupling constant. Only
systems with the same linear dimension L in the x, y, and z
direction are considered and L is defined as the number of the
four-spin complexes depicted in Fig. 1(a) along the x, y, or
7 direction yielding a total number of V = 4L3 lattice sites.
This Hamiltonian (1) is particularly worthy of consideration
since its ground state features only a two-dimensional long-
range order and thus is infinitely degenerate in the thermody-
namic limit [3]. However, as soon as the temperature is lifted
above zero, the infinitely large system exhibits “order out
of disorder” [23] leading to a three-dimensional long-range
order [17].

The exploration of the model (1) poses two major
challenges since it is geometrically frustrated and shows a
first-order phase transition. As a consequence of that, dis-
agreeing results for the model have been obtained in the past
[10,24-27]. The first high-precision estimate of the phase
transition temperature could be determined by Beath and
Ryan in 2006 [16]. Interestingly, their simulation data suggest
that the model does not comply with the standard scaling
~L~* for a common inverse pseudo phase transition tem-
perature Bo(L) at a first-order phase transition. However,
they could not substantiate this behavior theoretically. On
the other hand, in 2014, Mueller et al. [28-30] deduced that
the nonstandard scaling ~L~2 is expected to apply to mod-
els where the number g of low-temperature ordered phases
grows exponentially with the linear system size L. This has
numerically been confirmed for the three-dimensional purely
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FIG. 1. (a) The linear system size L is defined as the number of
the depicted four-spin complexes (black) along the x, y, or z axis.
(b) Exemplary illustration of a ground state. The shaded planes are
ordered antiferromagnetically. (c) One of the AB structure ground
states.

plaquette gonihedric Ising model [29]. Since for the fcc Ising
antiferromagnet (1), at least the ground-state degeneracy is
also exponential in L, the question arises whether this model
behaves in a similar way. According to Mueller et al. [29,30],
it is conceivable that a crossover from the nonstandard scaling
~L~? to the standard scaling ~L~3 might be observed when
increasing the lattice size L.

Here the open question regarding the scaling of By(L) is
investigated by means of parallelized Monte Carlo simula-
tions in multicanonical ensembles which provide the benefit
of bypassing the typical problems of canonical simulations
close to first-order phase transitions.

The rest of the paper is organized as follows: In Sec. II,
established knowledge about the model is reviewed and the
applied methods are explicated. Subsequently, the numerical
implementation and results are presented in Sec. III. The
conclusion is given in Sec. IV.

II. MODEL AND METHODS
A. Model

In contrast to the simple cubic (sc) and the body-centered
cubic (bcce) lattice, the fcc lattice is not bipartite. That means
that it cannot be divided into two parts such that all nearest
neighbors of one part belong to the other part and vice
versa. As a consequence, it is impossible to order the fcc
lattice completely antiferromagnetically. Thus, the system (1)
is geometrically frustrated, resulting in a large number of
ground states. The ground-state properties have already been
successfully analytically investigated [3,4,31]. Each ground
state consists of a stack of uncorrelated, antiferromagnetically
ordered planes which are parallel to the xy, xz, or yz plane,
see Fig. 1(b). There are six equivalent [32] ground states
which possess a higher symmetry than all the other ground
states. They are composed of alternating layers of alike spins,
see Fig. 1(c). This corresponds to the “AB” or “L1,” structure
in the alloy analog. Among all ground states, these AB struc-
ture ground states possess the highest density of low-energy
excitations and thus are called dominant [33]. Providing for
the high symmetry of these six AB structure ground states,
the ground-state degeneracy

go=3x2—-6 )

is derived since there are three possible orientations of the
stack of 2L antiferromagnetically ordered planes and each

plane can be ordered antiferromagnetically in two different
ways. That means that the ground-state degeneracy, which
defines the number g of ordered phases at zero temperature,
is exponential in L. However, for the infinitely large system,
only the six dominant AB structure ground states survive the
transit to (small) temperatures above zero which was rigor-
ously proven by Bricmont and Slawny [17]. Unfortunately,
the number ¢ of ordered phases for temperatures 7 > 0 and
finite lattice sizes L is unknown. Following the considerations
of Kdmmerer ef al. [14], it might be constant for sufficiently
large lattice sizes while depending exponentially on L for
small systems.

The model (1) shows a first-order phase transition where
the system goes from a g-degenerate ordered antiferromag-
netic phase at low temperatures to a disordered paramagnetic
phase at higher temperatures. Characteristically for a first-
order phase transition, these different phases coexist at the
phase transition temperature which is reflected in a double
peak structured canonical energy probability distribution.

B. Methods
1. Finite-size scaling for first-order phase transitions

Let us first recall a simple approach for describing
the behavior of a first-order phase transition: the two-state
ansatz [34,35]. Here all fluctuations within the pure phases
(ordered and disordered) are neglected. Thus, the time evolu-
tion of a system near the phase transition temperature shows
sharp jumps between two possible values, u, = % and

Uy = %ﬁfd)’ of the energy per lattice site e, where f,,, f; define
the infinite-volume free-energy densities associated with the
ordered phases and the disordered phase, respectively, and
B = 1/kpT denotes the inverse temperature, which is related
to the temperature 7 via the Boltzmann constant kg. Using
fo and fy, one can calculate the fraction W, « qe’ﬂfﬂv of
time spent in the ordered phases (corresponding to u,) and the
fraction Wy = 1 — W, o e PV of time spent in the single
disordered phase (corresponding to uy) for L — oo. This
directly gives the energy moments (") = W,u!, + Wyul; for
all n € N. The heat capacity per lattice site (specific heat) can
then be expressed as ¢ = B2V ({e?) — (e)?) = B2V W,(1 —
W,)Au? where Au = uy — u,. It takes the maximal value
Cmax ~ ,B§V(Aﬁ/2)2 for W, ~ W,. That means, in this two-
state ansatz, the location f. (L) of the specific heat max-
imum and the inverse temperature Beqw(L), where the or-
dered and disordered peak of the canonical energy probability
distribution have the same weight, approximately coincide.
One can calculate these inverse pseudo phase transition tem-
peratures B (L), Beqw(L) by taking the logarithm of the
ratio % ~ 1~ geffa=1V and performing a Taylor expan-
sion around the inverse phase transition temperature fy. This
results in the finite-size scaling formula 8. (L) & Beqw(L) ~
Bo —Ing/V Aii, where quantities provided with a caret are
meant to be evaluated at the transition point. Analogously, one
finds that the energetic Binder parameter B = 1 — (e*) /3(e?)?
has its local minimum B, & 1 — ({1, /ity + fiq/fi,)?/12 for
W, ~ Wdﬁfl / ﬁg at the inverse temperature Bp_ . (L) ~ By —
In (qii/a3)/V Ai.

Although this is a rather simple ansatz, it is able to
reproduce the prefactors of the leading finite-size scaling
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corrections from a mathematically rigorous theory [36-38]
based on the work of Pirogov and Sinai [39,40], which
has later also been extended in order to apply to models
like (1) [17]. Neglecting corrections which are bounded by
an exponentially decreasing function, this rigorous theory
yields the following asymptotic expansions [29,34,35,41]
as L — oo

Ing  spxgl(ng)* —12]+4

Bewu (L) = Po —

VAQ BoV2AG?
+(’)<(h;;§)3>, 3)
Bean(L) = By — o 222 S‘;ZZ; o((l‘lVZP), 4
B (L) = Bo - W oyt 0<(mv‘§)3>7 )
where A¢ =7¢4— ¢, Co = %, Ccqg = fide, and a is an ex-

pression which can be written as a = a; + a; Ing + az(In q)?
with constants ap, a,, az [29,34]. From a double-Gaussian
approximation [42-44] of the canonical energy probability
distribution, one can also derive the finite-size scaling for-

mula [29,45]
In(g+/2a/2 Ing)>

for the inverse pseudo phase transition temperature where the
two peaks of the canonical energy probability distribution
have the same height. In the above formulas (3), (4), (5), and
(6), the degeneracy parameter g is meant to be evaluated at the
respective inverse pseudo phase transition temperature and the
finite lattice size.

Assuming g to be constant yields the standard finite-size
scaling ~L 3 for all of the here regarded inverse pseudo phase
transition temperatures. However, if the number of ordered
phases g which enters the above finite-size scaling formulas
is exponential in L, that is

q(Bo(L), L) = Ae®* @)

with constants A, B > 0 [46], then the scaling is signifi-
cantly altered to ~L~2. This has already been observed for
the plaquette-only gonihedric Ising model where ¢ = 23% is
known in the whole low-temperature phase [29]. In the case of
the fcc Ising antiferromagnet (1) where V = 413, the Egs. (3),
4), (5), and (6) would then read

B (L) ~ fgu(L) = fo — —2— — 04
emax LS PSS PO T ANGLE T AAGL
A¢B? A¢BIn A 1
o[=), @
+ 32B83AG3LY + 1683 AG3LS + (Lﬁ) ®)
B In (Ad2/23)  a3B?
Bo(L) = Bo — g — ( X 3”’) >
4AGL A4AnL 16L
2a3BIn A + a; B 1
= TR o[ =), 9
16L3 (L6> ©)
B In(AVZ,78,) 1
L) =By — - o(—=). ao
Pean(L) = Fo = snar TO\zE) 4O

The formulas for 8. (L) and Beqw (L) coincide here up to the
given order.

Unfortunately, the number ¢ of ordered phases contained
in the finite-size scaling laws (3), (4), (5), and (6) is unknown
for the fcc Ising antiferromagnet as discussed in Sec. ITA.
Following the considerations of Mueller ef al. [29,30], it is
conceivable that for small-enough L, the nonstandard scaling
~L~? given by (8), (9), and (10) applies, whereas for large-
enough L, the standard scaling ~L~ holds.

Similarly, for the extremal values cyax, Bmin Of the specific
heat and the energetic Binder parameter, one arrives at the
formulas [34,41]

Cmax ,BOAﬁ 2
v 2
(A¢ — BoAl)Ing + ¢4+ &, (Ing)?
@ , (11
+ X% + V2 (11

1 (4, a4\° b (Ing)?
Buyin=1———+— —4+0 , (12
where b = by + b, In g with constants by, by, and g is meant
to be evaluated at 8. (L) or Bg . (L), respectively, and the
corresponding finite lattice size L. Consequently, for cpax/V
and By, the standard ansatz corresponding to a constant

number ¢ leads to the scaling ~L~3, whereas the nonstandard
ansatz (7) yields

Cmax <,30A12>2 n (AC — ByAit)B

14 2 L2
Bmin=1—%<2_:+z_j>2+?73;
+%+0<§> "

for V = 4L3, resulting in the transmuted scaling ~L 2.

2. Multicanonical simulation

A multicanonical ensemble [47-55] is an artificial statisti-
cal ensemble with the goal to optimize the performance of a
simulation which is confronted with rare events. A possible
application are first-order phase transitions [56] where canon-
ical simulations show large autocorrelation times because of
the suppressed region between the two peaks of the canoni-
cal energy probability distribution P.,,(E). A multicanonical
simulation can overcome this problem by enhancing the sam-
pling probability of the rare states corresponding to the valley
of P..n(E). For example, this can be achieved by a flat mul-
ticanonical energy probability distribution Pyyuc,(E) which
implies the multicanonical probability distribution Prca(it)
of the microstates u to be

1
€q — p«
pmuca(“’) - pmuca(E(I"L)) X Q(E)s (15)
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where Q(E) = ZM SE(,e denotes the density of states.
Since the density of states is generally unknown, the desired
multicanonical weights w(E) o pmuca(E) obeying (15) are
approximated via a recursion (iteration). A possible stable
recursion algorithm is described in Refs. [53,54,57,58]. As
soon as the recursion yields a sufficiently good estimator of
the desired multicanonical weights, the iteration process is
terminated and the obtained weights are employed to perform
a production run. From this production run, one can obtain
estimators of the corresponding multicanonical expectation
values (O)muca = 3, O(11) Pmuca(j) of observables O in the
usual way. The quantities of a canonical ensemble at inverse
temperature 8 can then be calculated via

e
P(E) = Pcan(E) 08 Pmuca(E)Ma (16)
e PE
(0) = (Ot = 2D e ;;Sf’)‘““a. (17
<w(E))muca

As suggested by Zierenberg et al. [59], the multicanonical
simulation can easily be parallelized in order to distribute the
computational effort on several processing units.

III. NUMERICAL RESULTS

In the following, the units are chosen such that kz = 1 and
|J| = 1.

A. Simulation

We performed a parallel multicanonical Monte Carlo sim-
ulation with 128 processes adopting the Metropolis update
algorithm [60]. In order to reduce the runtime, a flat multi-
canonical energy probability distribution was demanded only
in a subset I C [Enin, Emax] = [—2V,6V] of the energy
range [61] while sampling energies outside of / was avoided.
Depending on the choice of I, this restricts the reweighting
range, that is, the range of inverse temperatures B for which
reliable results for the canonical ensemble can be obtained
via (16) and (17). We chose I ~ [—1.99V, —V] which is
sufficient for the analysis of the phase transition. A further
speedup of the simulation was achieved by performing a linear
extrapolation of the logarithmic multicanonical weights after
each cycle of the iteration run. This extrapolation corresponds
to an optimization of the initial multicanonical weights which
were in the beginning chosen to be constant in /. The length
of the single iteration cycles increased in the course of the
iteration run so that, first, a rough estimate of the desired
multicanonical weights was obtained which was then fine-
tuned. Finally, the iteration was terminated when the fol-
lowing three conditions were satisfied simultaneously. First,
the estimated multicanonical energy probability distribution
has to be sufficiently flat in /. That means that the relative
deviations of its minimal and maximal value from the average
are both smaller than 30%. Second, the statistical weight [62]
of the last iteration cycle is below 20% within /. Third, the
Metropolis acceptance probabilities change by maximally 5%
compared to the previous iteration cycle.

In the production run, we performed for every lattice size L
at least 10° sweeps per process but did not end the simulation

(b)

E/V

—1.994
0 X Pmuca (E)

FIG. 2. (a) Part of the time series of the energy per lattice site
e = E/V of one process of the production run for L = 16. The
variable ¢ denotes the sweep number. (b) Corresponding estimated
multicanonical energy probability distribution from all processes
together. The vertical axis is the same as in the time-series plot.

until every process rendered at least 2 tunnel events itself and
at least 10 tunnel events on average. A tunnel event is here
defined to be realized when starting from an energy below or
equal to the minimum of 7, the simulation reaches an energy
above or equal to the maximum of /, or vice versa. The initial
spin configuration was set to be an AB structure ground state
and the first 300 sweeps were excluded for the equilibration.
We observed that despite of acceptably flat multicanonical
energy probability distributions, the time series still show
structures, see Fig. 2. These structures probably correspond
to remaining free-energy barriers in other “directions” than
the energy, similar to the additional free-energy barriers orig-
inating from the droplet-formation [63,64] and the droplet-
strip [65] transitions in the two-dimensional Ising model.

B. Analysis

For the analysis of the simulated data, the jackknife ap-
proach [66-69] was applied to binning [70] blocks which are
represented by the different processes. From (16) and (17),
the canonical expectation value (e) of the energy per lattice
site, the specific heat ¢ = B2V ((€?) — (e)?), the energetic
Binder parameter B = 1 — (e*)/3(e?)? and the canonical en-
ergy probability distribution P (E) were estimated. The results
are plotted in Fig. 3. One observes the typical behavior of a
first-order phase transition where (e)(8) exhibits a disconti-
nuity in the approach of the thermodynamic limit and P(E)
shows a double-peak structure near the phase transition point.

From these canonical quantities, the inverse pseudo
phase transition temperatures B (L), Bp,, (L), Beqw(L),
and Beq(L) were determined. Here SBeqw(L) and
Begn(L) were calculated by the minimization of the
functions Deqw(B) = |[W, — Wy| and Degn(B) = |ho — hal,
respectively, where the weights W,,, and the heights
hosq of the ordered and disordered peak of the canonical
energy probability distribution P(E) were estimated
via W, = 2E<Evauey P(E), W;= ZIDEMW P(E), h,=
MAXE < E ey P(E), hy= MAXE>E ey P(E) with Evalley
denoting the location of the local minimum of P (E) between
the two peaks.
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FIG. 3. Estimated canonical quantities for the lattice sizes L =
5, ..., 18. The distributions P (E) are here calculated at the respec-
tive inverse temperatures feqn(L). For the sake of clarity, the error
bars are not depicted here.

Via least-squares fits [71,72], the regarded inverse pseudo
phase transition temperatures were fitted with the fit functions

k k k
LW =ko+ 5+ 5+ 1o (18)

f(a)( L)y=k k_l ﬁ ﬁ
s —0+L3+L6+L9,
where the fit parameters k, are set to zero for all @ > 0 and
o = 1, 2, 3 denotes the order of the fit function. The functions
£ correspond to the nonstandard scaling according to (8),
(9), and (10) whereas the functions fs(”) represent the standard
ansatz. For comparison, we fitted the data of the inverse
pseudo phase transition temperatures also with the fit function

19)

ki

-1
faR(L) = (ko + Z) (20)

which Beath and Ryan [16] employed, however, without a
theoretical justification.

Since the corrections arising from both, the truncation
of the asymptotic expansions as well as the neglect of the
additional exponentially bounded corrections [73] predicted
by the Pirogov-Sinai theory are in general largest for the
smallest lattice sizes, we varied the smallest lattice size L pin fit
which is included in the fitting. In the same way, also the
largest system size Lmaxs: included in the fit was varied in
order to examine whether there is a crossover between the
different scaling ansatzes. The results for the fits of Beqw(L)
are shown in Fig. 4 by means of the quality of fit parameter
Q. The corresponding heatmaps for B . (L), Bg,. (L), and
Begn(L) look very similar and hence are not depicted here.

One can see that up to the first order, the ansatz fég of
Beath and Ryan [16] is slightly better than the standard ansatz
£V but clearly not as good as the nonstandard ansatz f).
Therefore, from now on, we will not examine the unjustified

16
14
E12
Z10
= 8 0.8 1
6 I |
8 10 12 14 16 18
max,fit
101 .(1) ul £@ 141 0(3)
14 "% ! 2] "
E1y 12
510 10 10
~ N s ]
6

6
8§ 1012 14 16 18 10 12 14 16 18

max,fit

10 12 14 16 18
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max,fit

161 (1) ul 1@ 1l .(3)
14 S S S
12
£12 12

£ 10
10 10

3 8

6

6
8 1012 14 16 18

max,fit

10 12 14 16 18 10 12 14 16 18

max,fit

max, fit

FIG. 4. Quality of fit parameter Q € [0, 1] for the fits of
Beqw(L) with the different fit functions. Here the lattice size range
[ Lumin fit> Lmax.fic], for which the fit is performed, is varied. The color-
value-identification of Q is shown above.

scaling ansatz fé}? anymore. Taking into account also the
second order, the nonstandard ansatz f» yields good fits
for all ranges [Lminfit: Lmaxfic] Of fitted lattice sizes L. Of
course, also the results of the standard ansatz fs(”) improve
with increasing order o, but they stay behind the nonstandard
ansatz f°) in any case. This leads to the conclusion that up
to the largest simulated lattice size L = 18, the nonstandard
ansatz fits best. A crossover between the different ansatzes
is not observable in the range of the simulated lattice sizes.
However, it cannot be excluded that such a crossover might
occur for larger lattice sizes L > 18.

For each ansatz, the best fit is selected for Lp,xa = 18.
For the standard ansatz, the fit function up to order o = 3
is chosen. For the nonstandard ansatz and Bg_, (L), Beqw(L),
Begn(L), it is order o = 2 since 0 = 3 does not significantly
improve the quality of the fits, but results in comparably
large relative statistical errors on the fit parameters. Solely for
Benn (L), order o = 3 fits better in the nonstandard ansatz. The
best fit is then defined by the smallest value of L, s satisfy-
ing O > 0.01 and x?/Ngot < 3 where x? is the minimized
quantity of the least-squares fit and Ny is the corresponding
number of degrees of freedom. In Fig. 5, the best fits of all
regarded inverse pseudo phase transition temperatures for the
two different ansatzes are shown.

For both scaling ansatzes, each inverse pseudo phase tran-
sition temperature B (L), Bp.., (L), Beqw(L), Begn(L) yields

an estimate B¢, B, B B of the inverse phase tran-
sition temperature via the respective best fit. A final result
Bo is then obtained as the error-weighted mean [74-76].

Its statistical error is calculated as the maximum of the
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FIG. 5. Obtained data of the regarded inverse pseudo phase
transition temperatures for the lattice sizes L =5, ..., 18 together
with their best fits according to the nonstandard ansatz (a) and the
standard ansatz (b).

corresponding error weighted standard deviation and the
maximal error due to error propagation. The obtained val-
ues for both ansatzes are given in Table I. According
to their error bars, the final estimates of the phase tran-
sition point for the nonstandard and the standard scal-
ing ansatz differ significantly from each other which jus-
tifies their differentiation. As reasoned above, the nonstan-
dard ansatz should be employed. Its final estimate Ty =
1.735047(46) of the phase transition temperature is sig-
nificantly below the previously commonly accepted value

TABLE 1. Resulting estimates of the phase transition point for
the nonstandard and the standard scaling ansatz. The estimate f; is
calculated by a combination of 5™, g2, B4, and S5, which
in turn are obtained from the best fits of the respective inverse
pseudo phase transition temperatures. Besides, Ty = 1/, is com-
puted where the corresponding error is determined via maximal error
propagation.

Nonstandard ansatz Standard ansatz

Bem 0.576338(31) 0.575432(24)
B 0.576363(14) 0.575432(24)
c0 0.576358(16) 0.575431(23)
ca 0.576342(14) 0.575436(24)

Bo 0.576353(15) 0.575433(24)

T 1.735047(46) 1.737823(70)

0.016

Cmax /V

0.014

0.644
(d)
0.642
ms 0.64 {
0.638
0.005 0.01 0.0005  0.001
1/12 1/L13

FIG. 6. Obtained data of ¢,/ V [upper plots (a) and (b)] and
Buin [lower plots (c) and (d)] for the lattice sizes L =9, ..., 18
together with their best fits according to the nonstandard [plots (a)
and (c) on the left] and the standard ansatz [plots (b) and (d) on the
right].

To = 1.76 of Binder [10] but above the high-precision
estimate Ty = 1.7217(8) of Beath and Ryan [16], which is not
surprising since they used a different scaling ansatz.

We also determined cp,x/V and By, and fitted them up
to order 0 =2 with the fit functions f{* and f{* which
correspond to the nonstandard ansatz (13) and (14) and the
standard ansatz, respectively. As described for the inverse
pseudo phase transition temperatures, the best fits are selected,
which is here achieved for o = 2. The results are shown in
Fig. 6. Also here one can see that the nonstandard ansatz fits
better then the standard ansatz.

IV. CONCLUSION

We studied the phase transition of the fcc Ising antifer-
romagnet (1) via a parallelized Monte Carlo simulation in a
multicanonical ensemble. First, it could be confirmed that the
transition is of first order since we observed a clear double-
peak structure of the canonical energy probability distribution
P(E). Besides, we found that after bypassing the free-energy
barrier which causes the valley between the two peaks of
P(E), there are still other “hidden” barriers left.

The main focus of the investigation lay on the finite-
size scaling analysis of the common inverse pseudo phase
transition temperatures S (L), Bp...(L), Beqw(L), Beqn(L)
and also of the extremal values cpmax/ V', Bmin Of the specific
heat per lattice site and the energetic Binder parameter. For
the simulated lattice sizes L < 18, all of these quantities
complied with the nonstandard scaling ~L~2 instead of the
standard scaling ~L ™3 like it was previously also observed
for the plaquette-only gonihedric Ising model. Employing
this nonstandard scaling ansatz, we obtained the value Ty =
1.735047(46) for the phase transition temperature.

The transmutation of the finite-size scaling is probably
caused by the exponential ground-state degeneracy of the fcc
Ising antiferromagnet. A crossover to the standard scaling for
increasing L was not observed. However, this could happen
for larger systems L > 18 which would be an interesting but
computationally very demanding question for a future project.
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