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Supervised learning approach for recognizing magnetic skyrmion phases
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We propose and apply simple machine learning approaches for recognition and classification of complex
noncollinear magnetic structures in two-dimensional materials. The first approach is based on the implementation
of the single-hidden-layer neural network that only relies on the z projections of the spins. In this setup, one
needs a limited set of magnetic configurations to distinguish ferromagnetic, skyrmion, and spin spiral phases,
as well as their different combinations in transitional areas of the phase diagram. The network trained on the
configurations for the square-lattice Heisenberg model with Dzyaloshinskii-Moriya interaction can classify the
magnetic structures obtained from Monte Carlo calculations for a triangular lattice and vice versa. The second
approach we apply, a minimum distance method, performs a fast and cheap classification in cases when a
particular configuration is to be assigned to only one magnetic phase. The methods we propose are also easy to
use for analysis of the numerous experimental data collected with spin-polarized scanning tunneling microscopy
and Lorentz transmission electron microscopy experiments.
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I. INTRODUCTION

Fascinating progress in the development of neural-
network-based approaches in condensed-matter theory allows
one to advance the methods for studying the physical prop-
erties of materials. For instance, a neural network represen-
tation of the quantum Hamiltonian wave function proposed
by Carleo and Troyer [1] has revolutionized the simulation of
complex many-body systems [2,3]. Within such an approach,
it becomes possible to model frustrated systems for which
existing quantum Monte Carlo methods fail due to the sign
problem. Another remarkable example of the innovations in
artificial neural network learning is the identification of the
magnetic phases of the spin Hamiltonians widely used to
describe strongly correlated materials [4–10]. For instance, in
the case of the two-dimensional Ising model, the ferromag-
netic and paramagnetic phases can be successfully recognized
with a single-hidden-layer network [11]. Importantly, topo-
logical phases obtained with a more complex XY Hamiltonian
[12,13] can also be classified with machine learning, however
in this case one needs to design a deep convolutional network
and use a system of filters, which makes such an approach
similar to image recognition [14].

Therefore, an important question arises. Is it possible
to use the machine learning approach in its simplest and
transparent formulation with a single hidden layer [11] to
explore complex noncollinear magnetic phases of techno-
logical importance? In this respect, topologically protected
magnetic skyrmions [15–19] and spin spiral states are the first
candidates for such a consideration, since they can be used
to create novel magnetic memory devices [20]. Numerous
experimental studies revealed the skyrmion state in metallic
ferromagnets with Dzyaloshinskii-Moriya interaction, such as
FeGe [21,22], Fe monolayer on Ir(111) [23], MnGe [24], and
FexCo1−xSi [25] in a narrow range of external parameters,
magnetic fields, and temperatures. The experimental phase di-
agrams of these materials [25] contain significant transitional

areas between different phases, which raises the problem of
the precise definition of the skyrmion and spin spiral phase
boundaries.

Here we show that a standard feed-forward network (FFN)
can be used efficiently for supervised learning on topolog-
ically protected magnetic skyrmion states and spin spirals
originating from the spin-orbit coupling. Figure 1 illustrates
the idea of our approach. A noncollinear magnetic config-
uration obtained from Monte Carlo simulations describing
a two-dimensional ferromagnet with Dzyaloshinskii-Moriya
interaction [Fig. 1(a)] is projected on the z axis [Fig. 1(b)].
This z-projected magnetic structure is considered as input for
the single-hidden-layer network [Fig. 1(c)]. Having trained
such a network on a limited set of configurations belonging to
pure ferromagnetic, skyrmion, and spiral states on the square
lattice, we were able to recognize the states from completely
different parts of the phase diagram, including transitional
areas between different phases. Moreover, we found that the
trained network can classify the data collected for a triangular
lattice, which demonstrates the universality of our approach.
Another important result of our work is the demonstration
of a high classification performance achieved with a nearest
centroid method. Although it is one of the simplest machine
learning techniques, the centroid classifier nevertheless shows
very accurate results in the case of unseen data on skyrmion
and spin spiral configurations.

II. MODEL AND METHOD

In our study, to simulate the topological magnetic excita-
tions we used the following spin Hamiltonian on the 48 × 48
square lattice:

H = −
∑
i<j

Jij SiSj −
∑
i<j

Dij [Si × Sj ] −
∑

i

BSz
i , (1)
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FIG. 1. Schematic representation of the machine learning process. (a) The skyrmion magnetic structure as obtained from the classical
Monte Carlo simulations for a two-dimensional ferromagnet with Dzyaloshinskii-Moriya interaction at finite temperature and magnetic field.
Black arrows indicate the in-plane xy spin components. (b) The matrix containing the z projection of the spin structure to be classified.
(c) Neural network having a single hidden layer of sigmoid neurons. The values of the input neurons are equal to z components of the spins of
the magnetic configuration.

where Jij and Dij are the isotropic exchange interaction and
Dzyaloshinskii-Moriya vector, respectively. Si is a unit vector
along the direction of the ith spin, and B denotes the z-
oriented magnetic field. We take into account only the inter-
actions between nearest neighbors. The isotropic exchange in-
teraction is positive in our simulations, which corresponds to
the ferromagnetic case. The symmetry of the Dzyaloshinskii-
Moriya vectors is of C4v type. The Dzyaloshinskii-Moriya
interaction (DMI) has an in-plane orientation and is per-
pendicular to the corresponding intersite radius vector.
The Hamiltonian was solved by using the classical Monte
Carlo approach. The spin update scheme is based on the
METROPOLIS algorithm. The systems in question are gradually
(200 temperature steps) cooled down from high temperatures
(T ∼ 3J ) to the required temperature. Each temperature step
run consists of 1.5 × 106 Monte Carlo steps.

To identify the different magnetic phases of the spin Hamil-
tonian, Eq. (1), we calculated spin-spin correlation functions
[26] and topological charges [27] (the corresponding expres-
sions are presented in Appendix A), and visualized a number
of spin configurations from each simulation. By using such
information, the neural network was trained as described
below.

III. NEURAL NETWORK

In our study, we employ a standard network architec-
ture that is a one-layer feed forward network [presented
in Fig. 1(c)]. It consists of one hidden layer of sigmoid
activation neurons and three output sigmoid neurons that
activate depending on the particular magnetic phase. For the
training set, we generated 1000 configurations for each of the
ferromagnetic, skyrmion, and spiral states corresponding to
the areas marked in Fig. 2. In these simulations, we fixed
J = 1 and used a uniform distribution for the magnetic field
and Dzyaloshinskii-Moriya interaction. The simulation tem-
peratures were taken in the range T ∈ [0.02, 0.1] in units of
isotropic exchange interaction. Moreover, we generated 1000
configurations belonging to the paramagnetic phase at high

temperatures (T ∼ 10J ) and added them to the training set.
For these paramagnetic configurations, the ground-truth labels
of all the output neurons were set to zero.

The main challenge in machine learning for classification
of magnetic phases is how to relate the states of the input neu-
rons of the network to the particular magnetic configuration.
As was shown in Ref. [11], in the case of the Ising model with
Sz = ±1 there is a one-to-one correspondence between the
neuron values in the input layer and the spins of the particular
configurations. As another example, for the XY model solu-
tions characterized by in-plane noncollinear magnetic states,
the authors of Ref. [12] used angles magnitudes determining
the in-plane orientations of the spins.

In the case of noncollinear magnetic configurations, the
situation is more complicated because the orientation of a
spin cannot be described by a single angle value. However,

FIG. 2. Phase diagram in terms of Dzyaloshinskii-Moriya in-
teraction and magnetic field. The abbreviations Sk, FM, and Sp
denote skyrmion lattice state, ferromagnetic, and spin spiral state,
respectively. The phase diagram was obtained at T = 0.02. All the
parameters are given in units of J . Black ovals denote the phase areas
used for supervised learning.
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FIG. 3. Phase triptych obtained by using the neural network with
64 hidden neurons. Color intensities indicate the values of the output
neurons for different phases; dark and light colors correspond to
1 and 0, respectively. The Dzyaloshinskii-Moriya interaction was
chosen to be D = 0.72. All the parameters are given in units of
J . White circles denote the phase boundaries defined with the spin
structure factors.

one can make use of the fact that skyrmions are characterized
by a typical profile, i.e., the core and background spins of
a skyrmion aligned antiparallel and parallel to the applied
magnetic field [Fig. 1(b)], respectively. This means that the
skyrmion excitation can be detected by analyzing the only
z components of the spins [28]. We use this fact to realize
our neural network approach, in which the values of the input
neurons are equal to the z components of the spins obtained
from Monte Carlo simulations of Eq. (1). As we will show
below, such an approach also works well in the case of spin
spiral and ferromagnetic phases.

The network was trained to minimize the error func-
tion that is a standard mean-squared error (MSE) function.
Weights of neurons were adjusted by means of the backpropa-
gation method. Details of the learning process are given in Ap-
pendix B. The network was trained with different numbers of
hidden neurons from 8 to 128. According to our simulations,
the network with 64 hidden neurons gives reliable results for
the phases recognition. We found that a further increase of
hidden neurons for the considered case leads to a decrease
in recognition quality. Thus, the total number of adjustable
parameters are 64L2 + 192, which is much smaller than in
previous work [12].

A. Phase diagram

The developed neural network approach was used for
construction of the phase diagram of the spin model, Eq. (1),
on the square lattice. To do this, we used a grid of 625 points
on the temperature–magnetic-field plane. For each point, the
values of the neural network output neurons were averaged
over 10 Monte Carlo runs. Thus the total number of Monte
Carlo calculations was equal to 6250.

From Fig. 3 one can see that the trained network can
successfully recognize all the phases of interest at low
temperature, which follows from a comparison with the

FIG. 4. Hidden-layer arguments as a function of the z-oriented
magnetization of the simulated spin configurations for (top) 8- and
(bottom) 64-hidden-neuron network.

boundaries obtained by calculating the structure factor (white
circles). It is worth mentioning that we obtained a large value
of the skyrmion number (Q > 15) for the parameters corre-
sponding to the dark green area in Fig. 3. Importantly, it is
possible to perform a composition analysis of the transitional
areas between different phases. For each point of the phase
diagram, one can define the values of the output neurons
that indicate the contributions of the phases. This gives us
an opportunity to solve the complex problem of defining
the phase boundaries, and to quantitatively characterize the
transitional areas between different phases [29,30].

B. Analysis of the classification process

The results of the previous neural-network-based studies
[1,11–13] raise new fundamental questions on how a network
learns different phases of matter. It was shown in Ref. [11]
that identification of the Ising model states is related to the
difference in total magnetization of the spin configurations
belonging to different phases. In our case, such an expla-
nation can also be used since the phases we simulated are
characterized by different magnetizations. The magnetization
per spin, m(x) = 1

N

∑N
i Sz

i , in the training set is in the range
[0.91, 0.99], [0.38, 0.53], and [0, 0.03] for ferromagnetic,
skyrmion, and spin spiral phases, respectively. At the same
time, the test sets include pure spin configurations that are
characterized by wider ranges of the average magnetization:
[0.84, 0.99] (ferromagnetic), [0.33, 0.69] (skyrmion), and [0,
0.07] (spin spiral). In agreement with Ref. [11], we obtain that
the components of the vector Wx (here W is the weight matrix
between input and hidden layers) become linear functions
of the magnetization m(x) (Fig. 4). However, in our case
the increase in the number of hidden neurons leads to a
larger number of neuron categories, which may mean that the
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FIG. 5. Hidden-layer arguments as a function of the skyrmion
number of the simulated spin configurations for (top) 8- and (bottom)
64-hidden-neuron network. The results have been obtained for the
pure DMI model having J = 0.

magnetization is not the only parameter the network uses for
recognition.

Since the focus of this study is on skyrmion phase recog-
nition, we have also investigated the dependence of the
hidden-neurons arguments on the topological charge. For that
purpose, the pure DMI model with zero isotropic exchange
interaction was simulated at different magnitudes of mag-
netic field. This gives us the opportunity to produce 2000
magnetic configurations characterized by completely different
skyrmion numbers (from 0 to 170) for the same system size.
These results are presented in Fig. 5. All the neurons can
be divided into two categories. The first one corresponds to
neurons with argument values that are close to zero and are
not sensitive to topological charge. The second depends on the
skyrmion number of the particular magnetic configuration.

To understand neural network internal functioning, one
can also visualize hidden-layer neurons. By the example of
the configuration with big skyrmions presented in Fig. 6,

FIG. 6. (Left) z-projection of the skyrmion magnetic configura-
tion obtained with the parameters J = 1, D = 0.2, T = 0.02, and
B = 0.02. (Right) Visualization of the arguments of the specific
hidden layer neurons.

FIG. 7. (a) Example of a spiral state (D = 1.4, B = 0.02, T =
0.05, and J = 1) used for training the network. (b) Example of a
complex spiral configuration from a test set obtained with D = 0.72,
B = 0.03, T = 0.22, and J = 1. (c) The output neurons values in
the case of configuration (b) depending on the number of hidden
neurons. Numbers in blue, orange, and green circles correspond to
values of skyrmion, spiral, and FM outputs, respectively.

we performed such an analysis. Importantly, the size of
the skyrmions in the training dataset does not exceed 10a,
where a is the lattice constant, but we found that the trained
neural network correctly classifies the configurations having
skyrmions of much larger diameter. Indeed, the diameter of
the skyrmion in Fig. 6 is about 35a, and such a skyrmion state
is uniquely recognized by the neural network even with eight
hidden neurons.

Figure 6 gives a two-dimensional representation of two
hidden-neuron arguments that are the weight matrix multi-
plied by spin z components corresponding to the magnetic
configuration. The maximal and minimal intensities of the
core and background areas of the skyrmions are different
for these neurons. Nevertheless, one can easily recognize the
original skyrmion structure. The visualization of the neural
network weights by themselves does not give any useful
information about network functioning.

As a hard test for our neural-network approach, we
generated 300 high-temperature spiral configurations (T ∈
[0.18; 0.26], D = 0.72, B = 0.03). A typical example of
such configurations is presented in Fig. 7(b). It is of labyrinth
type and consists of broken spin spirals that are distorted due
to temperature effects. Importantly, the training set contains
only ideal spin spirals presented in Fig. 7(a). One can see
that an increase in the number of hidden neurons leads to
a decrease in the value of the output neuron corresponding
to the skyrmion phase that provides a more accurate phase
separation. Having analyzed this test set, we found that the
total number of clearly recognized configurations increased
from 40% to 75% using 8 and 64 hidden neurons, respectively.

C. Variation of the lattice structure

The next step of our investigation is to examine the net-
work trained on the square-lattice magnetic configurations
for recognizing the phases of the spin Hamiltonian on the
triangular lattice. For that we solved Eq. (1) with DMI of C3v

symmetry and generated magnetic configurations belonging
to skyrmion, spin spiral, and ferromagnetic phases as well
as their mixtures. Figure 8 gives the corresponding examples.
For preparation of the test configurations, we have solved the
spin Hamiltonian, Eq. (1), on a 48 × 48 triangular lattice with
periodic boundary conditions. The supercell of the rhombic
shape was replicated. A square area of 48 × 48 spins cropped
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FIG. 8. Examples of (a) skyrmion, (b) spin spiral, and (c) fer-
romagnetic configurations stabilized on the triangular lattice and
recognized with the neural network trained on square-lattice data.
Numbers in blue, orange, and green circles correspond to values of
skyrmion, spiral, and ferromagnetic outputs, respectively.

from the replicated lattice was used to define the values of the
neural network input neurons.

It was found that the trained network classifies the
skyrmion and ferromagnetic triangular-lattice configurations
with high precision. In the case of the spin spiral states, the
classification accuracy is low since such magnetic configu-
rations [a typical example is presented in Fig. 8(b)] strongly
differ from those we used in the training set [Fig. 7(a)].

IV. MINIMUM DISTANCE (NEAREST CENTROID)
CLASSIFICATION

As was shown in the previous section, the neural network
approach paves the way to exploring the magnetic phase
diagram of noncollinear magnets including mixed states such
as spin-spiral-skyrmion and skyrmion-ferromagnetic states.
At the same time, the problem of when a particular state
should be assigned to only one magnetic phase can be solved
with a much simpler method.

In this section, we utilize the nearest centroid classifica-
tion method as implemented in the SCIKIT-LEARN PYTHON

package [31]. Figure 9 shows the overall process of the
classifier training. As in the case of FFN, we perform data
preprocessing by projecting local magnetization vectors on
the z axis. The next step is to calculate mean data values for
each class α (magnetic phase) in the training dataset. These
mean values are called centroids and are given by

〈X〉α = 1

Mα

Mα∑
k=1

X(k)
α , (2)

where X(k)
α = {S (k)

z1 , S
(k)
z2 , . . . , S

(k)
zN } is a vector formed from z

components of local magnetization S
(k)
zi for the kth magnetic

configuration, α = FM, PM, Sk, Sp denotes a phase and Mα

is the number of the magnetic configurations belonging to the
phase α. Thus, one can identify the phase αtest of a magnetic
configuration Xtest by determining the minimum distance from
it to the centroid of each class (magnetic phase):

d = minα{||〈X〉α − Xtest||}, (3)

where || · · · || indicates the norm of a high-dimensional
vector.

As in the case of the neural network for training of the
nearest centroids classifier, we used the same set comprising
4000 square-lattice magnetic configurations. Figure 9 (right
panels) gives two-dimensional visualizations of the centroids
calculated for different magnetic phases. As one can expect,
the maximal and minimal centroid intensities are connected to
the average magnetization per spin for each phase. However,

FIG. 9. Comparison of centroids calculated for different phases.
Left panels are the examples of skyrmion, spin-spiral, paramagnetic,
and ferromagnetic configurations. The arrows denote in-plane orien-
tations of the magnetic moments. Middle panels are the correspond-
ing z projections of the example magnetic configurations. Right
panels represent two-dimensional visualizations of the centroids
calculated with Eq. (2) for training datasets.

each centroid has a distinct magnetic pattern inherent to the
corresponding phase. For example, the average magnetization
values (per spin) of spin spiral and paramagnetic phases are
close to zero, but the centroid of the spiral phase preserves
the ordering, whereas the mean of the paramagnetic phase
configurations remains disordered. This feature allows the
method to distinguish PM and spin spiral phases.

The next important step is to estimate the performance
of the algorithm on the unseen data, such as big skyrmions
(Fig. 6), high-temperature spin spirals (Fig. 7), and triangular
lattice configurations (Fig. 8). The results of the classification
are presented in Table I. It was found that both the neural

TABLE I. Comparison of different ML classifiers trained with
the same dataset. Testing sets include 100 big skyrmions (Big Sk),
300 high-temperature spin spirals (HT Sp), and a dataset for the
triangular lattice (�).

Dataset FFN (%) Mean (%) k-NN (%)

Big Sk 94 100 0
HT Sp 75 78 9
� FM 100 100 100
� Sp 40 54 25
� Sk 91 100 48
� PM 37 90 100
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FIG. 10. Comparison of centroids calculated with (b) test set
configurations on the triangular lattice, and (a,c) training set on the
square lattice.

network and the nearest centroids classifier show comparable
recognition accuracy for big skyrmions (94% and 100%),
high-temperature spirals (75% and 78%), ferromagnetic con-
figurations (both 100%), and skyrmion configurations on a
triangular lattice (91% and 100%). Finally, the nearest cen-
troid algorithm demonstrates excellent performance for the
classification of the paramagnetic phase (90%). The centroid
classifier shows slightly better classification of 880 spin spiral
configurations stabilized on a triangular lattice (54%) than
the neural network one, but recognition accuracy is still low.
This can be due to the different topology of the underlying
spiral structure for triangular and square lattices. Indeed, Fig.
10 shows that the centroid patterns for spin spirals stabilized
on triangular and square lattices are completely different. One
can also note that the calculated distances || 〈X〉α − 〈X〉test ||
from the triangular lattice spiral set centroid to the square
lattice spiral and paramagnetic set centroids are comparable
(1.7 and 1.8, respectively), thus explaining the part of the
triangular spiral configurations recognized as paramagnetic.

V. k-NEAREST-NEIGHBOR CLASSIFIER

The choice of the best classifier algorithm is a nontrivial
task and is highly dependent on the nature of the classified
data and the purpose of classification. Often one needs to test
a number of approaches to find the appropriate one. Here, we
present results obtained for the k-nearest-neighbor method,
which is widely used for classification tasks.

As for the nearest centroids classifier, in the k-NN method
a magnetic configuration will be assigned to the specific class
of magnetic configurations from the test set by using the
distance metric, however the classification is now based on
the closest k neighbors in the feature space, which is the
space of the magnetization vector elements. It is known that
the best choice of parameter k depends on the nature of the
data. We found that the classification scheme based on three
nearest neighbors (k = 3) shows the best results for our cal-
culations. Figure 11 gives a one-dimensional representation
of the training set within the k-NN method. There is a clear
separation of the magnetic configurations belonging to the
different phases. Since the training in the k-NN algorithm
involves simply storing the magnetization vectors, the neural
network approach works more slowly at this stage.

To estimate the accuracy of the k-NN algorithm, we
carried out classification for our test datasets presented in
Table I with this method. It was found that the k-NN method

FIG. 11. One-dimensional visualization of a training set com-
prising 4000 magnetic configurations. Yellow circles, red squares,
blue diamonds, and green triangles denote magnetic configurations
belonging to paramagnetic, spiral, skyrmion, and ferromagnetic
phases, respectively. They are distributed with respect to the distance
from the origin in 2304-dimensional space (48 × 48 spins in total for
each configuration).

improperly assigns the big skyrmions to ferromagnetic
phase configurations, whereas the neural network correctly
classifies 94% of such skyrmions. Then only 9% of 300 high-
temperature spin spiral configurations of the labyrinth type
were correctly classified. At the same time, the neural network
approach demonstrates 75% accuracy for this test. Both the
k-NN and neural network methods show 100% classification
results in the case of ferromagnetic configurations (880 in
total) stabilized on a triangular lattice. In turn, the neural
network clearly surpasses k-NN for skyrmion states (880 in
total) on the triangular lattice, 91% against 48%. Neverthe-
less, the k-NN classifier correctly recognizes all paramagnetic
configurations.

VI. CONCLUSIONS

We have developed a neural-network-based approach for
the recognition of magnetic phases of two-dimensional fer-
romagnets with Dzyaloshinskii-Moriya interaction in wide
ranges of magnetic field and temperatures. One needs to
generate only a limited set of magnetic configurations (∼4000
in total) to train the network. It facilitates the construction of
the phase diagram of the system in question during Monte
Carlo sampling. Complex and mixed skyrmion-ferromagnetic
and skyrmion-spin-spiral configurations can be quantitatively
described, which was not possible before. The calculations
for spin Hamiltonians on a 128 × 128 square lattice also
demonstrated high accuracy in classification of the magnetic
phases. We have shown that the method is not sensitive to the
particular lattice structure used for training. By construction,
the network approach allows one to recognize skyrmions
of different types (Bloch and Néel). It can be used for on-
the-fly classification of the skyrmion magnetic configurations
observed in experiments. We have also utilized other widely
used methods of machine learning classification, and showed
that the proposed approach demonstrates a comparable perfor-
mance with the nearest centroid classifier (except for the para-
magnetic phase) and totally surpasses the k-nearest-neighbors
method.
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APPENDIX A: PROBLEM DEMONSTRATION

The aim of this appendix is to demonstrate the complexity
of the magnetic phase classification problem using the ex-
ample of skyrmionic materials. In our previous work [30],
we have shown that there are five stable phases in a system
described by the spin Hamiltonian, Eq. (1), which can be
uniquely identified at low temperature by calculation of the
spin structure factors and the skyrmion number (topological
charge). The expressions for spin structure factors are given
by

χ‖(q) = 1

N

〈∣∣∣∣∣
∑

i

Sz
i e

−iqri

∣∣∣∣∣
2〉

, (A1)

χ⊥(q) = 1

N

〈∣∣∣∣∣
∑

i

Sx
i e−iqri

∣∣∣∣∣
2

+
∣∣∣∣∣
∑

i

S
y

i e−iqri

∣∣∣∣∣
2〉

, (A2)

where q is the reciprocal space vector, Sα
i [α = (x, y, z)] is

the projection of the ith spin, and ri is the radius vector for
the ith site.

In turn, the topological charge is defined in the following
way:

Q = 1

4π

∑
l

Al, (A3)

where Al is the surface of spherical triangle l with vertices
determined by three unit spin vectors,

Al = 2 arccos

(
1 + Si · Sj + Sj · Sk + Sk · Si√

2(1 + Si · Sj )(1 + Sj · Sk )(1 + Sk · Si )

)
.

(A4)

The sign of Al in Eq. (A3) is determined as sgn(Al ) = sgn(Si ·
[Sj × Sk]). Importantly, we do not consider the exceptional
configurations for which

Si · [Sj × Sk] = 0,

1 + Si · Sj + Sj · Sk + Sk · Si � 0. (A5)

Figure 12 gives examples of the most interesting phases.
As can be seen, all of them are recognized correctly by our
neural network. However, we are not able to distinguish the
first and second configurations by using the skyrmion number.
Another problem is connected to the fact that if we rely only
on Q and the spin-structure factor, the second state may be
associated with the double-q skyrmion state, which is not the
case. The developed network approach allows us to overcome
this classification problem.

Figure 13 demonstrates examples of the nonperiodic
skyrmion phase at low- and high-temperature pure skyrmion
and mixed skyrmion-bimeron phases. As can be seen, all
of them have the same smeared spin structure factors and
approximately equal skyrmion numbers. This makes it im-
possible to distinguish them by using common techniques.
At the same time, the developed neural network provides

FIG. 12. Examples of pure skyrmion (a), mixed skyrmion-
bimeron (b), and pure spiral (c) magnetic configurations obtained
at low temperature (T = 0.02J ) and corresponding spin-structure
factors. Numbers in blue, orange, and green circles correspond to
values of skyrmion, spiral, and FM outputs, respectively. Skyrmion
numbers of these configurations are equal to 32, 28, and 0 from left
to right.

excellent classification without requiring significant time for
the calculations.

APPENDIX B: MACHINE LEARNING DETAILS

As an input of our FFN, we used the z components of the
spins obtained from Monte Carlo simulations, and then the
input and output of the hidden-layer neurons (Fig. 14) were

FIG. 13. Examples of nonperiodic skyrmions (a) obtained at low
temperature (T = 0.02J ), pure skyrmions (b), and mixed skyrmion-
bimeron (c) magnetic configurations obtained at high temperature
(T = 0.4J ) and corresponding spin-structure factors. Numbers in
blue, orange, and green circles correspond to values of skyrmion,
spiral, and FM outputs, respectively. Skyrmion numbers of the
presented configurations are equal to 15, 19, and 15 from left to right.
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FIG. 14. Schematic representation of a constructed neural net-
work with a single hidden layer. We used sigmoid as an activation
function of hidden and output neurons. All the notations are de-
scribed in the text.

calculated by the following equations:

h
inp
j = 1∑N

i=1 Sz
i

N∑
i=1

Sz
i W

h
ij , (B1)

hout
j = sigmoid

(
h

inp
j

) = 1

1 + e−h
inp
j

, (B2)

where Sz
i is the value of the ith input neuron, Wh

ij is the
weight between the ith input neuron and the j th hidden
neuron, and N = L × L is the number of input neurons. The
normalization factor in the first equation is required in order
to shift the input value into the range where sigmoid(hinp

k ) ∈
[0; 1]. This is very important, especially at the beginning of the
learning process when we randomly initialize all the weights
in the range [−1; 1]. Without normalization, we will obtain
hout

j equal to 1 or 0 because of the large number of input
units. This will lead to the situation when the weights between
the hidden and output neurons become the only parameters
that affect the result. The values of the output layer neurons
were calculated in a standard way by using the following

equation:

ok = sigmoid

⎛
⎝ Nh∑

j=1

hout
j Wo

jk

⎞
⎠, (B3)

where Nh is the number of hidden neurons, and Wo
jk is the

weight between the j th hidden neuron and the kth output
neuron.

During the learning process, we randomly chose 10% of
the training set for cross-validation to avoid overfitting, and
we defined the stopping point where the error is less than the
required value. The error function is given by

E(oideal, oactual ) =
∑No

k=1

(
oideal

k − oactual
k

)2

No

, (B4)

where No is the number of output neurons, oideal represents the
training labels, and oactual is the calculated values of the output
neurons.

Due to the fact that we optimized our network through
the backpropagation method [32] by means of the stochastic
gradient descent with momentum, we used the following
expression for new weights so as not to get stuck in local
minima:

W (l) = W (l−1) + �W (l), (B5)

�W
o(l)
jk = αδokh

out
j + μ�W

o(l−1)
jk , (B6)

�W
h(l)
ij = αδhout

j Sz
i + μ�W

h(l−1)
ij , (B7)

where μ is the momentum, α is the learning rate, and l is the
optimisation iteration index. These parameters can be chosen
by trial and error (in our work, we used μ = 0.3 and α = 0.8).
δok and δhout

j are given by

δok = (
oideal

k − ok

)
ok (1 − ok ), (B8)

δhout
j = hout

j

(
1 − hout

j

) No∑
k=1

Wo
jkδok. (B9)
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