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Entangling power of time-evolution operators in integrable and nonintegrable many-body systems
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The entangling power and operator entanglement entropy are state-independent measures of entanglement.
Their growth and saturation is examined in the time-evolution operator of quantum many-body systems that
can range from the integrable to the fully chaotic. An analytically solvable integrable model of the kicked
transverse-field Ising chain is shown to have ballistic growth of operator von Neumann entanglement entropy and
exponentially fast saturation of the linear entropy with time. Surprisingly, a fully chaotic model with longitudinal
fields turned on shares the same growth phase, and is consistent with a random matrix model that is also exactly
solvable for the linear entropy entanglements. However, an examination of the entangling power shows that its
largest value is significantly less than the nearly maximal value attained by the nonintegrable one. The importance
of long-range spectral correlations, and not just the nearest-neighbor spacing, is pointed out in determining the
growth of entanglement in nonintegrable systems. Finally, an interesting case that displays some features peculiar
to both integrable and nonintegrable systems is briefly discussed.
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I. INTRODUCTION

Effects of nonintegrability in quantum systems, dubbed
quantum chaos or chaology [1–3], is now being vigorously
studied in many-body systems with motivations ranging from
thermalization and localization transitions to information
scrambling [4–9]. While single-body quantum chaos engen-
ders states behaving like those chosen from a uniform dis-
tribution over the Hilbert space [2], in many-body contexts
it is fair to say that little is known about detailed statistical
properties of stationary or time-evolving states. One important
window into this is provided by various types of entangle-
ments in the states [10–12]. For example, in bipartite systems
a chaotic evolution rapidly entangles the two subsystems to
nearly the maximum possible extent even when they are
initially product states [13,14].

The most well-studied entanglement is that between two
halves of many-body systems such as spin-chains, the block-
entropy [15]. Natural questions of importance are how fast
such an entanglement grows for initially unentangled states,
the extent it reaches or saturates, and what distinguishes
integrable and chaotic systems in these contexts [11,16–19].
In integrable critical systems described by a conformal field
theory and the transverse Ising model, it was shown to grow
linearly with time t before it saturates to a value dependent on
the initial state [20]. Such a ballistic growth of entanglement
was also seen, somewhat surprisingly, in a nonintegrable Ising
model with longitudinal fields where energy transport itself is
diffusive [21].

Compared with a nonintegrable case, the integrable one
may entangle certain initial states faster and to a larger extent,
while others lesser. Thus it is desirable and interesting to
consider entanglement measures that are independent of the
initial state. Two approaches present themselves, the first
wherein the operator entanglement of propagators in time
are studied. This was recently adopted in Ref. [22], where

a many-body Floquet nonintegrable system and the Heisen-
berg model with disordered fields were considered (see also
Ref. [23] for an earlier discussion based on conformal field
theory). It was shown by simulations that the time-evolution
operator entanglement entropy shows a linear, power-law, and
logarithmic growth, respectively, for the Floquet system, the
Heisenberg model in the weak disorder phase, and the many-
body-localized phase [24,25].

The second approach is based on the notion that it is
illuminating to look directly into the ability of time-evolution
operators to create entangled states starting from arbitrary
product states. As state entanglement is an important resource
in information processing tasks, entangling abilities of unitary
gates and entanglement of operators as a dynamical resource
[26] have been considered. In particular, bipartite entangling
power of an unitary operator has been defined as the average
entanglement created when acting on a uniform distribution
of product states [24,25]. This was shown in Ref. [25] to
be related to operator entanglement entropy in a nontrivial
way when defined via the linear entropy. This has been
applied previously, for example, to quantum transport in light-
harvesting complexes [27] and characterization of quantum
chaos [28,29].

Using both approaches here, we study the entangling
power and operator entanglement entropy of the unitary time-
evolution operators U (t ) for simple spin chains in both inte-
grable and nonintegrable regimes. Freed from the specificity
of the initial state, we study the rate of growth of these
quantities, their eventual saturation values if any, and compare
them with a random matrix theory (RMT) model. We find
analytically, ballistic growth of operator entanglement and
evaluate entangling power in a particular case of the inte-
grable transverse Ising model, reflecting the ballistic growth
of state entanglement [20]. As in the case of states, it is
found that the operator entanglement of certain integrable
models can outstrip that of nonintegrable models, calling
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into question the superior entangling capabilities of chaos
[13,14,30,31]. However, we show that the entangling power
in the same models is higher for the nonintegrable case, un-
derlining the role of entangling power as opposed to operator
entanglement.

The RMT model replaces the blocks between which the
entanglement is found by random operators while retaining
the interaction and is thus a hybrid one which is seen to
be sometimes surprisingly good. While it can be expected
to work for nonintegrable spin chains, the ballistic growth
implied in some cases also leads to coincidence of the RMT
with integrable models in the growth phase, partially resolving
the ballistic growth seen in both integrable and nonintegrable
cases.

RMT models serve as a good foil for many noninte-
grable cases of the spin chains, as there is a correlation
between the commonly used spectral property of the nearest-
neighbor spacings (NNS) and how well the RMT model
works. However, we also find that there are nonintegrable
models with Wigner distribution of the NNS but yet do not
follow the RMT model for entangling power just as well.
This prompts the study of long-range spectral correlations
such as number-variance, which shows differences amongst
these nonintegrable cases. This demonstrates that long-range
correlations that affect short-time behaviors are important in
understanding the growth of entanglement in these systems
than simply the NNS alone.

II. PRELIMINARIES

A. Measures, the ancilla picture, and Haar averages

Most measures of entanglement strengths of
an operator U [26] acting in a bipartite space
HA ⊗ HB, dim(HA,B ) = N are based on its Schmidt

decomposition, U = N
∑N2

i=1

√
λi Ai ⊗ Bi , with Ai and

Bi being orthonormal operators on HA,B satisfying,
Tr(A†

i Aj ) = Tr(B†
i Bj ) = δij , λi � 0. If U is unitary, as

will be the case in this work, then
∑

i λi = 1. We will
consider operator entanglement entropies defined via both the
linear and von Neumann entropies as

El (U ) = 1 −
N2∑
i=1

λ2
i , EvN (U ) = −

N2∑
i=1

λi log λi. (1)

These vanish iff U is a tensor product of two operators.
Following Ref. [24], the entangling power of a unitary

operator is defined as ep(U ) = E (|ψ〉 = U |ψA〉|ψB〉)
|ψA〉,|ψB 〉

with E being a suitable entanglement measure of states and
the average is taken over all the product states |ψA〉, |ψB〉
distributed uniformly. In this paper, we consider E to be
either the linear or von Neumann entropy of the reduced
density matrix ρA = TrB (|ψ〉〈ψ |), that is, EL = 1 − Tr(ρ2

A)
and EvN = −Tr(ρA log ρA), respectively. The corresponding
entangling powers are denoted by epl (U ) and epvN (U ).

While the entangling power has a natural interpretation as
the average entanglement that is created by the action of U on
arbitrary product states, it was shown in Ref. [24] that epl (U )
is intimately connected to the operator linear entanglement

entropy El (·) as

epl (U ) = N2

(N + 1)2
(El (U ) + El (US) − El (S)), (2)

where S is the swap operator S|ψA〉|ψB〉 = |ψB〉|ψA〉. Addi-
tionally, we also find epvN (U ) for which there is no such sim-
ple connection known to EvN (·) and hence resort to finding it
numerically.

To emphasize the qualitative difference between oper-
ator entanglement and entangling power of operators, we
briefly recall the ancilla interpretation of the former [32],
wherein we imagine that A and B are equipped ad-
ditionally with N dimensional systems A′ and B ′. Let
AA′ and BB ′ be in the standard maximally entangled
state |φ+〉 = ∑N

j=1 |jj 〉/√N , and consider the four-party
state |�U 〉 = (UAB ⊗ 1A′B ′ )|φ+〉AA′ |φ+〉BB ′ , where UAB ≡
U . Then El,vN (U ) (El,vN (US)) are the linear and von Neu-
mann entropies of the reduced state ρAA′ = TrBB ′ (|�U 〉〈�U |)
(ρAB ′ = TrA′B (|�U 〉〈�U |)). These reduced states can also be
related to reshuffling and partial transpose of U , allowing for
their direct evaluation [33]. The central difference therefore is
that operator entanglement can be viewed as the entanglement
in one particular four-party state engendered by the action of
a bipartite unitary operator, while the entangling power is the
average entanglement in an ensemble of states resulting from
its action on all two-party product states.

Averages over the Haar measure of unitary operators on
HA ⊗ HB , are important to compare with the saturation
values for nonintegrable models. Thus we state known results
[22,24,34]:

epl = (N − 1)2/(N2 + 1), El = (N2 − 1)/(N2 + 1),

EvN ≈ 2 log N − 1/(2 ln(2)). (3)

While epvN is unknown, it is close to the Haar averaged value
for pure states [35], namely log(N ) − (1/(2 ln(2)). These are
simply referred to ahead as RMT averages.

B. The spin models

We consider the following Floquet Hamiltonian for a spin
chain of L sites: H (t ) = H0 + V

∑+∞
k=−∞ δ(k − t/τ ), with

H0 =
L−1∑
j=1

σ z
j σ z

j+1 +
L∑

j=1

hz
i σ

z
i , and

V =
L∑

j=1

(
hx

j σ
x
j + h

y

j σ
y

j

)
, (4)

a kicked version of the Ising model with a magnetic field
which has both transverse and longitudinal components. The
model is integrable [30] for purely transverse (hz

i = 0) or
purely longitudinal (hx

i = h
y

i = 0) fields and nonintegrable
otherwise.

The state (in h̄ = 1 units) just after the (n + 1)th kick is
connected to the state just after the nth kick by the unitary Flo-
quet operator: |ψ (n + 1)〉 = |ψ (n) = U (τ, h)|ψ (n)〉, with

U (τ, h) = e−iV τ e−iH0τ . (5)
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The present work considers the bipartite entangling power and
operator entanglement entropies of Un(τ, h) between the first
half and the rest of the spins, the dimension of the single-party
Hilbert space thus being N = 2L/2. As τ → 0, the kicked
model goes over to a continuous time evolution and the dis-
cussions below therefore can be extended to time-independent
Hamiltonians via the Suzuki-Trotter decomposition of the
propagator.

We consider the following nonintegrable and inte-
grable magnetic field configurations referred to as Set-NI:
(hx

i = 0.9045, h
y

i = 0.3457, hz
i = 0.8090) and Set-I: (hx

i =
1.0, h

y

i = 0, hz
i = 0), respectively. The nonintegrable con-

figuration is chosen mainly for comparison with literature
[21,22] and not because of any fine-tuning. While we consider
various values of τ , the case τ = π/4, is special as we exactly
solve for the operator entanglement entropy and entangling
power for the integrable case. Also, for the chosen noninte-
grable configuration at this value of τ , the Floquet operator
seems “maximally random” going beyond that captured by
NNS distribution discussed in Ref. [21].

C. A hybrid RMT model

The spin Floquet operator in Eq. (5) is of the form
U (τ, h) = (UA ⊗ UB ) UAB (τ ) where UA,B are local to blocks
A and B consisting of spins 1, · · · , L/2 and L/2 + 1, · · · , L,
respectively, and UAB (τ ) = exp{−iτσ z

L/2σ
z
L/2+1} is the nonlo-

cal interaction between the blocks. While the local operators,
which contain all the information of the fields, do not con-
tribute to the entangling power of U itself, they play a crucial
role for the powers Un we are interested in [33]. The RMT
model URMT(τ ) is a hybrid one wherein we replace UA,B

by local random unitary matrices and retain the interaction
as-is. As UA,B are merely L/2 length chains of the original
kind, this can be expected to be a reasonable model if U (τ, h)
is sufficiently nonintegrable and possesses random matrix
properties.

Such models have been used to study spectral and en-
tanglement transitions in coupled chaotic bipartite systems
[36,37]. Random circuit models [38,39] have been used for
many-body systems and to study the growth of initially local
operator [40], and will be useful in the context of entangling
power as well. However, as we are considering bipartite
entanglements and there are analytical results available if
the local block operators are fully random we adopt this
caricature.

III. OPERATOR ENTANGLEMENT ENTROPY VS
ENTANGLING POWER

A. RMT model predictions

While quantities such as 〈El[Un
RMT(τ )]〉loc, where 〈·〉loc de-

note averages over the local random operators are of interest,
they are harder to compute than one wherein the local oper-
ators are independent random matrices UAj , UBj at different
times j . In this case, analytical results are possible for the case
of operator linear entanglement entropy and corresponding
entangling power [33], for example, results therein imply an

exponential growth of entangling power:

〈
epl

(
U

(n)
RMT(τ )

)〉
loc = epl

[
1 −

(
1 − epl (UAB (τ ))

epl

)n]

= epl

[
1 −

(
1 − CN

2
sin2(2τ )

)n]
,

(6)

with CN = N2(N2 + 1)/(N2 − 1)2 ≈ 1 + 3/N2 and using
Eqs. (3) epl ≈ 1 − 2/N . The braces in U (n) indicates that the
local operators vary with time and averages are with respect
to the circular unitary ensemble (CUE) sampling the space of
unitaries in HA,B uniformly.

We have verified that the averages do not change if we
choose the same CUEs for both UAj and UBj for a particular
time j or even choose a single CUE for both for all j , as is the
case with the spin model. Thus we can expect these to provide
estimates for Un(τ, h). There are also similar expressions for
averages of El (Un), El (Un S) [33], which results in

〈
El

(
U

(n)
RMT(τ )

)〉
loc ≈ 1 − (

1 − 1
2 sin2(2τ )

)n
, (7)

where the approximation neglects terms of order 1/N2. Apart
from the factor epl , this is just the entangling power and
hence the operator entanglement and entangling power for
the RMT model are essentially the same. We note that this
already singles out τ = π/4 as a case of maximal growth of
entangling power, when epl (U

n) and El (Un) can be expected
to grow as 1 − 2−n when the magnetic field configurations
lead to nonintegrable chains. For measures based on the von
Neumann entropy, we resort to numerically computing the
average over many CUE realizations. It may be pointed out
that the value of τ = 0.8 used in Ref. [22] is in fact very close
to π/4 and we expect and find qualitatively identical results.

B. Operator entanglement entropy

The operator entanglement entropies El (Un) and EvN (Un)
as a function of time n, the number of kicks, is shown in Fig. 1
for τ = π/4. These are exactly solvable for the integrable
model (Set-I) as the λi in the Schmidt decomposition of
Un(π/4, 1, 0, 0,) are all equal to 1/2n for 0 � n � L. This
is most transparent on using Majorana fermions, however; in
the next subsection we provide a proof based on Pauli spin
operators. During this time we get simply

El (U
n) = 1 − 2−n, EvN (Un) = n. (8)

Remarkably the El (Un) for the integrable chain coincides
exactly with that for the RMT model, and thus both increase
at the maximum rate. While we do not have a formula for the
EvN of the RMT model, the numerical simulation in Fig. 1
shows that it shares the linear growth for a long time till just
before n = L it turns and saturates to the value ≈2 log N −
1/(2 ln 2) ≈ 9.28, as L = 10. Quite surprisingly, the noninte-
grable model increases just as much as the integrable model
does, getting nearly maximally entangled at n = L, before
disentangling and relaxing to the RMT average.
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FIG. 1. Operator von Neumann (top) and linear (bottom) entan-
glement entropies, EvN,l (Un(τ, h)) for nonintegrable (Set NI) and
integrable cases (Set I), with τ = π/4 and L = 10 spins. Also shown
are the corresponding RMT model results. Inset shows the ratio of the
entropies for the nonintegrable model with the corresponding RMT
averages from Eqs. (3).

C. Analytical treatment of the operator entanglement entropy
for the integrable case

We consider the integrable kicked Ising model, with the
parameters in Set-I (hx

i = 1. 0, h
y

i = 0.0, hz
i = 0) and time

between kicks τ = π/4. The time evolution or Floquet op-
erator, we recall, is thus given by

U = exp

⎛
⎝−i

π

4

L∑
j=1

σ z
j σ z

j+1

⎞
⎠ exp

⎛
⎝−i

π

4

L∑
j=1

σx
j

⎞
⎠. (9)

Introduce the following notation for spin operators of
different partitions, for j � M = L/2,

�Aj ≡ �σM+1−j , and �Bj ≡ �σM+j . (10)

Thus A1 and B1 represent Pauli matrices for spins at locations
M and M + 1, respectively, see Fig. 2.

Local operators are those that belong exclusively to the
space of A or B spins. It was shown in Ref. [41] that the
nonlocal part of Un is (Un)nl = ∏n

i=1 Vi , where the mutually

(a) (b)

FIG. 2. Schematic of the labeling scheme used for the two parti-
tions A and B.

commuting operators Vi are given by

Vi = 1√
2

⎛
⎝I − iA

y

i B
y

i

i−1∏
j=1

Ax
j B

x
j

⎞
⎠, 1 � i � L/2. (11)

Beyond i = L/2 we have

VL
2 +k = 1√

2

⎛
⎝I − iAz

L
2 −k+1

Bz
L
2 −k+1

L
2 −k∏
j=1

Ax
j B

x
j

⎞
⎠,

1 � k � L/2, (12)

and VL+k = Vk . It is also easy to see that V 2
j is a local operator

as far as the AB partition is concerned as

V 2
j = −iA

y

j

j−1∏
k=1

Ax
k ⊗ B

y

j

j−1∏
k=1

Bx
k . (13)

Note that V1 and VL involve only the A
y

1, B
y

1 and Az
1, B

z
1

operators, respectively. The Vi contain precisely strings of
operators that appear in the Jordan-Wigner transform of spins
to Majorana fermions. Thus, although we can interpret the
results elegantly in terms of entanglement between Majorana
fermions of two species (those in A and B), we proceed with
the spin language as it provides the Schmidt decompositions
of operators written with spin variables. All the measures
used in this work, El,vN (U ), El,vN (US), epl,vN (U ) are local
operator invariants [33]; that is, they are the same as for
(UA ⊗ UB ) U (U ′

A ⊗ U ′
B ). They can hence be obtained by just

considering the nonlocal part of Un ≡ (Un)nl .
In this subsection, we find how the linear and von Neumann

operator entanglement entropies grow with the number of
kicks n. We do this by showing that as we multiply the
operators Vi [Eq. (11)], in each step we get an operator
Schmidt decomposition with equal Schmidt coefficients, with
the Schmidt rank simply doubling at each step, till n � L/2.
Thus, (Un)nl is an operator with Schmidt rank 2n, with equal
Schmidt coefficients.

For, i > L/2 the structure of Vi changes, as in Eq. (12).
Suppose we are interested in n = L/2 + m, the strategy is
to define m operators, V ′

m+1−k = VL
2 +kVL

2 −k+1, 1 � k � m.

We already know that,
∏L/2−m

i=1 Vi is a maximally entangled
operator with Schmidt rank 2(L/2−m). We will then show,
taking advantage of the commutativity of Vj , that multiplying
with a V ′ quadrupules the Schmidt rank so that (U

L
2 +m)nl is

an operator with Schmidt rank 2L/2−m22m = 2n. This imme-
diately leads to the desired result.

Theorem 1. El (Un) = 1 − 2−n, EvN (Un) = n, El,vN

(U 2L−n) = El,vN (Un), 1 � n � L.
Proof. First, assume that n � L/2. To begin with, notice by

direct computation that

V1 = 1√
2

(
I1 ⊗ I1 − iA

y

1 ⊗ B
y

1

)
,

V2V1 = 1
2

(
I12 ⊗ I12 − iA

y

1 ⊗ B
y

1

− iAx
1A

y

2 ⊗ Bx
1 B

y

2 + Az
1A

y

2 ⊗ Bz
1B

y

2

)
,

are already in the Schmidt decomposed form except for
the phases that can be absorbed into the operators. They
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are maximally entangled with entropies 1 and 2, respec-
tively, as the Schmidt coefficients are (1/

√
2, 1/

√
2) and

(1/2, 1/2, 1/2, 1/2). To proceed by induction, assume that

n−1∏
i=1

Vi = 1

2(n−1)/2

2(n−1)∑
j=1

A (n−1)
j ⊗ B(n−1)

j , (14)

with Tr(A (n−1)†
i A (n−1)

j ) = Tr(B(n−1)†
i B(n−1)

j ) = 2(n−1)δij .
Now,

Vn = 1√
2

(
I − iAy

nAn−1 ⊗ By
nBn−1

)
, (15)

with An−1 = ∏n−1
k=1 Ax

k , Bn−1 = ∏n−1
k=1 Bx

k . Thus,

Vn

n−1∏
i=1

Vi = 1

2n/2

2n−1∑
j=1

(
A (n−1)

j ⊗ B(n−1)
j

− i
(
Ay

nAn−1A
(n−1)

j

) ⊗ (
By

nBn−1B
(n−1)
j

))
.

This is again Schmdit decomposed but for phases, as
A

y
nAn−1A

(n−1)
j is orthogonal to A

y
nAn−1A

(n−1)
k , for all j �= k

(as A
y
nAn−1 is unitary) and also A

y
nAn−1A

(n−1)
j is orthogonal

to A (n−1)
k , for j �= k as there is one extra spin from site n

in the former. Identical considerations hold for B operators.
Hence, with suitable redefinitions, we again have an orthogo-
nal decomposition,

n∏
i=1

Vi = 1

2n/2

2n∑
j=1

A (n)
j ⊗ B(n)

j . (16)

With the normalization of the A (n) operators as
Tr(A (n)†A (n) ) = 2n, it follows that the 2n Schmidt
coefficients λj are all 2−n. Thus the result follows.

For n � L/2, by virtue of Eq. (11),

VL
2 −k+1 = 1√

2

⎛
⎝I − iA

y
L
2 −k+1

B
y
L
2 −k+1

L
2 −k∏
j=1

Ax
jB

x
j

⎞
⎠,

1 � k � L/2. (17)

Suppose we are interested in E(U
L
2 +m), (1 � m � L/2).

Define m paired-up operators as follows:

V ′
m+1−k = VL

2 −k+1
VL

2 +k

= 1
2

(
I − iAz

L
2 −k+1

AL/2−k Bz
L
2 −k+1

×BL/2−k − iA
y
L
2 −k+1

AL/2−kB
y
L
2 −k+1

×BL/2−k + Ax
L
2 −k+1

Bx
L
2 −k+1

)
, (18)

with 1 � k � m and AL/2−k = ∏ L
2 −k

j=1 Ax
j and BL/2−k is simi-

larly defined. Hence we have

El,vN (U
L
2 +m) = El,vN

⎛
⎝ L

2 −m∏
j=1

Vj

m∏
l=1

V ′
l

⎞
⎠. (19)

From the first part of the proof, it is clear that
∏ L

2 −m

j=1 Vj

will have a Schmidt decomposition 1
2

n
2

∑2n

j=1 A (n)
j ⊗ B(n)

j of

rank 2n with n = L
2 − m. Multiplying these with V ′

j oper-
ators increases the Schmidt rank fourfold each time, each
contains four orthogonal terms with a new spin operator at
each step. Thus this follows on similar lines as for Un with
n < L/2, and we get that the Schmidt rank of UL/2+m is
2L/2−m × 4m = 2L/2+m. Hence we have till n = L, El (Un) =
1 − 2−n, EvN (Un) = n.

Beyond n = L, the operator gets “disentangled” in a sym-
metric manner; that is, El,vN (U 2L−n) = El,vN (Un). This fol-
lows as U 2L is local across the A|B partition, as its nonlocal
part is

V 2
1 · · ·V 2

L, (20)

and each V 2
j are local. Thus E(U 2L−m) = E(U−m) =

E(Um), the last equality following from the fact that the
Schmidt decomposition of an operator and its adjoint only
differ in the Schmidt operators being self-adjoints of each
other. Note that El,vN (U 2L) = 0 and the operator gets fully
disentangled.

D. Entangling power

While these results may indicate superior entangling ca-
pabilities of the integrable model, except for its complete
eventual disentanglement at n = 2L, it must be borne in
mind that the operator entanglement is the result of acting
on a particular pair of maximally entangled states involving
ancillas. The entangling power, on the other hand, is the effect
on a democratic choice of product states. Figure 3 shows the
variation of epl,vN (Un(τ, h)) for τ = π/4. It is interesting
that in contrast to the operator entanglement that continues to
increase till L kicks for both the integrable and nonintegrable
models, entangling power reaches a maximum at n = L/2 for
the integrable model and starts decreasing, reaching a local
minimum after L kicks. On the other hand, the nonintegrable
model continues to increase during this time and saturates to
the RMT value, the contrast being clearer in the von Neumann
entropy.

The integrable model at τ = π/4 can be exactly solved
again for the linear entropy entangling power, and the result
is given by the next theorem.

Theorem 2. The linear entropy entangling power for the in-
tegrable model is epl (U

n) = 1+2L−2L−n−2n−1

(1+2L/2 )2 , 1 � n � L, with

epl (U
0) = 0.

Proof. Our starting point is the relation [25]

epl (U ) = N2

(N + 1)2
(El (U ) + El (US) − El (S)). (21)

As we already know, El (Un) from Theorem 1 we need
El (UnS). This is obtained in Lemma 4 in Appendix B.
The proof follows after elementary manipulations, on using
Theorem 1 and Lemma 4 together with Eq. (21) and El (S) =
1 − 1/2L.

Beyond this time, the entangling power is symmetric,
that is, epl (U

L+n) = epl (U
L+n) and becomes zero at n =

2L as U 2L is local across the bipartition. The maximum
entangling power occurs at n = L/2 when it is for large
L ≈ 1 − (7/2)2−L/2, while the nonintegrable model reaches
the RMT average epl ≈ 1 − (2) 2−L/2. Also, it is clear from
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FIG. 3. The von Neumann (top) and linear (bottom) entangling
powers, epvN,l (U

n(τ, h)) for the nonintegrable (Set-NI) and the
integrable cases (Set-I), with τ = π/4 and L = 10 spins. Also shown
are the corresponding RMT model results. Inset shows the ratio
of the entangling powers for the nonintegrable model with the
corresponding RMT averages in Eqs. (3).

Fig. 3 that the RMT model prediction for the entangling
power based on the linear entropy in Eq. (6) works very
well for the nonintegrable case at this value of τ . The RMT
model works also for the von Neumman entangling power
found numerically and the saturation is very close to that
of random states: log(N ) − 1/(2 ln(2)) ≈ 4.28 for L = 10
spins.

Thus, in terms of ability to create entanglement on an
average, the nonintegrable model in Set-NI can eventually
swamp the integrable one in Set-I, even though their operator
entanglement entropies grow at the same rate. An insight into
this difference is provided by the behavior of El (UnS), which
decreases considerably for the integrable model compensating
for the increasing El (Un). In contrast, El (UnS) is nearly a
constant for the nonintegrable model (see Fig. 4).

Using the ancilla interpretation of the operator entangle-
ments, this is reflective of the fact that entanglement is shared
in a more multipartite manner in the almost random states
created by the nonintegrable evolution. The integrable evo-
lution, on the other hand, in the ancilla picture leads to a state
which has maximal entanglement across the AA′|BB ′ cut, but
little entanglement across the AB ′|A′B cut. These features are
qualitatively seen to hold for the von Neumann entropy as
well, even though we do not have a similar relation between
von Neumann entangling power and operator von Neumann
entropy.
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0.0

0.2

0.4

0.6

0.8

1.0

E
l

E (U S)

E (U )

0 2 4 6 8 10 12
time n

0.00

0.25

0.50

0.75

1.00

E
l

E (U S)

E (U )

0 10
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FIG. 4. Linear entropy operator entanglements El (Un(τ, h)) and
El (Un(τ, h)S ) for integrable (Set-I, top) and nonintegrable cases
(Set-NI, bottom), with τ = π/4 and L = 10 spins. Inset shows
details of El (Un(τ, h)S ) for the nonintegrable case and also the RMT
model prediction (triangles).

E. τ �= π/4: Correlations with the NNS distribution
and number variance

For values of τ different from π/4, a varied scenario devel-
ops when comparing the integrable and the nonintegrable. The
entangling power for τ = π/8 is shown in Fig. 5. While the
integrable may outstrip the nonintegrable in rate of entangling
power, the nonintegrable eventually develops a larger value.
Unlike in the case of τ = π/4, in the integrable case this does
not vanish and shows fairly small oscillations about what may
be an equilibrium. Also, the RMT model predicts a larger
power in the growth phase and is not as good as at τ = π/4. It
also appears that the saturation value of the entangling power
and operator entanglement (not shown) is slightly smaller than
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FIG. 5. The von Neumann entropy entangling power,
epvN (Un(τ, h)) for the nonintegrable Set-NI, integrable Set-I,
with τ = π/8 and L = 10 spins. Also shown are the corresponding
RMT model results.
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FIG. 6. Distribution of spacing for the nonintegrable Set-NI, with
τ = π/3, π/4, π/8 for L = 14. Inset shows the mean of the ratio
of nearest-neighbor spacing distribution (NSS) of the operator U vs
time between kicks τ . Dots in the inset correspond to τ = π/3, π/4
and π/8.

the RMT value. These may be attributed to the fact that at
τ = π/8 the model is not quite as “chaotic” as at τ = π/4.

This is borne out from the NNS distribution and ratio
of spacings (using desymmetrized spectrum of even parity
states) as illustrated in Fig. 6. While the nonintegrable cases
with τ = π/4 and π/3 fit the Wigner distribution

pW (s) = π

2
s exp

(
−π

4
s2

)
,

valid for systems with a time-reversal or in general an antiu-
nitary symmetry, the case of τ = π/8 shows significant devi-
ations. Although the presence of the σy terms in the Hamilto-
nian may suggest time-reversal violation [22], it actually has
a false-time-reversal violation and follows the statistics of the
orthogonal ensemble COE. See Appendix A for details. The
average of the ratio of spacings [42] shown in the inset is also
close to the RMT value of 0.53 for τ = π/4 and π/3, but is
≈0.49 for the case of τ = π/8.

However, a puzzle arises in the case of π/3, which seems
as RMT-like as the operator at π/4 in terms of NNS statistics.
The behavior of the entangling power is shown in Fig. 7, and
while the saturation value is that of the RMT model, in its
growth phase it deviates significantly. Short-time properties
are determined by long-range energy correlations [43] rather
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FIG. 7. The von Neumann entropy entangling power,
epvN (Un(τ, h)) for the nonintegrable Set-NI, integrable Set-I,
with τ = π/3 and L = 10 spins. Also shown are the corresponding
RMT model results.
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FIG. 8. Number variance for τ = π/3, τ = π/4, and τ = π/8.
Inset shows the same for τ = π/3, π/4 in a longer range.

than the short-ranged NNS. For example, the number-variance
[44] is one such quantity and is defined as �2(r ) = 〈(n(r ) −
r )2〉�, with n(r ) denoting the number of energy levels in an
energy window of width r in an unfolded spectrum and 〈·〉�
denoting average over length r windows. Figure 8 shows this
quantity as a function of r for τ = π/8, π/4 and π/3.

The number variance for the integrable case corresponds to
the that of Poissonian statistics and is simply �2(r )Poiss = r ,
while the COE number variance is given by

�2(r )COE

= 2

[
1

π2
(ln(2πr ) + γ + 1 − cos 2πr − Ci(2πr ))

+ r

(
1 − 2

π
Si(2πr )

)]
+

(
Si(πr )

π

)2

− Si(πr )

π
.

The number variances are shown in Fig. 8. While the case of
τ = π/8 deviates considerably from the RMT curve marked
COE and is consistent with deviations found in the NNS. The
case when τ = π/3 agrees for about ten mean spacings and
deviates thereafter, while U (π/4) follows the RMT number
variance over a much longer scale, with the inset showing
agreement even at 500 level spacings. Thus, τ = π/3 case is
still intermediate to the Poisson or integrable limit and this is
reflected in the short-time entangling power growth. Thus the
study of long-range statistics in many-body systems may be
crucial to distinguish those that are not fully chaotic. Unlike
systems with a classical limit, these many-body systems are
yet to be classified in terms of the extent of the chaos present.

F. A curious case

Finally, we display, very briefly, a case that has features of
both the integrable and nonintegrable models, when for all i:
hi

x = 1.0, hi
y = 0, hi

z = 1 and τ = π/4. Figure 9, top panel,
shows the variation of operator entanglement entropy with the
number of kicks in this model. This has exact time-periodicity
such as seen in Fig. 1 for the integrable case. The system
finally disentangles fully. The times at which this happens
appears to be a nontrivial function of the number of spins L.

However, the entangling power, even if periodic, reaches
as high a value as that of the nonintegrable case as shown
in the bottom panel of Fig. 9. The entangling power also
has minima at the same times as the operator entanglement;
however, these are shallower. Being an interacting model, in
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FIG. 9. Operator von Neumann entropy (top) EvN (Un(τ, h)) and
entangling power (bottom) when hi

x = 1.0, hi
y = 0, hi

z = 1, and τ =
π/4. The nonintegrable case Set-NI is shown in the latter figure for
comparison.

terms of fermions, it promises to be an interesting one for
further studies.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have studied the growth and satura-
tion of operator entanglement entropy and entangling power
of time evolution operators of a kicked Ising spin chain
for both integrable and non-integrable configurations. These
quantities have been studied with respect to both linear and
von Neumann entropies. We have analytically solved for
the operator entanglement entropies and the linear entropy
entangling power for the integrable configuration. The growth
and saturation of these quantities have also been compared
with that obtained from a hybrid random matrix model which
replaces the block of L/2 spins between which entanglement
is found by a random operator.

In the case of the integrable model, referred to as set-I, we
have found a precise linear growth of operator von Neumann
entanglement entropy and an exponential growth of linear en-
tropy entangling power. Interestingly, the nonintegrable model
also shows the same growth for the operator entanglement
entropy. However, on looking at the entangling power we see
that it increases only over L/2 kicks for the integrable model
while for the nonintegrable model it continues to increase and
saturates at a significantly higher value after L kicks. The
random matrix model for which we can find the linear en-
tropy entangling power exactly, reproduces the nonintegrable
curves rather well. However, we also find that that certain
nonintegrable models with the Wigner distribution of NNS
does not match the entangling power from the random matrix
model that well. This leads us to the study of long-range

spectral correlations such as number-variance, which shows
differences amongst these nonintegrable cases. This implies
that long-range correlations that affect short-time behaviors
are important in understanding the growth of entanglement in
these systems than simply the NNS alone. Finally, we have
displayed an interesting configuration which, while being an
interacting model in terms of Jordan-Wigner fermions, show
a periodic increase and decrease of operator entanglement
entropy with number of kicks. The entangling power of the
model, while still periodic, reaches a maximum value equal
to the saturation value of the nonintegrable model studied
previously.

Relying on analytical and numerical RMT averages for
bipartite entangling powers, we have seen that while it some-
times describes very well the time evolution of such measures,
it mostly provides an upper bound for other nonintegrable
situations. Thus, one outstanding work is to find entangling
power in random circuits that take into account the internal
structure of local blocks and may provide better estimates
in other cases. The measures studied in this paper are pri-
marily entanglement-based ones. It will be interesting to
explore connections with other measures such as operator
spreading [45] and how the operator entanglement of an
initially local operator changes with time in the Heisenberg
picture [23]. We have also seen how the increased multipar-
tite entanglement produced in nonintegrable evolutions, in
comparison with integrable ones, plays a role in the growth
of entangling power. Thus, notions of entangling capabilities
based on multiparty entanglement measures such as tripartite
mutual information [46] promises to be an interesting one.
There may also be interesting connections to scrambling and
growth of out-of-time-ordered-correlators [46]. There has also
been recently a series of studies on the spectral form factor,
which is the Fourier transform of two-point correlation of
the eigenvalue density of the time-evolution operator, in the
kicked Ising and random circuit models [47,48]. Our findings
are consistent with these results and complements them as
number variance and form factor are related [49].
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APPENDIX A: ANTIUNITARY SYMMETRY AND FALSE
TIME REVERSAL

Suppose the system has an antiunitary symmetry governed
by T = GK , where K is the complex conjugation operator
and G is unitary. The condition that time-reversal-like sym-
metry holds for a system whose time evolution is the unitary
operator U , is [2]

T U T −1 = U−1 = U †,

implying that

GU ∗G−1 = U †. (A1)
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For our model, we have

U ∗ = exp

⎛
⎝iτ

⎛
⎝L−1∑

j=1

σ z
j σ z

j+1 +
L∑

j=1

hz
i σ

z
i

⎞
⎠

⎞
⎠

× exp

⎛
⎝iτ

L∑
j=1

(
hx

j σ
x
j − h

y

j σ
y

j

)⎞⎠
and

U † = exp

⎛
⎝iτ

L∑
j=1

(
hx

j σ
x
j + h

y

j σ
y

j

)⎞⎠

× exp

⎛
⎝iτ

⎛
⎝L−1∑

j=1

σ z
j σ z

j+1 +
L∑

j=1

hz
i σ

z
i

⎞
⎠

⎞
⎠

.

For h
y

j = 0, for all j , clearly

G1 = exp

⎛
⎝−iτ

⎛
⎝L−1∑

j=1

σ z
j σ z

j+1 +
L∑

j=1

hz
i σ

z
i

⎞
⎠

⎞
⎠

satisfies Eq. (A1).
We have

G1U
∗G−1

1 = exp

⎛
⎝iτ

L∑
j=1

(
hx

j σ
x
j − h

y

j σ
y

j

)⎞⎠

× exp

⎛
⎝iτ

⎛
⎝L−1∑

j=1

σ z
j σ z

j+1 +
L∑

j=1

hz
i σ

z
i

⎞
⎠

⎞
⎠.

Let hx
j x̂ − h

y

j ŷ = hj (cos(θj )x̂ − sin(θj )ŷ) = hj ĥj and
Vj = exp (−iσ z

j θj ) be a spin rotation operator, performing the
rotation 2θj about z axis so that we have

Vj

(
cos(θj )σx

j − sin(θj )σy

j

)
V

†
j = (

cos(θj )σx
j + sin(θj )σy

j

)
,

[Vj , σ
z
j ] = 0.

It follows that

Vj exp
(
iτ

(
hx

j σ
x
j − h

y

j σ
y

j

))
V

†
j = exp

(
iτ

(
hx

j σ
x
j + h

y

j σ
y

j

))
.

(A2)

Hence, with

G =
⎛
⎝ L⊗

j=1

Vj

⎞
⎠ G1,

Equation (A1) is satisfied for the Floquet operator. This im-
plies COE statistics as we have shown, and is valid for all
disordered models as well.

APPENDIX B: PROOF OF El (U n S) = 1 − 2n−1

2L .

To find El (UnS), we will work in the ancilla picture
mentioned in Sec. II A, as the combinatorics involved is easier
to see in terms of states rather than operators. The ancilla
picture would require us to consider a four-party state with the
dimension of each party being N = 2L/2. Together with the

A1··AL/2 B1 · · BL/2

A′
1

··A′
L/2 B′

1
· · B′

L/2

|Φ+〉|Φ+〉 |Φ+〉 |Φ+〉

FIG. 10. Ancilla picture for the spin chain: the spins in the lower
row are subjected to the spin chain dynamics while the upper (an-
cilla) are not. Initially, corresponding pairs of spins between the chain
and the ancilla are maximally entangled in a Bell state |�+〉. To find
the operator entanglement of UnS, one needs to find the entangle-
ment across the A1A

′
1..AL/2A

′
L/2 and B1B

′
1..BL/2B

′
L/2 bipartition of

the state obtained by the action of UnS on the A1A2..AL/2B1B2..BL/2

subsystem.

original spin chain with spins indexed by Ai and Bj according
to the notation explained before, we consider an ancillary
spin chain of same length with sites labeled by A′

i and B ′
j

(i, j = 1..L/2), see Fig. 10. We will be interested in the
state

|�〉ABA′B ′ =
L/2⊗
i=1

|�+〉AiA
′
i
|�+〉BiB

′
i
,

where |�+〉 is one of the Bell states:

|�±〉 = 1√
2

(|00〉 ± |11〉), |�±〉 = 1√
2

(|01〉 ± |10〉).

The linear El (Un S) is the linear entropy of the state,
((UnS)AB ⊗ IA′B ′ )|�〉ABA′B ′ , across the AA′|BB ′ partitions.
Notice that the swap operation has been clubbed along with
the unitary evolution in this setting. Also it is sufficient here
to consider only the nonlocal part (Un)nl part of Un.

We have

((Un)nl S)AB ⊗ IA′B ′ )|�〉ABA′B ′

=
n∏

i=1

Vi

L/2∏
j=1

Sjj

L/2⊗
j=1

|�+〉Aj A
′
j
|�+〉Bj B

′
j
,

where we have use that

S =
L/2∏
j=1

Sjj , with Sii ≡ SAiBi

are swap operators on pairs of spins in the different partitions.
Their action on the bell pairs yield

Sii |�+〉AiA
′
i
|�+〉BiB

′
i
= |�+〉AiB

′
i
|�+〉A′

iBi
≡ |α〉i , (B1)

which has two ebits of entanglement (Schmidt rank-4
state) across the AiA

′
i |BiB

′
i partition. It is thus clear that

|α〉1 · · · |α〉n will be a maximally entangled state in 4n

(2n ebits) dimensions. Particularly, for n = L/2 we will
have El (S) = 1 − 1/2L = 1 − 1/N2. We need El (UnS),
which is the linear entropy of the state

∏n
i=1 Vi

⊗L/2
j=1 |

α〉j .
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Our basic strategy will consist of showing that the en-
tanglement of the state

∏n
i=1 Vi

⊗n
j=1 |α〉j grows as n + 1

ebits for n � L/2. On the other hand,
⊗L/2

i=n+1 |α〉i will
contribute L − 2n ebits, so that totally we have L − n +
1 ebits. This will imply El (UnS) = 1 − 2n−1/2L. This to-
gether with the result for El (Un) proved before yields the
desired result. For n = L/2 + m (m < L/2), we will adopt
the same strategy as for El (Un) for n > L/2 and define

V ′ operators. Then we would try to find the entangle-

ment in the state,
∏ L

2 −m

j=1 Vj

∏m
l=1 V ′

l |α〉1|α〉2...|α〉 L
2
. It will

turn out that this is in fact equal to the entanglement in

the state
∏ L

2 −m

j=1 Vj |α〉1|α〉2...|α〉 L
2 −m = L/2 − m + 1 ebits =

L − n + 1 ebits.
We state the following readily verifiable identities for later

use:

Ax
i B

x
i |�+〉AiB

′
i
|�+〉A′

iBi
= |�+〉AiB

′
i
|�+〉A′

iBi
,

A
y

i B
y

i |�+〉AiB
′
i
|�+〉A′

iBi
= |�−〉AiB

′
i
|�−〉A′

iBi
, (B2)

Az
i B

z
i |�+〉AiB

′
i
|�+〉A′

iBi
= |�−〉AiB

′
i
|�−〉A′

iBi
.

|�+〉A1B
′
1
|�+〉A′

1B1 + |�−〉A1B
′
1
|�−〉A′

1B1 = |�+〉A1A
′
1
|�+〉B1B

′
1
− |�−〉A1A

′
1
|�−〉B1B

′
1
,

|�+〉A1B
′
1
|�+〉A′

1B1 − |�−〉A1B
′
1
|�−〉A′

1B1 = |�−〉A1A
′
1
|�−〉B1B

′
1
+ |�+〉A1A

′
1
|�+〉B1B

′
1
,

|�+〉A1B
′
1
|�+〉A′

1B1 + |�−〉A1B
′
1
|�−〉A′

1B1 = |�+〉A1A
′
1
|�+〉B1B

′
1
+ |�−〉A1A

′
1
|�−〉B1B

′
1
,

|�+〉A1B
′
1
|�+〉A′

1B1 − |�−〉A1B
′
1
|�−〉A′

1B1 = |�+〉A1A
′
1
|�+〉B1B

′
1
− |�−〉A1A

′
1
|�−〉B1B

′
1
.

(B3)

Let ÃK and B̃K represent the following collection of spins:

ÃK ≡ {A1, A
′
1, · · · , AK, A′

K},
B̃K ≡ {B1, B ′

1, · · · BK, B ′
K},

and C(n) = ∏n
k=1 Ax

kB
x
k be the string of operators. We have

Lemma 1.
(1) V1|α〉1 has a Schmidt decomposition,

1
2

(|00〉A1A
′
1
|�′−〉B1B

′
1
+ i|01〉A1A

′
1
|� ′−〉B1B

′
1

+ |10〉A1A
′
1
|� ′+〉B1B

′
1
− i|11〉A1A

′
1
|�′+〉B1B

′
1

)
,

with |�′±〉 = 1√
2
(|00〉 ± i|11〉) and |� ′±〉 = 1√

2
(|01〉 ±

i|10〉). This can also be written in terms of biorthogonal
vectors as

1

2

2∑
i=1

(|ei〉Ã1B̃1
+ |e′

i〉Ã1B̃1
),

so that |e′
i〉Ã1B̃1

= i C(1)|ei〉Ã1B̃1
, where |e1〉Ã1B̃1

=
|00〉A1A

′
1
|�′−〉B1B

′
1

and |e2〉Ã1B̃1
= −i|11〉A1A

′
1
|�′+〉B1B

′
1
.

(2) El (US) = El (S)
Proof. The first part follows from direct computations. We

state the following useful identities:

(σx ⊗ I )|�′±〉 = ±i|� ′∓〉, (σx ⊗ I )|� ′±〉 = ±i|�′∓〉,
(B4)

and observe

i|01〉A1A
′
1
|� ′−〉B1B

′
1

= i C(1) (−i|11〉A1A
′
1
|�′+〉B1B

′
1
),

|10〉A1A
′
1
|� ′+〉B1B

′
1

= i C(1)|00〉A1A
′
1
|�′−〉B1B

′
1
.

The second part follows as a consequence, as V1|α〉1 is a rank-
4 maximal Schmidt decomposition, the same as |α〉1. The von
Neumann entanglement in these states is two ebits.

We are now ready to prove the main lemma.
Lemma 2.

The von Neumann entropy of
∏n

i=1 Vi

⊗n
j=1 |α〉j is = n +

1, 1 � n � L/2.
Proof.
The proof is inductive. Let us first analyze, V2V1|α〉1|α〉2.

On expanding V2 and using Eq. (B2), we have

V2V1|α〉1|α〉2 = 1√
2

(V1|α〉1|�+〉A2B
′
2
|�+〉A′

2B2

− i C(1)V1|α〉1|�−〉A2B
′
2
|�−〉A′

2B2 ).

Let us now use the lemma above and consider the contribution
from the term |ei〉Ã1B̃1

+ |e′
i〉Ã1B̃1

, to the Schmidt decompo-
sition of V2V1|α〉1|α〉2 for different i. We have on using
C(1)2 = I ,

V2V1|α〉1|α〉2 = 1

2
√

2

∑
i=1,2

[|ei〉Ã1B̃1
(|�+〉A2B

′
2
|�+〉A′

2B2

+ |�−〉A2B
′
2
|�−〉A′

2B2 ) + |e′
i〉Ã1B̃1

× (|�+〉A2B
′
2
|�+〉A′

2B2 − |�−〉A2B
′
2
|�−〉A′

2B2 )]

Using Eq. (B3), we rewrite the state so that the partition
AA′|BB ′ or Ã2|B̃2 can be read off:

V2V1|α〉1|α〉2

= 1

2
√

2

∑
i=1,2

(|ei〉Ã1B̃1
(|�+〉A2A

′
2
|�+〉B2B

′
2

− |�−〉A2A
′
2
|�−〉B2B

′
2
) + |e′

i〉Ã1B̃1
(|�−〉A2A

′
2
|�−〉B2B

′
2

+ |�+〉A2A
′
2
|�+〉B2B

′
2
).

We started with a Schmidt decomposition of V1|α〉1, and
clearly the above is also Schmidt decomposed across the
A1A2A

′
1A

′
2|B1B2B

′
1B

′
2 or Ã2|B̃2 partition. It is maximally

entangled in an eight-dimensional subspace of the 16-
dimensional space. Hence, its von Neumann entropy is three
ebits.
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A crucial observation is that with suitable definitions this
can be written as

V2V1|α〉1|α〉2 = 1

2
√

2

(
4∑

i=1

|ei〉Ã2B̃2
+ |e′

i〉Ã2B̃2

)
,

where for i = 1, 2,

|e′
i〉Ã2B̃2

= |e′
i〉Ã1B̃1

|�+〉A2A
′
2
|�+〉B2B

′
2
,

|ei〉Ã2B̃2
= |ei〉Ã1B̃1

|�+〉A2A
′
2
|�+〉B2B

′
2
,

|e′
i+2〉Ã2B̃2

= −|ei〉Ã1B̃1
|�−〉A2A

′
2
|�−〉B2B

′
2
,

|ei+2〉Ã2B̃2
= |e′

i〉Ã1B̃1
|�−〉A2A

′
2
|�−〉B2B

′
2
.

These satisfy |e′
i〉Ã2B̃2

= i C(2)|ei〉Ã2B̃2
, for 1 � i � 4 and

this is exactly the relation between the Schmidt vectors at level
1. Note that these continue to be biorthogonal and is therefore
indeed a Schmidt decomposition.

Now, assume a Schmidt decomposition of rank 2n of(
n−1∏
i=1

Vi

)
|α〉1|α〉2...|α〉n−1

= 1

2n/2

⎛
⎝2n−1∑

i=1

(|ei〉Ãn−1B̃n−1
+ |e′

i〉Ãn−1B̃n−1
)

⎞
⎠,

with |e′
i〉Ãn−1B̃n−1

= iC(n − 1)|ei〉Ãn−1B̃n−1
.

Following the same steps as the first level, we get

n∏
i=1

Vi

n⊗
j=1

|α〉j = 1

2(n+1)/2

2n−1∑
i=1

(|ei〉Ãn−1B̃n−1
(|�+〉AnA′

n
|�+〉BnB ′

n

− |�−〉AnA′
n
|�−〉BnB ′

n
)

+ |e′
i〉Ãn−1B̃n−1

(|�−〉AnA′
n
|�−〉BnB ′

n

+ |�+〉AnA′
n
|�+〉BnB ′

n
)),

which can also be written in Schmdit decomposed form using
biorthogonal vectors as

1

2(n+1)/2

(
2n∑

i=1

(|ei〉ÃnB̃n
+ |e′

i〉ÃnB̃n
)

)
, (B5)

where, for 1 � i � 2n−1,

|e′
i〉ÃnB̃n

= |e′
i〉Ãn−1B̃n−1

|�+〉AnA′
n
|�+〉BnB ′

n
,

|ei〉ÃnB̃n
= |ei〉Ãn−1B̃n−1

|�+〉AnA′
n
|�+〉BnB ′

n
,

|e′
i+2n−1〉ÃnB̃n

= −|ei〉Ãn−1B̃n−1
|�−〉AnA′

n
|�−〉BnB ′

n
,

|ei+2n−1〉ÃnB̃n
= |e′

i〉Ãn−1B̃n−1
|�−〉AnA′

n
|�−〉BnB ′

n
.

These satisfy |e′
i〉ÃnB̃n

= i C(n)|ei〉ÃnB̃n
, for 1 � i � 2n, the

same relation at the previous levels. Thus, it follows that the
von Neumann entropy of

∏n
i=1 Vi |α〉1|α〉2...|α〉n is n + 1.

Lemma 3. The von Neumann entropy of the state∏ L
2 +m

j=1 Vj |α〉1|α〉2...|α〉 L
2

) is equal to the von Neumann en-

tropy of the state |βm〉 ≡ ∏ L
2 −m

j=1 Vj |α〉1|α〉2...|α〉 L
2 −m, for 1 �

m < L/2.
Proof.

We use again the strategy of pairing the Vj operators be-
yond j = L/2 − m into V ′

m+1−k = VL/2−k+1VL/2+k . Denote
n2 = n1 + 1 = L/2 − m + 1, and in all expressions 1 � m <

L/2. For example,

V ′
1 = VL

2 −m+1VL
2 +m = 1

2

(
I − iAz

n2
Bz

n2
C(n1)

− iAy
n2

By
n2

C(n1) + Ax
n2

Bx
n2

)
.

Direct computation and the usage of identities in Eq. (B3)
results in

V ′
1 |βm〉|α〉n2

= 1

2(n1+1)/2

2n1∑
i=1

(|ei〉Ãn1 B̃n1
|�+〉An2 B ′

n2
|�+〉A′

n2
Bn2

+ |e′
i〉Ãn1 B̃n1

|�+〉An2 B ′
n2

|�+〉A′
n2

Bn2

)
.

As previously, we have

|e′
i〉Ãn1 B̃n1

|�+〉An2 B ′
n2

|�+〉A′
n2

Bn2

= iC(n2)|ei〉Ãn1 B̃n1
|�+〉An2 B ′

n2
|�+〉A′

n2
Bn2

.

But note that |βm〉 is also in Eq. (B5) with n = n1 = L/2 − m.
Hence, V ′

1|βm〉|α〉n1+1 has the same entanglement as
|βm〉. Now, assuming

∏k
l=1 V ′

l |βm〉|α〉n1+1|α〉n1+2..|α〉n1+k

has the same entanglement as |βm〉 (k � m), it is
easy to show by following the same steps that∏k+1

l=1 V ′
l |βm〉|α〉n1+1|α〉n1+2..|α〉n1+k+1 also has the same

entanglement. Hence, the lemma follows by induction.
Lemma 4. For 1 � n � L, the linear operator entanglement

entropy is El (UnS) = 1 − 2−L+n−1.
Proof. Let us denote the von Neumann entropy of a state

|·〉, by Evn(|·〉). For n � L/2, by Lemma 2,

Evn

⎛
⎝ n∏

i=1

Vi

n⊗
j=1

|α〉j
⎞
⎠ = n + 1.

We also have

Evn

(
L/2⊗

i=n+1

|α〉i
)

= 2 (L/2 − n) = L − 2n.

Hence,

Evn

⎛
⎝ n∏

i=1

Vi

n⊗
j=1

|α〉j
L/2⊗

i=n+1

|α〉i
⎞
⎠ = (L − 2n) + (n + 1)

= L − n + 1.

(B6)

As the Schmdit decompositions are all maximal, the linear
operator entanglement is

El (U
nS) = 1 − 1

2(L−n+1)
= 1 − 2n−1

2L
. (B7)
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For times larger than n = L/2, consider L/2 < n < L, and
let m = n − L/2. It follows from Lemma 3 that

Evn

⎛
⎝ L

2 +m∏
j=1

Vj |α〉1|α〉2...|α〉 L
2

⎞
⎠ = L/2 − m + 1 = L − n + 1.

(B8)

Hence, Eq. (B7) continues to hold. We still have one more
time n = L to cover and this needs special treatment. We need
to find

Evn

⎛
⎝L/2∏

l=1

V ′
l

L/2⊗
j=1

|α〉j
⎞
⎠.

By direct, but tedious, computation it follows that

V ′
1|α〉1 = 1√

2

(
(1 − i)√

2
|�+〉A1A

′
1
|�+〉B1B

′
1

+ (1 + i)√
2

|�+〉A1A
′
1
|�+〉B1B

′
1

)

and
(1 + i)√

2
|�+〉A1A

′
1
|�+〉B1B

′
1

= iAx
1B

x
1

(1 − i)√
2

|�+〉A1A
′
1
|�+〉B1B

′
1
.

Hence, following the same steps as in the proof of Lemma 3,
it is straightforward to see that

Evn

⎛
⎝L/2∏

l=1

V ′
l

L/2⊗
j=1

|α〉j
⎞
⎠ = Evn(V ′

1|α〉1) = 1.

Thus, Eq. (B8) holds uniformly for 1 � n � L. In particular,
note that it decreases from L initially (n = 0) and at n = 1 to
1 at n = L. This precipitous fall makes up for the rise of the
operator entanglement of Un. This also completes the proof
of the lemma.

For n � L, we again use the fact that U 2L is a local oper-
ator. We have El (U 2L−mS) = El (U−mS) = El (UmS). Now,
putting m = L − m, we have El (UL−mS) = El (UL+mS).
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narayan, Impact of local dynamics on entangling power, Phys.
Rev. A 95, 040302 (2017).
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