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We determine which translationally invariant matrix product states have a continuum limit, that is, which can
be considered as discretized versions of states defined in the continuum. To do this, we analyze a fine-graining
renormalization procedure in real space, characterize the set of limiting states of its flow, and find that it strictly
contains the set of continuous matrix product states. We also analyze which states have a continuum limit after a
finite number of coarse-graining renormalization steps. We give several examples of states with and without the
different kinds of continuum limits.
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I. INTRODUCTION

The quest for continuum limits of discrete theories is a cen-
tral topic in high-energy physics [1,2] and condensed-matter
physics [3,4]. In many cases, the continuum limit of a theory
is obtained after a renormalization process, where the lattice
constant (which provides an energy cutoff) is taken to zero.
This occurs, for instance, in quantum lattice models, where
the continuum limit is the desired quantum field theory and
the renormalization involves the redefinition of the parameters
of the Hamiltonian describing the model. The question of
whether a particular quantum lattice model possesses the
correct continuum limit under renormalization is of central
interest in several fields of quantum physics.

Tensor networks have proven to be useful tools to study
strongly correlated systems in quantum lattice models [5–
7]. In fact, in one spatial dimension, matrix product states
(MPSs) [8,9], a special kind of tensor network states (TNSs),
provide the most powerful technique to study such systems. In
contrast to some traditional approaches to describe quantum
many-body systems where the Hamiltonian (or the action)
is the central object of study, the theory of tensor networks
concentrates on the description of quantum many-body states.
The reason is that they are completely characterized (for
homogeneous systems) by a simple tensor, whose rank de-
pends on the coordination number of the lattice. The fact
that ground states (vacuum) and low-energy excitations of
local theories are expected to have very little entanglement
makes tensor networks efficient tools for describing them.
Furthermore, they can be used as toy models to analyze
complex phenomena associated with topology [10], symmetry
protection [11,12], or even chirality [13] in relatively simple
terms.

Renormalization procedures in tensor networks and, in
particular, in MPSs have played an important role in the
development of various methods associated with them. The
renormalization of a TNS provides a coarse-grained descrip-
tion of the state and, in the case of MPSs, flows to a very

specific family of states that can be fully characterized [14]. In
fact, these fixed points of the renormalization procedure have
been used to obtain a classification of the (gapped) quantum
phases of spin chains in one spatial dimension [11,12].

In this work, we investigate how the same renormalization
procedure can give a rigorous method to obtain the continuum
limit of an MPS. That is, we consider the inverse procedure
of coarse graining, i.e., fine graining, and investigate to what
extent it converges and to which kind of states. Or, more
boldly stated, we solve the following problem: given an MPS,
when is it the coarse-grained picture of the vacuum of a
quantum field theory in one spatial dimension? We will then
say that such an MPS has a continuum limit (CL).

To be specific, we consider a fine-graining procedure such
that the state is translationally invariant at all steps. Moreover,
each fine-graining step is carried out by some isometry, which
can differ from step to step. As a consequence, the finer state
is, in fact, the same state as the original one, but written in a
finer basis, i.e., a basis with more sites. Thus, our definition of
CL is very restrictive and can be seen as a first step toward the
study of CLs in more general settings.

Now, while it is clear that some states must have a CL in
the sense specified below, it is also clear some others will not.
For instance, a ferromagnetic state |0, . . . , 0〉 clearly has a CL,
which is the vacuum of a noninteracting theory in the con-
tinuum. In contrast, a superposition of two antiferromagnetic
states,

|�af〉 = 1√
2

(|0, 1, 0, 1, . . .〉 + |1, 0, 1, 0, . . .〉), (1)

will not have such a limit since there exists no (translationally
invariant) state such that if we coarse grain it, we obtain
|�af〉. But what about states like the Affleck, Kennedy, Lieb,
and Tasaki (AKLT) [15], the cluster state [16], and other
prominent states found in the field of condensed matter or
quantum information theory?

On the other hand, by flipping every second spin in the
z direction, |�af〉 is mapped to a superposition of the two
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ferromagnetic states, |0, 0, . . . , 0〉 + |1, 1, . . . , 1〉, which has
a CL. While in our definition of CL we allow to apply only
operations (isometries) which are the same on every site, this
restriction is lifted in our second definition of the CL, called
the coarse continuum limit. In the latter, we first coarse grain
the state and then take the CL of the coarse-grained state.
Thus, |�af〉 has a coarse CL, but does every state have a coarse
CL?

In this paper we give an answer to these questions by
determining the conditions for a state to have a CL. We also
characterize which set of states of the quantum field theory is
the CL of an MPS. We find that such a set contains continuous
MPSs (cMPSs) [17,18], as one would expect, but it also
contains some extensions that have not been encountered so
far in the study of TNSs. We finally show that there exist
states that do not possess a CL even if we first coarse grain
any finite number of times; that is, not every state has a coarse
CL. We note that different continuum limits of quantum lattice
systems were considered in Ref. [19], and tensor network de-
scriptions of quantum field theories were studied in Ref. [20].

This paper is organized as follows. In Sec. II we define
and characterize the CL of MPSs. In Sec. III we define and
characterize the coarse CL of MPSs, present examples of
states with either kind of CL, and compare the two CLs. In
Sec. IV we conclude. We leave the proof of the main result
(Theorem 1) for the Appendix.

II. CONTINUUM LIMIT

In this section we present our work on the CL of an MPS.
We will first explain the setting of our problem (Sec. II A),
define and characterize p refining (Sec. II B), and finally
define and characterize the CL of an MPS (Sec. II C).

A. The setting

Our starting point is a three-rank tensor A = {Ai ∈
MD}di=1, where MD denotes the set of D × D complex
matrices, D is called the bond dimension, and d is the physical
dimension, both of which are assumed to be fixed and finite.
A generates a translationally invariant (TI) MPS,

|VN (A)〉 :=
∑

i1,...,iN

Tr(Ai1Ai2 · · ·AiN )|i1, . . . , iN 〉 (2)

for every N ∈ N, as well as the family

V(A) := {|VN (A)〉}N∈N. (3)

As the tensor A completely determines all the properties of
the MPS it generates, when developing the theory of MPSs,
one works directly with such a tensor.

The transfer matrix ofV(A), EA, is defined as [14]

EA =
d∑

i=1

Ai ⊗ Āi, (4)

where the bar indicates complex conjugation. Note that EA

is (a matrix representation of) the completely positive map
(CPM) E (·) = ∑d

i=1 Ai · Ai†, and it is independent of any
isometry applied to the physical index i. In Ref. [21] we
showed that, without loss of generality, A can be taken to be

in irreducible form, that is, Ai = ⊕jμjA
i
j , where μj > 0, and

each EAj
is an irreducible CPM (i.e. a CPM with a nonde-

generate eigenvalue 1 but which can have other eigenvalues
of modulus 1). Moreover, EA can be taken to be a quantum
channel [i.e., a trace-preserving (TP) CPM]. We will thus
indistinctively call EA a transfer matrix or a quantum channel.
If clear from the context, we will simply denote it by E.

B. Definition and characterization of p refining

The renormalization procedure introduced in Ref. [14]
basically maps |VN (A)〉 to

|VN (B )〉 = (W †)⊗N |VpN (A)〉 ∀N, (5)

where p > 1 is an integer and W : Cd → (Cd )⊗p is an isom-
etry. We now introduce the inverse step.

Definition 1. We say that V(B ) can be p-refined if there
exists another tensor A and an isometry W such that

|VpN (A)〉 = W⊗N |VN (B )〉 ∀N. (6)

Clearly, if V(B ) can be p-refined with the isometry W , then
it can also be p-refined with the isometry U⊗pW , where U

is a unitary. We thus call two isometries W,W ′ inequivalent
if there is no unitary U such that W ′ = U⊗pW . Similarly, we
say thatV(B ) can be p-refined in r inequivalent ways if it can
be p-refined with r inequivalent isometries.

In Ref. [21] we showed that V(B ) can be p-refined if and
only if EB is p divisible; that is, if there exists a quantum
channel Ep such that E

p
p = EB . Moreover, the number of

inequivalent ways of p refining a state is precisely given by
the number of pth roots of its transfer matrix which are also a
transfer matrix. The divisibility of quantum channels was an-
alyzed in Refs. [22–24] in the context of Markovian evolution
of quantum systems. In particular, there exist channels that are
not p divisible for any p [24]. This automatically implies that
there are states that cannot be refined at all [25]; we will see
two examples thereof in Examples 5 and 6. In Remark 2 we
will mention examples of states that can be refined in several
inequivalent ways.

C. Definition and characterization of continuum limit

One could define the CL of an MPS as the limiting point
of the p-refining procedure. However, such a definition would
not be satisfactory since there are states that can be refined
but that should not have a CL. This can be illustrated by
means of the antiferromagnetic state of Eq. (1), which can
be 3-refined infinitely many times with the isometry W =
|0, 1, 0〉〈0| + |1, 0, 1〉〈1|. However, it is clear that it cannot
exist in the continuum. (This state will be more thoroughly
analyzed in Example 2.)

To deal with this problem, we notice that if we had a
CL, it would be reasonable to demand that the limit should
not depend on whether we block a few spins when we are
close to that limit. Differently speaking, introducing an in-
termediate coarse-graining step should not affect the form of
the CL. This, e.g., rules out the antiferromagnetic state: In
Eq. (1), if we 3-refine many times with the isometry W =
|0, 1, 0〉〈0| + |1, 0, 1〉〈1| and then block two spins, with the
isometry W ′ = |0, 1〉〈0| + |1, 0〉〈1| we obtain a Greenberger-
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Horne-Zeilinger-like state [26], |0, 0, . . . , 0〉 + |1, 1, . . . , 1〉,
which is very different from the fixed point if we had not
blocked. This motivates the following definition.

Definition 2. We say that V(B ) has a continuum limit if
there is a p > 1 such that the procedure of p-refining � times
followed by the blocking of n� ∈ N of the resulting spins
converges in �, as long as (n�/p

�)� → 0 as � → ∞.
Note that (n�/p

�)� denotes the infinite sequence whose
elements are n�/p

� with � ∈ N. We now want to charac-
terize which states have a CL in terms of the divisibility
properties of its transfer matrix. The requirement that the
state be p-refinable infinitely many times translates to the
requirement that its transfer matrix E be p-infinitely divisible.
This means that E is p�-divisible for any � ∈ N, that is,
that for any � ∈ N there is a quantum channel Ep� such that

E
p�

p� = E. Note that a quantum channel E is called infinitely
divisible if it is n-divisible for any n, i.e., E = En

n for all
n ∈ N [24].

We also need to characterize the condition of stability
of the limiting procedure under blocking (see Definition 2).
To this end, we introduce the following function (see, e.g.,
Ref. [27]). Let E be a p-infinitely divisible quantum channel,
and let {Ep�}�∈N be a set of roots which are quantum channels
themselves. We define the function fp,E as

fp,E (n, �) = En
p�, (7)

where n, � ∈ N. Now, we say that fp,E is continuous at zero
if there exists a set {Ep�}�∈N and a matrix Q, such that for all
sequences {nk, �k}∞k=1 fulfilling limk→∞ nk/p

�k = 0, it holds
that limk→∞ fp,E (nk, �k ) = Q. Thus, the existence of a CL
is equivalent to the existence of a p > 1 such that EB is p-
infinitely divisible and an fp,EB

which is continuous at zero.
With this, we can characterize the set of MPSs with a CL.

Theorem 1 (Main result). GivenV(B ) with B in irreducible
form, the following statements are equivalent:

(1)V(B ) has a CL.
(2) EB is infinitely divisible.
(3) There is a quantum channel P and a Liouvillian of

Lindblad form L such that EB = PeL, P 2 = P , and PLP =
PL.

The proof is given in the Appendix.
Note that the last item fully characterizes all possible

CLs. If P = 1, the corresponding transfer matrix eL coincides
with that of a TI cMPS. Thus, as expected, all TI cMPSs
can be limits of TI MPSs. However, for P �= 1, states other
than cMPS appear as possible CLs. Note also that one can
easily see from condition (2) of Theorem 1 that the limit is
smooth, as limt→0 Et = limt→0 PetL = P . Finally, note that
from Theorem 1 and the results of [21] it follows that ifV(B )
has a CL, thenV(B ) can be p-refined for any p > 1.

III. COARSE CONTINUUM LIMIT

We now present a more relaxed definition of a CL of an
MPS, which we call the coarse CL. We will first define and
characterize it (Sec. III A), give several examples of states
with or without a coarse CL (Sec. III B), and finally use these
examples to compare the two notions of CLs (Sec. III C).

 continuum limit

...

(a) (b)

...

coarse continuum limit

FIG. 1. Sketch of (a) the continuum limit and (b) the coarse
continuum limit.

A. Definition and characterization

We have seen that to obtain a meaningful definition of a
CL we have to impose that we can block towards the end
of the refinement and still obtain the same limit. We can
thus ask what happens if we allow for blocking before the
refinement. For example, by blocking two sites of the antifer-
romagnetic state [Eq. (1)], we obtain the ferromagnetic state,
which has a trivial CL. This motivates the following definition
(see Fig. 1).

Definition 3. We say thatV(A) has a coarse CL if there is
a V(B ) and an n ∈ N such that V(A) is the n-refinement of
V(B ) andV(B ) has a CL.

Note that every state V(A) is the p-refinement of some
other state V(B ); that is, given A and p, there is always an
isometry W and a tensor B that satisfies Eq. (5). Moreover,
the process of “coarse-graining” p sites (the opposite of
p-refining) is essentially unique; more precisely, different
isometries will give rise to tensor B’s which are related by
a unitary matrix in the physical index, as shown in Ref. [14].
This is again best understood at the level of the transfer matrix:
coarse-graining p sites corresponds to taking the pth power
of the transfer matrix, which gives a unique result and which
always corresponds to a valid transfer matrix. This is to be
contrasted with p-refining, which is possible only if there is
at least one pth root of E which is a valid transfer matrix, and
in case there is, there may be multiple such roots.

The following characterization is immediate from the
above results.

Corollary 1. V(A) has a coarse CL if and only if there
exists an n ∈ N such that En

A is infinitely divisible.
Remark 1. Computational complexity. What is the compu-

tational complexity of deciding whether a state has a (coarse)
CL? Concerning the CL, deciding infinite divisibility is at
least as hard as deciding Markovianity since the latter amounts
to deciding the former together with being full rank (see con-
dition (3) of Theorem 1), and being full rank can be decided
efficiently. Deciding Markovianity has been formulated as an
integer semidefinite program for fixed input dimension [25]
and shown to be NP-hard as a function of the bond dimension
[28]. Concerning the coarse CL, to the best of our knowledge,
the computational complexity of determining whether, given
a channel E, there is some n ∈ N such that En is infinitely
divisible is not known.

B. Examples

We now present several examples of states with either kind
of CL which illustrate Theorem 1 and Corollary 1.
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Example 1. The ferromagnet. Let us start with an equal
superposition of m ferromagnetic states,

|VN (B )〉 =
m−1∑
i=0

|i, i . . . , i〉, (8)

which is given by the tensor B = {Bi ∈MD}m−1
i=0 , where Bi =

|i〉〈i| for i = 0, 1, . . . , m − 1. V(B ) can be p-refined into p

copies of itself for any p with W = ∑m−1
i=0 |i, i, . . .〉〈i|, and

this is also true after the blocking of an arbitrary number of
spins. Equivalently (see Theorem 1), the transfer matrix

Ef =
m−1∑
i=0

|i, i〉〈i, i| (9)

is a projector; thus, it is infinitely divisible, and thus, the state
has a CL. Recall that the transfer matrix [see (4)] acts on
the auxiliary space, whereas |VN (B )〉 is a state living in the
physical space.

Example 2. The antiferromagnet. Consider an equal super-
position of m antiferromagnetic states,

|Vm(B )〉 =
m−1∑
i=0

|i, i + 1, . . . , i + m − 1〉, (10)

where the sum is modulo m (and similarly for an N multiple
of m and |VN (B )〉 = 0 otherwise), which is given by Bi =
|i〉〈i + 1| for i = 0, 1, . . . , m − 1.V(B ) can be p-refined into
p copies of itself, with p = m + 1, with the isometry

W =
m−1∑
i=0

|i, i + 1, . . . , i + m − 1, i〉〈i|. (11)

However, as we have discussed, this state does not have a CL
since the limit of this refinement is not stable under blocking.
Equivalently (see Theorem 1), the transfer matrix Eaf is p-
infinitely divisible with p = m + 1 since

Eaf =
m−1∑
i=0

|i, i〉〈i + 1, i + 1| = Em+1
af , (12)

but it is not infinitely divisible since it does not have, e.g., an
mth root which is a quantum channel. To see the latter, note
that the nonzero part of the spectrum of Eaf is {e2πir/m}m−1

r=0

and thus for its mth root {e2πi�r /m2}m−1
r=0 (with, e.g., �1 coprime

to m2), whereas the set of eigenvalues of modulus 1 of a
quantum channel needs to be of the form {e2πir/n}n−1

r=0 for some
n [29]. On the other hand, V(B ) has a coarse CL since after
blocking m sites we obtain the ferromagnet of Example 1.

Example 3. A deformed antiferromagnet. We consider the
tensor B(α) (with 0 < α < 1)

B0(α) = √
α |0〉〈1| + √

1 − α |1〉〈0|, (13)

B1(α) = B0(α)t , (14)

where t denotes transpose. The corresponding state has peri-
odicity 2, as for even N we have that

|VN (B(α))〉 = |μ0, μ1, μ0, μ1, . . .〉 + |μ1, μ0, μ1, μ0, . . .〉,
(15)

where |μi〉 is shorthand for |μi (α)〉 and

|μi (α)〉 = √
α|i〉 + √

1 − α|i + 1〉 (16)

for i = 0, 1, where the sum on i is mod 2. Now, let

g±(α) = 1
2 {1 ±

√
1 − [4α(1 − α)]1/3}. (17)

Then V(B(α)) can be 3-refined into V(B(g+(α))) or
V(B(g−(α))). The corresponding isometries are given by

W± = 1

1 − λ(α)2
(|ν±

0 〉〈μ0| + |ν±
1 〉〈μ1|

− λ(α)|ν±
0 〉〈μ1| − λ(α)|ν±

1 〉〈μ0|), (18)

where |ν±
i 〉 = |μi (g±(α)), μi+1(g±(α)), μi (g±(α))〉 for i =

0, 1, where the sum on i is modulo 2, and

λ(α) = 2
√

α(1 − α). (19)

However, this refinement is not stable under the blocking
of two spins since that would give rise to a state without
periodicity. Equivalently (see Theorem 1), the transfer matrix
EB(α) is 3-infinitely divisible but not infinitely divisible. To
see this, note that in the Pauli basis (which is defined as
usual, namely, 1 = |0〉〈0| + |1〉〈1|, X = |0〉〈1| + |1〉〈0|, Y =
−i|0〉〈1| + i|1〉〈0|, Z = |0〉〈0| − |1〉〈1|) we have that

EB(α) = diag(1, λ(α),−λ(α),−1). (20)

Therefore, EB(α) = E3�

B(g�±(α))
for all natural �, where

EB(g±(α)) = diag(1, λ(g±(α)),−λ(g±(α)),−1), where we
choose either g+ or g− for both eigenvalues and g�

± denotes
the �-fold application of the map g±. Yet EB(α) does not
have, e.g., a square root which is a quantum channel since
the spectrum of a channel needs to be closed under com-
plex conjugation, which is impossible given (20). Thus, this
state does not have a CL. However, after blocking two sites
we obtain a Markovian transfer matrix, namely, E2

B(α) = eL,
with L(ρ) = − ln[λ(α)](ZρZ − ρ). Thus, this state has a
coarse CL.

Example 4. The cluster state. Consider the one-dimensional
(1D) cluster stateV(A) [16], which is obtained with the tensor

A1 = |1〉〈+|, A2 = |0〉〈−|, (21)

where |±〉 = (|0〉 ± |1〉)/
√

2 [9]. The transfer matrix

EA = |0, 0〉〈−,−| + |1, 1〉〈+,+| (22)

has eigenvalues (1,0,0,0), but the eigenvalue 0 is associated
with a nontrivial Jordan block. This block does not have a pth
root for any p (see Definition 1.2 of Ref. [30]), and thus,V(A)
cannot be p-refined for any p. However, E2 = (1/2)(|0, 0〉 +
|1, 1〉)(〈0, 0| + 〈1, 1|) is a projector and hence has a trivial
CL. Thus, the 1D cluster state has a coarse CL.

Example 5. The Holevo-Werner channel. Consider the
Holevo-Werner channel for qubits, E (ρ) = 1

3 [ρt + Tr(ρ)1],
where ρt denotes its transpose. The corresponding state is
given by the tensor

A1 =
√

2

3
|0〉〈0|, A2 =

√
2

3
|1〉〈1|, A3 = 1√

3
X. (23)

In the Pauli basis, E = diag(1, 1/3,−1/3, 1/3). This chan-
nel cannot be expressed as a nontrivial composition of two
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quantum channels (even if these two are different) [24], and
thus, V(A) cannot be p-refined for any p. However, E2 is
Markovian, namely, E2 = eLγ , with

Lγ (ρ) = γ (XρX + YρY + ZρZ − 3ρ), γ = ln(9)/4.

(24)

Thus, this state has a coarse CL. More generally, note that
every odd power of E is not infinitely divisible, det(En) < 0
for odd n (see Proposition 15 of [24]), and every even power
of E is Markovian.

Example 6. AKLT state. Consider the AKLT state [15],
which is described in terms of the tensor

A1 = 1√
3
Z, A2 =

√
2

3
|1〉〈0|, A3 = −

√
2

3
|0〉〈1|. (25)

In the Pauli basis, E = diag(1,−1/3,−1/3,−1/3). We thus
have that det(E) = −1/27, and the channel cannot be ex-
pressed as a nontrivial composition of two quantum channels
[24]. Thus, the AKLT state cannot be p-refined for any p.
However, E2 = eLγ , withLγ given by (24). More specifically,
E2 = ∑4

i=1 Bi ⊗ B̄i , with

B1 = √
qI, B2 =

√
1 − q

3
X,

(26)

B3 =
√

1 − q

3
Y, B4 =

√
1 − q

3
Z,

with q = 1/3. This state can be p-refined for any p into a
state with the same matrices, but with q replaced by qp =
(1 + 3(p−2)/p )/4. Thus, the AKLT state has a coarse CL.

Remark 2. Multiple roots of the transfer matrix. Examples 1
and 2 illustrate that the transfer matrix of the ferromagnet with
m states [Eq. (9)] has two p = m + 1 roots which correspond
to a transfer matrix, namely, itself and the transfer matrix of
the antiferromagnet [Eq. (12)]. These correspond to the two
inequivalent ways of p-refining the state.

Similarly, Examples 5 and 6 illustrate that the depolarizing
channel E = eLγ with Lγ given in (24) has three square
roots which are valid quantum channels: the Markovian one
(eLγ /2), the Holevo-Werner channel, and the transfer matrix
corresponding to the AKLT state. Only the Markovian root
can be further refined, and thus, the state corresponding to
E = eLγ has a CL.

Finally, we give an example of a state without a coarse CL.
Example 7. A state without a coarse CL. Consider the

family of qubit channels of the form E = 1 ⊕ � in the Pauli
basis, with � being positive definite and with eigenvalues
λ1 � λ2 � λ3. We claim that if 0 < λ3 < λ1λ2, then En is
not infinitely divisible for any finite n. To see this, note that
by Theorem 24 in Ref. [24] E is not infinitesimal divisible,
and this is preserved under powers. Since infinitely divisible
channels are a subset of infinitesimal divisible channels [24],
it follows that the state corresponding to this transfer matrix
does not have a coarse CL.

Take, for example, diagonal � and λ1 = λ2 = a, λ3 =
a2/2 (with 0 < a � 2 − √

2; see the proof of Proposition 2).

Quantum channels

Unital channels

Markovian channels

FIG. 2. Sketch of part of the geometry of qubit channels. The
volume of the sets is drawn arbitrarily.

The corresponding tensor is given by

A1 =
√

2+4a+a2

8 1, A2 = −
√

2−4a+a2

8 Z,

A3 =
√

2−a2

8 |1〉〈0|, A4 =
√

2−a2

8 |0〉〈1|. (27)

Note that limn→∞ En = C, where C is the completely depo-
larizing channel, C(ρ) = Tr(ρ)1/2. The latter is in the closure
of the set of Markovian channels [e.g., C = limγ→∞ eLγ , with
Lγ given in (24); see Fig. 2].

C. Comparison between the two continuum limits

The previous examples allow us to compare the two CLs.
Let CD and Ccoarse

D denote the set of families of statesV(A) of
bond dimension D with a CL and a coarse CL, respectively.

Proposition 1. For every bond dimension D, (1) CD is
strictly included in Ccoarse

D , and (2) there are states not in
Ccoarse

D .
Proof. That CD is included in Ccoarse

D is trivial from the
definition, and for D = 2, that the inclusion is strict follows,
e.g., from Example 5. For D = 2, the second claim is proven
by Example 7. In both cases, the extension to higher D follows
trivially by embeddingM2 intoMD , for example, asMD =
M2 ⊕ 0D−2, where 0D−2 is the zero matrix. �

We also gain the following insight from Example 7.
Proposition 2. There are states that can be p-refined only a

finite number of times.
Proof. Consider the family of channels whose Lorentz

normal form [24] is given by E(a, η) := diag(1, a, a, ηa2),
with a ∈ (0, 1] and η ∈ (0, 1). It is easy to see that E(a, η)
is completely positive if and only if a � 1

η
(1 − √

1 − η) =:
g(η)(this can be seen by applying Eq. (9) of Ref. [31] to our
case). Denoting by �sol the solution to the equation a−� =
g(η−�), we see that E(a, η) is �sol�-divisible but not (�sol� +
1)-divisible. Correspondingly, the state can be n-refined only
logp�sol�� times. For example, for a = 0.1 and η = 0.9, we
have that the state can be 2-refined only five times. �

IV. CONCLUSIONS AND OUTLOOK

In summary, we have investigated which TI MPSs have a
CL, which is defined as the infinite iteration of the inverse
of a renormalization procedure, together with a regularity
condition in the limit. We have found that a TI MPS has a
CL if and only if its transfer matrix is infinitely divisible. We
have then defined the coarse CL as the CL of some of the
coarser descriptions of the state and have characterized the
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states with a coarse CL using the divisibility properties of their
transfer matrices. We have shown that various well-studied
states (such as the AKLT state, the 1D cluster state, and
the antiferromagnet) have a coarse CL but that not all states
have one.

This work raises several questions. One concerns the repre-
sentation of the states obtained in the limit as matrix products,
which would require a generalization of the class of cMPSs.
This would also allow us to study the uniqueness of the CL.
It also remains to be seen whether there is a meaningful
definition of CL such that all TI MPSs have a limit of this
sort. A further possibility is to consider the renormaliza-
tion procedure determined by the multiscale entanglement
renormalization ansatz (MERA) [32], for which the class of
continuous MERAs was defined in [33], and study continuum
limits in that setting.
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APPENDIX: PROOF OF THEOREM 1

Here we prove Theorem 1, which we state again.
Theorem 1. Given V(B ) with B in irreducible form, the

following statements are equivalent:
(1)V(B ) has a CL.
(2) EB is infinitely divisible.
(3) There is a TPCPM P and a Liouvillian of Lindblad

form L such that EB = PeL, P 2 = P , and PLP = PL.
Proof. That items 2 and 3 are equivalent was proven by

Holevo [22] and Denisov [23].

By Definition 2 and the subsequent discussion, V(B ) has
a CL if there is p > 1 such that EB is p-infinitely divisible
and fp,EB

is continuous at zero. It is thus immediate to see
that item 2 implies item 1 since being p-infinitely divisible is
a particular case of being infinitely divisible, and using item
3, we have that fp,EB

(n/p�) = PeLn/p�

is continuous at zero.
Finally, to see that item 1 implies item 2, assume that EB is

p-infinitely divisible and that fp,EB
is continuous at zero. We

will construct the nth root of E ≡ EB by using the expansion
of 1/n in terms of 1/p�. So for an arbitrary n ∈ N, we have
that

1

n
= 1

p�

(⌊
p�

n

⌋
+ r�

n

)
, (A1)

where p�

n
� is the largest integer which is, at most, that number

(floor) and 0 � rk < n is the residue of the division.
Let us consider (

E
p�/n�
p�

)
�
. (A2)

Since this is a sequence in a compact space, there must exist a
subsequence that converges to a limit which we call En,

(
E

plk /n�
plk

=: Tk

)
k

→ En. (A3)

By completeness, En is a quantum channel. In the rest of the
proof we will show that En is an nth root of E, i.e., En

n = E.
To see this, observe that∣∣∣∣En

n − E
∣∣∣∣ � ∣∣∣∣En

n − T n
k

∣∣∣∣ + ∣∣∣∣T n
k − E

∣∣∣∣, (A4)

where for a superoperator L we use the norm ||L|| =
supX ||L(X)||1/||X||1, where ||X||1 denotes the Schatten 1-
norm. The first term of (A4) vanishes as k → ∞ since∣∣∣∣En

n − T n
k

∣∣∣∣ � n||En − Tk|| � nε, (A5)

where the first inequality follows from the identity T n
k − En

n =
(T n−1

k + T n−2
k En + · · · + En−1

n )(Tk − En) and the fact that
||T n−j

k E
j−1
n || = 1 for all j = 1, . . . , n and the second follows

from (A3).
To show that the second term of (A4) vanishes, we use that

∥∥T n
k − E

∥∥ (A1)
�

∥∥E
p�k /n�n
p�k

− E
p�k /n�n+rk

p�k

∥∥
�

∥∥E
p�k /n�n−1
p�k

∥∥ ∥∥Ep�k − E
rk+1
p�k

∥∥
�

∥∥Ep�k − E
rk+1
p�k

∥∥,

where we have used that ‖Ep�k ‖ = 1. Since rk + 1 � n,
we have that both 1/p�k and (rk + 1)/p�k → 0, and thus,
continuity of fp,EB

(n, p�k ) = En
p�k

at zero implies that

‖Ep�k − E
rk+1
p�k

‖ → 0. �
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