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With density functional theory we have performed molecular dynamics simulations of ZrC, which displayed
spontaneous carbon Frenkel pair formation at a temperature of 3200 K, some 500° below the melting point. To
understand this behavior, rarely seen in equilibrium simulations, we quenched and examined a set of lattices
containing a Frenkel pair. Five metastable structures were found, and their formation energies and electronic
properties were studied. Their thermal generation was found to be facilitated by a reduction of between 0.7 and
1.5 eV in formation energy due to thermal expansion of the lattice. With input from a quasiharmonic description
of the defect-free energy of formation, an ideal solution model was used to estimate lower bounds on their
concentration as a function of temperature and stoichiometry. At 3000 K (0.81 of the melting temperature) their
concentration was estimated to be 1.2% per mole in a stoichiometric crystal, and 0.3% per mole in a crystal
with 10% per mole of constitutional vacancies. Their contribution to heat capacity, thermal expansion, and bulk
modulus was estimated.
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I. INTRODUCTION

Zirconium carbide is a hard, corrosion-resistant material,
with a high melting point and metallic conductivity. The
attractiveness of ZrC for aerospace and nuclear applications
has been documented [1–4]. To support the experimental
investigations of ZrC, particularly for safety critical applica-
tions, we seek to understand and predict some of the prop-
erties of this material at high temperature. In this regard,
thermodynamic measurements are particularly challenging at
temperatures approaching 3000 K or above, and theoretical
predictions are few. Notable exceptions filling some of the
gaps are the recent ultrahigh temperature measurements by
Savvatimskiy et al., and first-principles simulations by Duff
et al. [5,6]. Nevertheless, even the currently most reliable
phase diagram [7] is necessarily incomplete and based on
empirical modeling, extrapolating from experimental data,
which does not explicitly include data for point defects or their
interactions [8].

Recent publications provide a hint that a ZrC crystal may
contain a significant concentration of intrinsic carbon Frenkel
defects at high temperature. Calculations by Kim et al. and
Zhang et al. at zero temperature report low enthalpies of
interstitial carbon formation [1,9], and the analysis of experi-
ments conducted by Savvatimskiy et al. [6] near the melting
point attribute heat capacity behavior at high temperature to
possible Frenkel defects. In this work, we use temperature-
dependent density-functional theory (DFT) calculations to

*t.mellan@imperial.ac.uk

address the possible formation of intrinsic defects, and deduce
consequences thereof for thermal properties.

The plan of the paper is as follows. In Sec. II A we state
technical parameters for numerical calculations, followed by
the setting out of basic equations for the thermodynamic
analysis in Sec. II B. Section III A details the discovery of
defects by molecular dynamics, and describes our systematic
search of the defect configuration space. In Sec. III B the
calculated structures and stability of defects at 0 K is reported.
Section III C discusses elementary thermal excitations in the
defective crystal. Section III D reports some temperature-
dependent properties, including Frenkel defect concentration,
thermal expansion, heat capacity, and bulk modulus. Finally
the effect of substoichiometry on Frenkel pair concentration
is discussed. The Appendix contains supplementary details
on the predicted ZrC properties and a derivation of the ideal
solution model for the five Frenkel defects at variable carbon
substoichiometry.

II. METHODS

A. Calculation

Langevin NVT molecular dynamics (MD) simulations were
performed for five temperature-volume points up to the melt-
ing point on the ZrC thermal expansion curve [5]. MD simu-
lations were run for 15 ps at each temperature-volume point,
with a friction parameter of 0.1 THz and time step of 3 fs.

Periodic plane-wave density function theory (DFT) calcu-
lations were performed using the VASP software [10,11], with
the local density approximation (LDA) exchange-correlation
function [12]. The projector-augmented wave (PAW) method
is used [13], with 4s- and 4p-Zr electrons included as valence
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TABLE I. Plane-wave kinetic energy cutoff and k-point sam-
pling density for supercell calculations. Supercell size references
diagonal expansion of basis vectors of the conventional unit cell of
perfect ZrC.

Observable Ekin (eV) k-point grid Supercell size

U0(V ) 700 12 × 12 × 12 2 × 2 × 2
UFS(V0) 700 3 × 3 × 3 4 × 4 × 4
Fel(V, T ) 700 12 × 12 × 12 2 × 2 × 2
Fph(V ) 700 6 × 6 × 6a 2 × 2 × 2a

EMD(V, T ) 500 2 × 2 × 2 2 × 2 × 2

aFor two unbound carbon Frenkel pairs it was necessary to increase
the lattice expansion from 2 × 2 × 2 to 4 × 2 × 2, in order to obtain
exact phonon frequencies at specific q-points. The q-point and k-
point meshes were suitably adapted for these configurations.

states. The k-point sampling mesh and cutoff kinetic energies
are chosen to obtain free energies converged to better than
1 meV/atom and 5 meV/defect. k-point mesh sampling and
plane-wave cutoff values are summarized in Table I. The DFT
crystal energy U0(V ) and the phonon free energy Fph(V, T )
were each calculated on a mesh of 11 volumes spanning

the range 12.0 Å
3
/atom to 14.7 Å

3
/atom. Fph(V, T ) was

computed using quasiharmonic lattice dynamics as imple-
mented in the PHONOPY code [14] with the direct method
of calculating the dynamical matrix [15–17]. At each of the
11 volumes, sets of small displacements were applied. Each
configuration required between 40 and 768 displacements de-
pending on space group. The dynamical matrix was built from
these forces [10–12,14]. For defect structures, we assumed
that thermal expansion of the crystal can be modelled by a
supercell with homogeneous isotropic principal axis strains.
At each volume, internal coordinates were optimized until
force changes were less than 10−6 eV/Å. Force calculations
used first-order Methfessel-Paxton electron smearing with an
electronic temperature of 0.1 eV [18].

The electronic free energy, Fel(V, T ), was calculated using
the Mermin finite-temperature formulation of DFT [19], on a
mesh of ten temperatures and eight volumes, sampled between
Veq(T = 0 K) and Veq(T = 3800 K). Electron states are self-
consistent to within 10−7 eV/atom. The 64 atom supercell
used contains 512 electrons, for which 384 bands were suf-
ficient to span all states with significant partial occupation up
to the melting point.

B. Analysis

We calculate the Helmholtz free energy

F = −kBT ln Z,

as a sum of three terms

F (V, T ) = U0(V ) + Fph(V, T ) + Fel(V, T ). (1)

U0 is the total energy of static crystal configurations, Fph the
vibrational free energy, and Fel the contribution of single-
electron thermal excitations as described in the Mermin
functional.

The calculated free energies are fitted by third-degree
polynomials,

F (V, T ) =
∑
jk

ajkV
jT k, (2)

with j � 0, k � 1 and j + k � 3.
The Helmholtz free energy F is Legendre transformed

to the Gibbs free energy G for calculating thermodynamic
quantities at constant external pressure p:

G(p, T ) = min
V

[F (V, T ) + pV ]. (3)

The volume minimization is performed on a mesh of temper-
atures separated at 2 K intervals.

For intrinsic defect i in a stoichiometric 2 × 2 × 2 super-
cell, Gi is used to calculate the defect formation energy:

�G2×2×2
i = G2×2×2

i − G2×2×2
perfect . (4)

The spurious interaction between the defect and its periodic
images, both electronic and due to the overlapping strain
fields, is accounted for with a finite-size energy correction,

�Gbulk
i = �G2×2×2

i + Ui,FS(V0). (5)

The finite-size correction Ui,FS, is estimated from calculations
at the zero-temperature equilibrium volume,

Ui,FS(V0) = lim
n→∞Un×n×n

i (V0) − U 2×2×2
i (V0), (6)

where Un×n×n
i (V0) is the energy to form a defect in a n ×

n × n supercell. To estimate Ui,FS(V0) in the limit of nonin-
teracting periodic images, the defect energy is calculated for
supercell sizes ranging from 2 × 2 × 2 (Zr32C32) to 4 × 4 × 4
(Zr256C256), and linearly extrapolated to the 1/n = 0 dilute
limit.

The equilibrium concentration of intrinsic defects has been
calculated using the dilute-limit �Gbulk

i with an ideal solution
model. The model assumes a partition function of the form

Z = m
N2
2 m

N3
3

N !

(N − N1 − N2 − 2N3)! (N1 + N3)! N2! N3!
,

where mi are degeneracies and Ni are defect numbers, in-
dexed i = 1, 2, 3 for vacancies, bound pair Frenkels and
unbound pair Frenkels respectively. Z gives

n2 = (1 − n1 − n2 − 2n3) m2 exp

(
−�G2

T

)
,

and

n3 = (1 − n1 − n2 − 2n3)2

(n1 + n3)
m3 exp

(
−�G3

T

)
.

for bound and unbound Frenkel pair concentrations. Model
derivation and additional details in the Appendix.

III. RESULTS

A. Discovery of defects

1. Molecular dynamics

With density functional theory (DFT) we first performed
ab initio molecular dynamics (AIMD) simulations for stoi-
chiometric ZrC. Although the time scales accessible in AIMD
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  (
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FIG. 1. Time-averaged pair correlation function, 〈ραβ (r )〉 in
Eq. (8), estimated from ab initio MD at the melting point Tm =
3700 K.

simulations are typically insufficient to determine defect
statistics such as bound pair lifetimes, even short runs of 15 ps
can provide insight into defect behavior. Trajectories were
analyzed using equal-time spatial pair correlation function
defined as follows:

ραβ (r, t ) = 1

Nα

∑
i, j �=i

〈
δ
(
r − ∣∣rα

i − r
β

j

∣∣)〉, (7)

where α ∈ {Zr,C} and β ∈ {Zr,C}. The time argument is
specified in ραβ (r, t ) as we do not suppose the thermodynamic
limit for our small ensemble simulations.

Near the melting point, carbon atoms are occasionally
observed to hop spontaneously from ( 1

2
1
2

1
2 ) perfect Wyckoff

b sites, with high-symmetry and octahedral coordination, to
low-symmetry interstitial sites. Site-resolved pair correlation
functions show that newly formed carbon interstitials do
not immediately leave sites that are nearest neighbor to the
vacancy they have created. We therefore refer to the resulting
defect as a bound pair carbon Frenkel defect.

The time-averaged correlation functions,

〈ραβ (r )〉 = 1

τ

∫
dt ραβ (r, t ) (8)

are shown for stoichiometric ZrC at the melting point in Fig. 1.
The distinctive carbon-carbon peak at the small separation of
r = 1.3 Å signifies interstitial carbon in ZrC. The width of
the peak suggests the interstitial carbon is sufficiently ther-
mally excited to move between multiple coordinations (which
have a range of C-C bond lengths). Examining this behavior
using AIMD simulations requires significant computational
resources. To aid sampling of the interstitial configuration
space, interstitial dynamics has been biased to prohibit the
recombination of interstitial and vacancy.

To bias interstitial dynamics a hydrogen atom is placed
and frozen in position at the vacant carbon site. At the

melting temperature, the interstitial is found to exchange be-
tween multiple sites within the vacancy nearest-neighbor (nn)
coordination shell. Within 10 ps, the interstitial is observed to
begin diffusing, hopping away from vacancy-nn coordination.
Beyond the vicinity of the vacancy-nn, the displaced carbon
can hop between lattice interstitial sites, or switch places
with a perfect-site carbon. In AIMD simulations we cannot
access fine-grained diffusion statistics, but note that hopping
behavior between distinct sites is quite clearly observed on the
picosecond time scale.

The carbon Frenkel pairs observed in AIMD at the melting
point are found to be metastable at low temperature. This is
confirmed by selecting MD configurations at random, and
quenching by steepest descent to T = 0 K. The Frenkel
interstitial tends to relax to a C-C-C trimer unit, with a bond
angle of 127◦ and C2v symmetry. The trimer is found to be
stable across volume dilations ranging from at least −5% to
+16% under homogeneous principal axis strains.

2. Systematic search for Frenkel pairs

In addition to the carbon trimer of C2v symmetry, identified
from quenched AIMD snapshots, we have systematically
searched for other carbon Frenkel defect configurations with
distinct symmetry. 1331 initial Frenkel configurations were
considered, each corresponding to a different interstitial po-
sition. The interstitial positions were distributed on a uniform
grid in a symmetry-reduced wedge of the defective 2 × 2 × 2
supercell with other atoms fixed in their perfect lattice sites.
Each configuration provided a starting point for a geometry
optimization. Optimized configurations were subsequently
analyzed in terms of energy and symmetry to identify distinct
metastable Frenkel configurations.

In the relaxation of the 1331 initial Frenkel configurations,
forces were finely optimized to better than 10−6 eV/Å. This
was necessary to prevent relaxations becoming trapped in
flat, high-symmetry regions of the defect configuration space
that are not quite local minima. The high-accuracy relax-
ations provide data from which we identify two bound and
three unbound interstitial-vacancy pairs that are stable at the
equilibrium volume. If d(Cint − Cvac) < a/

√
2 the vacancy-

interstitial pair is classified as bound, and if d(Cint − Cvac) >

a/
√

2 the Frenkel pair is said to be unbound.

3. Defect structures

Of the five defects considered as bound (B) or unbound (U )
Frenkel pairs, the carbon atoms involved are further classified
as dimer, trimer, or tetramer, denoted by a subscript suf-
fix. For each configuration, bound-dimer (B2), bound-trimer
(B3), unbound-dimer (U2), unbound-trimer (U3), unbound-
tetramer (U4), the energetic ordering at the zero-temperature
equilibrium volume is as follows:

perfect < B3 < B2 < U3 < U2 < U4.

Formation energies are listed in Table IV, each defect
structure is pictured in Fig. 2, and features of the defect
geometries such as bond lengths and point symmetries are
listed in Table II.

Note, at the equilibrium volume, the U3 configuration is an
angular C-C-C unit, but the linear C-C-C configuration, U lin

3 ,
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FIG. 2. For each Frenkel pair, the eighth of the supercell that contains the interstitial atom is visualized [20]. Carbon atoms are colored
brown, zirconium atoms green, and the vacant carbon site is highlighted red for bound pair defects. Defect labels are: (a) B2 bound dimer,
(b) B3 bound trimer, (c) U2 unbound dimer, (d) U lin

3 unbound linear trimer, (e) U3 unbound trimer, and (f) U4 unbound tetramer.

is stabilised at sufficiently large lattice expansion. Both are
shown in Fig. 2.

B. Electrons and phonons

1. Lattice vibrations with defects

Phonon densities of states (DOS) are shown as a function
of frequency and volume dilation in Fig. 3. Typically vibration
frequencies soften with lattice expansion. For example the
mean Grüneisen parameter (γ = − ∂lnω̄

∂lnV
) for perfect ZrC is

γ perf ≈ 1.5 at low temperature, increasing to γ perf ≈ 2 at high
temperature. A notable feature of the perfect ZrC phonon
DOS is the obvious gap in frequencies. For each density of
states, below the gap 98.6% of the squared amplitude is on Zr
sites, and above the gap 98.6% is on C sites.

Carbon Frenkel defects can be identified in the phonon
DOS (Fig. 3) from the distinctive patterns of high-frequency
vibrations associated with the interstitial carbon. The patterns

shown may provide a useful spectroscopic fingerprint to ex-
perimentally identify Frenkel pairs in the future.

The most stable defect configuration at T = 0 K is B3 (see
Table IV), for which the phonon DOS is shown in Fig. 3(c).
The B3 defect states comprise localized carbon vibrational
frequencies with one mode red-shifted and three modes blue-
shifted enough to lie outside the band of bulk carbon fre-
quencies. The red-shifted defect mode, clearly evident in the
gap between the bulk carbon and zirconium frequencies, is
due to rigid C-C-C translation. For the blue-shifted modes,
the highest-frequency vibration is an asymmetric stretch. The
other two blue-shifted local modes are types of symmetric
stretches, which are distinguished by the motion of the in-
terstitial relative to the local environment as in or out of the
C-C-C plane.

To quantify the high degree of localization for these vibra-
tions, consider the highest-frequency defect state in Fig. 3(c).
For this asymmetric stretch mode, 60.1% of the motion

TABLE II. This table reports stable carbon Frenkel pair configurations found in ZrC. Defect configurations are labeled bound (B) or
unbound (U), with C coordination subscripts. Orientations are specified by angle brackets which denote the families of directions for the
Ci-Cnn bond in the basis of the direct unit cell lattice. Orientation indices given are the lowest that provide accuracy to within 5% of the exact
orientations. The point group refers to the interstitial-carbon nearest-neighbor unit. Multiplicity m counts the degeneracy of the interstitial
carbon, with respect to vacancies for bound pairs, and per perfect carbon site for unbound pairs. Bond angles and lengths are between
interstitial-carbon and carbon nearest-neighbors.

Config. Description Orientation Point group Multiplicity, mi Angle, Cnn-Ci-Cnn(°) Length, Cnn-Ci (Å)

B2 bound dimer 〈332〉 D∞h 24 – 1.411
B3 bound trimer 〈654〉 C2v 24 126.7 1.506
U2 unbound dimer 〈100〉 D∞h 3 – 1.411
U3 unbound trimer angular 〈553〉 C2v 12 135.9 1.459
U lin

3 unbound trimer linear 〈110〉 C∞v 6 179.4 1.376
U4 unbound tetramer 〈322〉 C3v 8 117.4 1.586
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(a) (b) (c)

(f)(e)(d)

FIG. 3. Phonon density of states for: (a) perfect ZrC, (b) B2 bound dimer, (c) B3 bound trimer, (d) U2 unbound dimer, (e) U3 unbound
trimer, (f) U4 unbound tetramer. Thermal expansion increases from blue to red, along the sequence of volumes {11.96, 12.16, 12.36, 12.63,
12.85, 13.22, 13.47, 13.83, 14.26, 14.48, 14.70} Å3/atom. To highlight Grüneisen behavior, consecutive densities of states are up-shifted
proportional to dilation.

projects onto the interstitial, and 19.3% projects onto each
of the two interstitial nearest neighbors. Only the remaining
1.3% is not localized on the immediate C-C-C unit. For B2,
shown in Fig. 3(b), the blue-shifted defect frequencies involve
a C-C stretching mode, which has the highest frequency,
and second mode in which the interstitial rocks about a
near-static carbon neighbor. The frequency-volume depen-
dence of the rocking mode mirrors the Grüneisen parameter
of bulk frequencies, softening with strain, but the stretch-
ing mode anomalously increases in frequency with lattice
expansion.

The U2 phonon states in Fig. 3(d) are further worth men-
tioning. The U2 DOS shows one remarkably high-frequency
peak at ω ≈ 54 THz. This vibration is due to stretching of
the C-C dimer. The other blue-shifted defect mode is a dimer
translation parallel to the bond orientation. The red-shifted
defect frequencies, which overlap into the bulk carbon range,
are due to C-C partial rotation in one instance, and in another
due to dimer translation orthogonal to the C-C bond.

U3 in Fig. 3(e) is also notable for the phase transition
in strain evident via the Grüneisen discontinuity at large
dilation. The transition occurs between crystal volume 13.5
and 13.8 Å3/atom and lifts the trimer point group symmetry
from angular C2v to linear C∞v . This change yields another
unusually stiff mode at 43 THz shown in Fig. 3(e), which is
due to asymmetric stretching of the C-C-C unit. Two other
high-frequency localized modes exist, which have the same
Grüneisen parameters below the transition. At the transition,
the lower-frequency mode changes Grüneisen sign, and be-
gins increasing in frequency. This gives the appearance of
a degeneracy at the eighth and ninth volumes in Fig. 3(e),
but closer inspection reveals the modes are not degenerate. In
Fig. 3(e) we also note there are two low frequency localized
modes in the gap evident below the transition. Above the
transition there are still two localized modes at the gap, but
they are not clearly observable in the total DOS plot due to
proximity to bulk modes.

For U4 in Fig. 3(f), the stiffest defect mode is due to the
carbon interstitial stretching against its three carbon nearest-
neighbors. The observable red-shifted defect mode, between
the bulk carbon and zirconium bands, is due to the rigid
translation of the C4 unit which is made up of the interstitial
and it’s three C nearest-neighbors.

Harmonic interatomic forces and vibration frequencies are
related as

|�| = |M|
∏

i

ω2
i . (9)

In this expression the force constant matrix determinant |�| is
equated with the product of the diagonal mass matrix entries
|M| and the squared frequencies ω2

i .
The defective to perfect ratio |�′|/|�| is a useful indicator

of bond stiffness. In particular for stoichiometric defects when
|M| = |M′| the force determinant ratio is a useful single-
valued measure of the defect-induced frequency redistribu-
tion. The ratio can be expressed as a density of states differ-
ence integral

|�′|/|�| = exp
∫

dω [g′(ω) − g(ω)] ln ω, (10)

which is how we have calculated the ratio in practice in
this work. It is also directly related to the classical excess
vibrational entropy of the Frenkel defect by

S ′ − S = −ln
√

|�′|/|�|.
If |�′|/|�| < 1 we infer net defect-induced crystal soft-

ening, else vice versa. For Frenkel defects in ZrC we observe
|�′|/|�| � 1, indicating stoichiometric defects reduce crystal
stiffness. This occurs despite the high-frequency vibrations
of Frenkel defects (visible in Fig. 3), that arise from locally
stiffened interstitial carbon-carbon bonds, as explained in
what follows.

The values of S ′-S reported in Table III are positive, which
agrees in sign with Frenkel pair entropies reported for other
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TABLE III. Defective to perfect force determinant ratios
|�′|/|�| and formation entropy for each Frenkel pair. Values are
isochoric at the perfect volume V

perf
0 = 12.843 Å/atom. Entropies

resolved to cation and metal contributions. kB/defect entropy units.

Configuration |�′|/|�| S ′ − S S ′
Zr − SZr S ′

C − SC

B2 0.09 1.18 2.16 −0.97
B3 0.24 0.72 2.13 −1.41
U2 0.01 2.29 2.45 −0.16
U3 0.06 1.40 2.53 −1.13
U4 0.08 1.26 2.46 −1.20

materials [21–24]. The unbound defects have larger vibra-
tional entropies than bound defects, which is also consistent
with reports for other materials, e.g., the Frenkel pairs in
In2O3 reported by Walsh et al. [22].

S ′-S at fixed perfect-crystal volume ranges from 0.7–
2.3 kB depending on the defect. Partial S ′-S contributions
from carbon and zirconium in Table III show S ′-S is positive
because the Zr-character modes soften more than the carbon-
type vibrations increase in frequency due to the localized
interstitial frequencies. An early Green’s function analysis of
Frenkel pairs in CaF2 by Gillan and Jacobs made a similar
partition of the defect entropy [21]. The conclusions they drew
were analogous—Frenkel defect entropy S ′-S is net positive,
despite the locally negative entropy of the stiffened interstitial
vibrations.

2. Defect electronic characterization

Our DFT calculations predict that perfect ZrC has a density
of states at the Fermi energy of DOS(εF) = 0.13 electron
states/eV per atom. This value is similar to early estimates
by Ihara et al. [25] with 0.09 states/eV per atom, and
Borukhovich and Geld [26] with 0.1 states/eV per atom, and
more recent LDA (GGA) calculations by Arya and Carter
[27] with 0.112 (0.129) states/eV. Absolute computed values
depend somewhat on technical parameters. For example we
observe a 5% variation in DOS(εF) on converging unit cell
k-points between 4 × 4 × 4 and 40 × 40 × 40, +7% change
increasing Tel = 0.1 eV to Tel = 0.2 eV, +2% change from
Fermi-Dirac smearing to Methfessel-Paxton, and +12% in-

crease from GGA to LDA at fixed volume. Given these
sensitivities, we next consider trends with defect type and
thermal expansion rather than absolute values.

The value of DOS(εF) is modified by the presence and
type of the carbon Frenkel defect in the crystal. A feature
common to each defect is the tendency to increase DOS(εF)
compared to perfect ZrC. Compared to 0.13 states/eV/atom
in perfect ZrC, Frenkel defects increase DOS(εF) by between
+0.02 states/eV/atom for U3 and +0.12 states/eV/atom for
U2.

The value of DOS(εF) in a transition metal can become
larger or smaller with increasing Wigner-Seitz radius, for
example, this has been reported by Pettifor for the 4d series
[28]. In ZrC we find the precise dependence of DOS(εF) on
volume expansion varies depending on the specific defect
configuration, illustrated in Fig. 4.

As lattice dilation and the insertion of defects both tend to
increase the value of DOS(εF), electron entropy will tend to
stabilize defects. The distribution of DOS(ε) for each crystal
configuration has a distinctive energy dependence (see Fig. 4).
At high temperatures a first-order Sommerfeld expansion
will be inadequate beyond qualitative inferences. Quantitative
predictions including electronic defect free energies from the
Mermin functional are given subsequently.

C. Defect thermodynamics

1. Enthalpy and entropy

The B3 Frenkel defect is the most energetically stable con-
figuration at 3.2 eV/defect, followed by B2 at 3.7 eV/defect.
Unbound pairs are less stable, costing between 4.3 and 4.5
eV/defect to introduce to the lattice. The full set of values
at T = 0 K is listed in Table IV, and shown as a function
of temperature at ambient pressure in Fig. 5. The defect
formation enthalpies, �H = H defect − H perfect, show varia-
tions of a few tenths of an eV over 3000 K. The relatively
weak temperature dependence is due to partial cancellation of
vibrational and electronic contributions. To see this consider
the bound dimer enthalpy �H (B3) as a typical example.
Between 0 K and 3000 K, the electronic part increases
by �Hel(B3) = 0.14 eV/defect, and quasiharmonic part de-
creases by �Hph(B3) = −0.25 eV/defect. Overall change is
modest at �H (B3) = −0.12 eV/defect, as evident in Fig. 5.

(a) (b) (c)

(d) (e) (f)

FIG. 4. Electron densities of states (DOS). Left: DOS at the Fermi level versus crystal expansion. Right: DOS versus energy, with thermal
expansion increasing from blue to red. (a) perfect ZrC, (b) B2 bound dimer, (c) B3 bound trimer, (d) U2 unbound dimer, (e) U3 unbound trimer,
(f) U4 unbound tetramer. Note, electron DOS is provided for on the wider scale of −6 � ε − εF � 6 in the Appendix.
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TABLE IV. Defect formation energy �U (�U = �U0 +
�UZP + UFS) and zero-point energy difference �UZP.

Configuration �U (eV/defect) �UZP (eV/defect)

B2 3.734 −0.031
B3 3.247 −0.016
U2 4.436 −0.042
U3 4.335 −0.027
U4 4.441 −0.030

B3 has the smallest ambient pressure formation entropy
and U2 has the largest, as seen in Fig. 5. The ordering of
defect entropies agrees with the rudimentary estimates in
Table III computed from fixed-perfect-volume force-constant
determinants, though the ambient pressure values are larger.

2. Gibbs energy of defect formation

The Gibbs energy of defect formation is shown in Fig. 6
up to 3000 K (above this temperature anharmonic thermody-
namic contributions become considerable in ZrC) [5]. Ther-
mally excited electrons and phonons can reduce the energy
to form a Frenkel defect by more than 1 eV over the interval
0–3000 K. This is mostly due to phonons but the electron con-
tribution gains relative importance with temperature. In terms
of the Gibbs energy of defect formation, zero-point effects are
negligible. This is observable in Fig. 6 and Table. IV.

3. Bulk modulus

We estimate the isothermal bulk modulus as

KT = −V
∂2G

∂V 2
. (11)

KT is shown in Fig. 7, and specific values are reported in
Table V.

KT is known experimentally for ZrC from pulsed-
ultrasonic measurements by Chang and Graham, who report
K

exp
300 = 223 GPa for ZrC0.94. At 300 K, we predict K

perfect
300 =

236 GPa, and Kdefect
300 ≈ 219–227 GPa depending on the type

( )

(
/

)

( )

(
/

)

FIG. 5. Ambient pressure formation energy �H = H defect −
H perfect and entropy �S = Sdefect − Sperfect. Frenkel ZrC has one
defect per supercell.

( )

(
/

)
FIG. 6. Defect Gibbs formation energy [Eq. (5)] for each defect

type. Solid includes quasiharmonic and electronic contributions;
short-dashed includes quasiharmonic; and long-dashed is the zero-
temperature formation energy without zero-point contributions.

of Frenkel defect present in the simulation cell. The defect
reductions in KT are between 5–10 % at the Frenkel concen-
tration of one defect by supercell (1/32 C at. %). Frenkel-
induced KT variation is relevant to ZrC applications in high-
radiation and -temperature environments. ZrC is radiation
tolerant and has a relatively low neutron scattering cross
section σZrC ≈ 0.2 σZrAlloy) [29,35,36], but there is reportedly
less known about ZrC for fuel clad design that comparable
materials such as SiC [35,37,38]. First-principles data on
Frenkel-induced changes to structural parameters is therefore
likely useful for sensitivity analyses in multiphysics simula-
tions of accident tolerant fuel materials [39–42].

The K0 value we predict for perfect ZrC differs from
other computational studies by 10–20 GPa [29–31,33]. While
most studies use the PBE GGA functional, we use the LDA
exchange correlation. Our choice of the LDA functional has
been motivated by the adequate performance of LDA and poor
performance of PBE at high temperature for ZrC reported by
Duff et al. [5].

4. Heat capacity

The ambient-pressure isobaric heat capacity,

CP = −T
∂2G

∂T 2
(12)

= CV + T
∂S

∂V

∂V

∂T
, (13)

is shown for perfect ZrC in Fig. 7, along with the excess
defect contribution �CP(T ) = Cdefect

P (T ) − C
perfect
P (T ) asso-

ciated with forming a single defect.
The low-temperature peak arises from the differential tem-

perature occupation of the perfect and defect crystal phonon
spectra. Low-frequency modes are softer in the defective
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FIG. 7. Top, left to right: Thermal volume expansion (�V/V0), isobaric heat capacity (CP), and isothermal bulk modulus (KT) for perfect
ZrC. Bottom: The defective minus perfect difference, �O = Odefect − Operfect, for each quantity. The defective ZrC here has one Frenkel defect
per supercell.

lattice compared to the perfect crystal. As temperature in-
creases, the defect crystal heat capacity increases more than
perfect ZrC resulting in the peak. As the crystal approaches
the Debye temperature, quantum effects in the heat capacity
fall off and the difference �CP (T ) recedes. We emphasise
the low-temperature bump is not an isobaric effect, i.e., it is
not due to the second term in Eq. (13). It is also present in a
plot of the constant volume equivalent �CV(T ).

Our heat capacity predictions can be considered in the con-
text of measurements by Savvatimskiy et al. [6], which show
a steep increase in specific heat by ×4 near Tm, tentatively
attributed to carbon Frenkel pair defects. Direct comparison is
somewhat limited because their measurements are made on a
sample undergoing fast heating from 2500–5000 K while we
predict equilibrium thermodynamics up to 3000 K, however,
we can confirm that at 3000 K the calculated population
of Frenkel defects is already sufficient to modify the heat
capacity by �CP = 0.05 kB/atom. This value is small com-
pared to the experimental enhancement at Tm, but at higher
temperatures we speculate the �CP from Frenkel defects will
be much greater due to the exponentially increasing number
of defects and the increasing effects of anharmonicity. As the
electronic contribution to the heat capacity at Tm is known

TABLE V. Isothermal bulk moduli in units of GPa for perfect and
defective ZrC. Frenkel ZrC has one defect per supercell. Selected
calculated [29–33] and measured [34] values are included.

Configuration K0 K300 K1000 K3000

perfect 240.7 236.2 216.7 143.6
B2 230.0 225.8 207.6 134.6
B3 230.9 226.8 208.4 134.4
U2 229.5 225.1 206.3 126.4
U3 222.2 218.8 202.5 135.9
U4 229.5 225.2 206.8 135.9

ZrC (PBE) 232.2 [29], 219 [30], – – –
232 [31,32], 234 [33]

ZrC0.94(ultrasonic) – 223 [34] – –

to be 0.5 kB/atom [5], which is only a small fraction of the
measured CP enhancement, and ZrC is unusually capable of
supporting Frenkel defects, it seems plausible that structural
excitations are the source of the measured heat capacity
divergence. However, we are cautious in asserting this as our
calculated �CP can be positive or negative depending on the
Frenkel defect type (whereas the measured enhancement is
strongly positive). Furthermore the inclusion of anharmonic
effects required to calculate CP at Tm is beyond the scope of
this work.

5. Thermal expansion

The isotropic volume expansion �V
V

is found from the vol-
ume that minimizes the Gibbs free energy at each temperature.
It is shown for each configuration in Fig. 7, at a concentration
of one defect per 64 atom supercell (nfp = 3 C at. %), and
values are listed in Table VI. The volume expansion induced
by one carbon Frenkel defect in the supercell is approximately
0.12%, with weak dependence on temperature. We consider
in the following sections the effect of a thermal population of
defects.

TABLE VI. Volume for perfect and defective ZrC at 0 K, 300 K,
1000 K, and 3000 K. Frenkel ZrC has one defect per supercell. Units
of Å3/atom

Configuration V0 V300 V1000 V3000

perfect 12.706 12.740 12.931 13.749
B2 12.836 12.870 13.060 13.873
B3 12.820 12.854 13.042 13.850
U2 12.843 12.877 13.070 13.924
U3 12.829 12.864 13.059 13.850
U4 12.819 12.854 13.045 13.861

ZrC (PBE) 12.903 [32] 12.887 [33] – – –
ZrC0.94(exp.) – 12.973 [6] – –
ZrC0.95(exp.) – 12.928 [34] – –
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FIG. 8. Frenkel pair concentration. Log scale inset.

6. Defect concentration

nfp is shown in Fig. 8 between 1000 and 3000 K, calcu-
lated with the ideal solution model. Details are provided in
Appendix A. nfp ranges from 0.01% at 2000 K (0.54 Tm) to 1.2
C at.% at 3000 K (0.81 Tm), where the experimental melting
point is Tm = 3700 K. We are unaware of any reports of such
high concentrations of thermally induced self-interstitials in
any material hundreds of degrees below the melting point.
Recent evidence, both experimental and with molecular dy-
namics, has indicated the existence of thermally induced self-
interstitials in aluminium, but only within 2–4 K of Tm [43],
and at a concentration two or three times below that of the
thermally induced vacancies. Since we are dealing here with
a compound, the concept of thermally induced vacancies is
not directly relevant; in the case of ZrC any concentration

=

( %)

(
%

)

FIG. 9. Coupling of equilibrium Frenkel defect concentration at
3000 K to carbon substoichiometry. Constitutional carbon vacancies
weakly suppress bound pair defects and strongly suppress unbound
pairs.

TABLE VII. Frenkel pair concentration. Concentrations mea-
sured in C at. %.

T (K) nC
vac nbound

fp nunbound
fp ntotal

fp

0 5 × 10−4 0.01 0.01
2 5 × 10−4 9 × 10−5 6 × 10−4

2000 5 5 × 10−4 4 × 10−5 5 × 10−4

10 5 × 10−4 2 × 10−5 5 × 10−4

0 0.02 0.18 0.20
2 0.02 0.02 0.04

2500 5 0.02 6 × 10−3 0.03
10 0.02 3 × 10−3 0.02

0 0.27 0.93 1.19
2 0.26 0.36 0.62

3000 5 0.26 0.16 0.41
10 0.24 0.07 0.31

of carbon vacancies not associated with Frenkel defect for-
mation is associated with nonstoichiometry. In practice, the
ZrC lattice structure supports a high level of carbon deficit,
manifest as vacancies on the carbon sublattice. The law of
mass action dictates that such constitutional vacancies will
reduce the concentration of unbound interstitials. Figure 9
shows the calculated effect of substoichiometry on the Frenkel
defect population at 3000 K. Some specific values are also
listed in Table VII.

The exceptional population of carbon Frenkel defects is
explained by the following five points:

(i) ZrC supports at least five symmetry-inequivalent
Frenkel-pair types, {B2, B3, U2, U3, U4}.

(ii) Interstitial carbon tends to occupy low-symmetry sites.
The associated multiplicities are listed in Table II.

(iii) Frenkel pairs increase the electronic density of states
at the Fermi level.

(iv) Frenkel pairs expand the lattice, with a net softening
of vibration frequencies.

(v) ZrC remains crystalline to an unusually high melt-
ing temperature. Configurational, electronic, and phonon en-
tropies, which are all stabilizing for defects, therefore have
uncommonly large stabilizing effects.

IV. CONCLUSIONS

In simulations of a ZrC crystal, five distinct carbon Frenkel
defect configurations have been found that are metastable at
zero temperature. Two of the configurations are bound pairs
and in three other configurations the vacancy and interstitial
are separated. While at 300 K the equilibrium concentration
of Frenkel pairs is negligible, at 3200 K they were fre-
quent enough to occur spontaneously during a first-principles
molecular dynamics simulation.

We have performed quasiharmonic lattice dynamics calcu-
lations to study further the thermodynamics of these defects.
The results indicate surprisingly high concentrations of bound
and unbound Frenkel pairs: in the stoichiometric crystal we
estimate 0.01% per mole at 2000 K, 0.2% at 2500 K, and 1.2%
at 3000 K. For a substoichiometric crystal we can predict how
much the number would be suppressed by recombination. The
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high proportion of bound vacancy-interstitial pairs maintains
the high concentration of Frenkel pairs even in the presence
of constitutional vacancies. We find for ZrC0.9 at 3000 K the
concentration is reduced from the stoichiometric value 1.2%
to 0.3%. This is by reducing the concentration of bound pairs
from 0.93% to 0.07%, and the unbound pairs from 0.27% to
0.24%.

The high concentration of Frenkel defects changes the
properties of ZrC several important ways. A concentration
of one defect per 64 atom ZrC cell approximately doubles
the electronic density of states at the Fermi level, decreases
the bulk modulus by 8–18 GPa, and dilates the lattice by
0.1%–0.15%. The Frenkel contribution to the heat capacity
is relatively small for moderate temperatures, not exceeding
0.05 kB for T < 2000 K, but the rate of increase suggests it
will be much larger near the melting point.
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APPENDIX A: IDEAL SOLUTION MODEL

We derive an ideal solution model for ZrC based on the
configurational entropy of the carbon sublattice. The articles
of interest on the lattice are constitutional carbon vacancies
(denoted N1), bound Frenkel pairs (N2), and unbound Frenkel
pairs (N3). The basis for counting combinations of these
species is the number of perfect sites (N − N1 − N2 − 2N3),
the number of vacancies (N1 + N3), bound pairs (N2) and free
interstitials (N3). The number of combinations or unordered
selections without repetition is

Z = m
N2
2 m

N3
3

N !

(N − N1 − N2 − 2N3)! (N1 + N3)! N2! N3!
.

Factors m2 and m3 account for the degeneracy of interstitial
sites for bound pairs and unbound pairs, with m2 counted with

respect to carbon vacancy sites and m3 with respect to carbon
perfect lattice sites.

The first-order Stirling approximation is applied to the
lattice configurational entropy

Smix = ln Z ,

giving the expression

Smix = N2ln m2 + N3ln m3 + N ln N

− (N − N1 − N2 − 2N3)ln (N − N1 − N2 − 2N3)

− (N1 + N3)ln (N1 + N3) − N2ln N2 − N3ln N3.

The Gibbs free energy of the system of defects

i=3∑
i=1

Ni�Gi = T Smix ,

is minimised with respect to the number of each type of defect

�Gi = T ∂Ni
Smix.

For bound pairs the configuration entropy term is

∂N2S
mix = ln

m2 (N − N1 − N2 − 2N3)

N2
,

and for unbound pairs

∂N3S
mix = ln

m3 (N − N1 − N2 − 2N3)2

(N1 + N3)N3
.

The free energies to form bound and unbound pairs are
given by

�G2 = T ln
m2(N − N1 − N2 − 2N3)

N2
,

and

�G3 = T ln
m3(N − N1 − N2 − 2N3)2

(N1 + N3)N3
.

The concentrations (ni = Ni/N ) of each defect type are

n2 = (1 − n1 − n2 − 2n3)m2 exp

(
−�G2

T

)
,

and

n3 = (1 − n1 − n2 − 2n3)2

(n1 + n3)
m3 exp

(
−�G3

T

)
.

For completeness the concentration of each subtype of defect
is stated explicitly. For bound pairs, the concentrations of
dimer and trimer configurations are

nB2 = [
1 − n1 − nB2 − nB3 − 2

(
nU2 + nU3 + nU4

)]
mB2 exp

(
−�GB2

T

)
,

nB3 = [
1 − n1 − nB2 − nB3 − 2

(
nU2 + nU3 + nU4

)]
mB3 exp

(
−�GB3

T

)
,
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FIG. 10. Electron density of states as a function of dilation. (a) Perfect ZrC, (b) B2 bound dimer, (c) B3 bound trimer, (d) U2 unbound
dimer, (e) U3 unbound trimer, (f) U4 unbound tetramer. Thermal expansion increases from blue to red. Consecutive densities of states are
shifted up proportional to the increase in volume.

and the concentrations of unbound Frenkel pairs of dimer, trimer and tetramer configurations are

nU2 =
[
1 − n1 − nB2 − nB3 − 2

(
nU2 + nU3 + nU4

)]
2(

n1 + nU2 + nU3 + nU4

) mU2 exp

(
−�GU2

T

)
,

nU3 =
[
1 − n1 − nB2 − nB3 − 2

(
nU2 + nU3 + nU4

)]
2(

n1 + nU2 + nU3 + nU4

) mU3 exp

(
−�GU3

T

)
,

nU4 =
[
1 − n1 − nB2 − nB3 − 2

(
nU2 + nU3 + nU4

)]
2(

n1 + nU2 + nU3 + nU4

) mU4 exp

(
−�GU4

T

)
.

APPENDIX B: ELECTRON STATES

Figure 4 in the main text shows the electron density of states for each defect on the interval [−0.5, 0.5] eV. The density of
states is provided for interval [−6, 6] eV in Fig. 10.
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