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Heterogeneity governs diameter-dependent toughness and strength in SiC nanowires
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Using a combination of density functional theory and molecular dynamics simulations, this paper reveals
the atomistic origin of diameter-dependent extreme mechanical behavior of [111] 3C-SiC nanowires obtained
from an energy-based framework. Our results suggest that heterogeneity in atomic stress and variations in
diameter-dependent potential-energy density have a profound impact on extreme mechanical properties in the
nanowires. The heterogeneity in stress evolves from the nonuniform bond lengths mediated by low coordinated
surface atoms—and it penetrates the entire cross section in thinner nanowires and constitutes the atomistic basis
for their large reduction in fracture strain, toughness, and strength. Although stress heterogeneity is substantially
higher in ultrathin nanowires, its intensity drops and saturates rapidly in larger nanowires following a nonlinear
dependence on diameter. The maximum stress heterogeneity in a cross section localizes crack nucleation at
the core in ultrathin nanowires but near the surface in larger nanowires. Moreover results show that stiffness,
toughness, strength, and fracture strain of the nanowires increase nonlinearly with increasing diameter and
saturate at a lower value compared to bulk SiC. In addition to resolving wide discrepancies in the reported
values of the first-order elastic modulus in SiC nanowires, the findings highlight heterogeneity as a critical factor
for inducing diameter-dependent extreme mechanical behavior in brittle nanowires.
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I. INTRODUCTION

Strength and toughness are two crucial mechanical prop-
erties of a solid that dictate its ability to function reliably
under extreme conditions. For brittle solids (such as SiC, Si,
Ge, or SiO2) the ideal strength is defined by the maximum
stress and the toughness by the maximum elastic energy
density that the solid can withstand prior to failure. These are
well-defined intensive properties for a bulk solid, but they act
like an extensive property in nanostructured solids due to the
presence of surfaces which alter the energetics of the material
and associated mechanical behavior [1–15].

Until recently, it was believed that the evolution of sur-
face stress in nanowires (NWs) is the key factor for in-
ducing a variety of diameter-dependent (d-dependent) me-
chanical and structural features in nanowires. Although a
surface can set up various interconnected effects including
surface stress [12], surface potential [13], surface energy
[16], charge density [14], chemical reactions [17], and atomic
reconstruction [15], it is generally surface stress that is used
to explain various mechanisms in nanowires including self-
healing, surface reorientation, phase transformation, yield-
ing, failure, and ductile-to-brittle transition [1–11]. Recent
findings nonetheless contradict several surface-stress-based
explanations. For instance, softening or stiffening behavior
of metallic nanowires is shown to be controlled by the
orientation-dependent nonlinear elasticity at the core alone
[18]. Also, instability to plastic shear has been shown ex-
perimentally to originate mainly from the surface energy
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[19], which violates several surface-stress-based interpreta-
tions [11,20–22] that are mostly built upon the assumption of
isotropy and homogeneity in material properties [12].

Additionally, substantial efforts have been devoted to pre-
dict the first-order elastic modulus in a range of nanowires
[23–30]; but analogous efforts remain missing for the higher-
order elastic properties of nanowires and their failure mech-
anisms that can reveal the atomistic processes responsible
for the nucleation of defects causing catastrophic failure
under practical conditions. Extreme mechanical properties
of nanowires and their atomistic basis therefore continue to
puzzle scientists and engineers, invoking novel insight and
understanding on the subject [31,32].

Here, we focus on SiC nanowires which are brittle in
character and have a variety of important applications in
stretchable absorbers, fast-response ultraviolet detectors, pres-
sure sensors, aerogels, biosensors, transistors, and reinforce-
ments in composites due to high-temperature heat resistance,
recoverability, chemical resistance, and lightweightness [33–
37]. Silicon carbide has a number of polytypes, such as a-SiC,
6H-SiC, 4H-SiC, 2H-SiC, and 3C-SiC [37]. Among these
polytypes, 3C-SiC nanowires have drawn wide attention due
to their exceptional properties. Using ab initio simulations, it
has been reported that 3C-SiC nanowires show remarkable d-
dependent electronic properties with increased optical activity
and electron mobility [27,38–41]. In the context of mechani-
cal properties, it has been shown that the first-order elastic
modulus depends strongly on diameter [29,41,42]. Nonethe-
less, the reported values cover a wide range of variations
ranging from 150 to 700 GPa without any clear trend on it
diameter-dependent behaviors [30]. The large discrepancy is
attributed to several factors including: The way the diameter
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is computed; applied boundary conditions (such as bending vs
axial loading setup); and physical and experimental conditions
of the nanowire [30]. In addition to inadequate information
on diameter-dependent linear properties, the behavior of SiC
NW in the nonlinear regime of mechanical deformation that
governs higher-order elastic behavior and controls extreme
mechanical properties, such as toughness and strength remain
mostly unexplored.

Focusing on the [111] 3C-SiC nanowires (which have
been proven to be the most energetically favorable surface
orientation [43]), we demonstrate that force-based analysis of
mechanical properties can suffer from ill-defined macroscopic
geometric quantities, such as the volume or diameter of a
nanowire. To address the limitations, we applied an energy-
based framework and demonstrate it as a reliable alternative in
assessing the mechanical behavior accurately. Our results sug-
gest that diameter-dependent potential-energy density forms
the basis of effective elastic properties in SiC NWs and their
toughness, strength, and condition for crack nucleation are
governed by the diameter-dependent stress heterogeneity. Our
analysis is built upon two hypotheses: (i) higher potential-
energy surfaces induce diameter-dependent heterogeneity in
the stress fields of a nanowire that penetrate from its surface
into the core, and (ii) bond deformation within the cross-
sectional planes as well as along the longitudinal direction of
a nanowire are nonuniform (despite equality in macroscopic
strain), and this nonuniformity directly affects the nanoscopic
mechanical state of nanowires.

In the following sections, we first outline our compu-
tational approach (in Sec. II) and then discuss the results
on elastic and extreme properties of 3C-SiC nanowires (in
Sec. III) from an atomistic viewpoint.

II. COMPUTATIONAL APPROACH

The most accurate mechanical behavior can be obtained
from ab initio simulations based on density functional theory
(DFT) [44]. It is, however, beyond the scope of DFT to capture
the behavior of nanowires of wider cross sections due to large
computational cost and the need for incorporating a large vac-
uum in the lateral directions to avoid the interactions between
the periodic images of the nanowire. Moreover, incorporation
of thermal effects in DFT-based molecular dynamics (MD)
simulations of tensile deformation is highly computationally
intensive and thus practically limited to modeling a few
hundreds of atoms [45]. As an alternative classical molecular
dynamics simulations can be performed and there are two
potentials available: the Tersoff potential [46] and the Vashista
potential [47]. They provide accurate behavior in the elastic
regime but can exhibit a ductilelike pattern and unphysical
stiffening of the lattice [48], which are inconsistent with the
experimentally observed brittle fracture in 3C-SiC nanowires
[28].

To address the limitations, we applied an integrated ap-
proach that uses a blend of DFT and MD simulations. The
DFT simulation is used to obtain an accurate interatomic
potential in the Stillinger-Weber (SW) form [49] for modeling
both the elastic and the strength properties accurately, and the
MD simulation is used to carry out deformation simulations
for the nanowires of different diameters. Although we validate

the MD results for hydrostatic and uniaxial deformations of
bulk SiC, for the nanowire results we limit the validation
effort to a few computationally tractable nanowires due to
limitations of the system size that can be dealt with DFT.
The SW potential is selected due to its reliability in producing
accurate elastic and extreme mechanical properties of brittle
solids [50–52], simplicity in analytical form, ability to pro-
duce experimentally consistent brittlelike fracture surfaces,
and small computational cost compared to the Tersoff or
Vashishta potential.

A. Determining SW potential parameters

We determine the SW parameters following a strength-
based mechanistic approach that has been successfully ap-
plied to model extreme properties of graphene [50,51] and
hexagonal boron nitride [52]. This approach allows fitting
equilibrium properties of the solid (such as force constant,
lattice constant, and bending modulus) as well as its strength.
In addition to reproducing the elastic properties near the
equilibrium accurately, this strength-based approach repro-
duces the mechanical behavior of the material accurately
over the entire deformation regime covering both the linear
and the nonlinear regimes of mechanical deformation [50–
52]. The detail methodology for obtaining the SW parameters
from DFT is published elsewhere [50]; here, for completeness
we mention the key steps of the procedure briefly.

In general, the SW potential models many-body interaction
of a solid through a sum of two-body V2(rij ) and three-body
V3(θijk ) interaction potentials where

V2(rij ) = Aε

(
B

σ 4

r4
ij

− 1

)
exp

(
σ

rij − rc

)
, (1)

V3(θijk ) = λε(cos θijk − cos θ0)2 exp

(
2γ σ

rij − rc

)
. (2)

Here rij is the distance between atoms located at ri and
rj ; θijk is the angle between three atoms located at
ri, rj , and rk; and A, B, ε, σ, λ, and γ are the SW
parameters. The parameters A, B, σ , and λ are obtained
from DFT-generated force-constant Kb, cohesive energy
Ec, bond bending constant kθ , and equilibrium bond length
r0. Among the remaining parameters of the SW potential,
we take rc as the second-neighbor distance and exploit
the free parameters γ and ε to calibrate the potential for
accurate strength. Application of the above procedure
results in the following SW parameters: ε = 1.9, σ =
2.1450, a = 1.421 91, λ = 19.0, γ = 0.690 00, cos θ =
−0.333 33, A = 11.793 86, B = 0.273 29.

As demonstrated in Fig. 1, the potential provides an accu-
rate description of mechanical behavior for bulk SiC over a
wide range of uniaxial stress states spanning the linear and
nonlinear regimes of mechanical deformation.

The DFT and MD results start deviating at around 12%
strain—the deviation can be attributed to high-order many-
body interactions that are taken into consideration in DFT
but not in MD. Nevertheless all three mechanical properties
(Young’s modulus, ideal strength, and toughness) as well
as fracture strain are well predicted by SW. The simulation
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FIG. 1. Comparison of the stress-strain curves obtained from
simulating uniaxial deformation of bulk 3C-SiC along the [100] di-
rection using DFT-generalized gradient approximation (DFT-GGA)
and MD-SW. Results on stiffness E, ideal strength σmax, and
nucleation-toughness �c agree within 3.9%, 0.2%, and 1.5%, respec-
tively. The simulation cell containing 96 atoms is displayed on the
right.

details and boundary conditions are presented in the following
section.

B. Simulation details

Our atomistic simulations involve both bulk and NW
configurations. The nanowires are created from an assembly
of cuboid unit cells with orthogonal sides described by the
following lattice vectors:

a1 = 3[r0 + (sin φ −
√

2 cos φ)/4],

a2 = 6(− sin φ sin θ + cos φ + sin φ cos θ )a/4,

and

a3 = (sin θ + cos θ )a/2.

Here θ = π/4 and φ = arctan 1√
2
. There are 12

atoms in the orthorhombic unit cell of SiC. Their
atomic coordinates are as follows: �r1 = (0, 0, r0 +
2δ1), �r2 = (δ2, a3/2, 0, 0), �r3 = (2δ2, 0, δ1), �r4 = (3δ2, a3/

2, 2δ1), �r5 = (4δ2, 0, 0), �r6 = (5δ2, a3/2, δ1), �r7 = (0, 0, r0

+ 2δ1, 2r0 + 2δ1), �r8 = (δ2, a3/2, 0, 2r0 + 3δ1), �r9 = (2δ2,

0, r0 + δ1), �r10 = (3δ2, a3/2, 2r0 + 2δ1), �r11 = (4δ2, 0, 2r0

+ 3δ1), �r12 = (5δ2, a3/2, r0 + δ1), where δ1 = sφa/4 −
cφa/(2

√
2), δ2 = (−sφsθ + cφ + sφcθ )a/4, and δ3 =

(sθ + cθ )a/4 are the interplanar spacing along the
[111], [112̄], and [1̄10] directions, respectively, r0 = 1.905 Å
is the equilibrium bond length, and a = 4.4015 Å is the
equilibrium lattice constant of our SiC-SW potential which
agrees with the corresponding lattice parameter of 4.385 Å
obtained from our DFT-GGA calculation and with the
experimental value of 4.36 Å [27,53] within 1%. Figure 2
illustrates the unit cell with two orthographic projections and
cross section of an example [111]-SiC nanowire.

The NW configurations are periodic along the [111] direc-
tion with an empty space in the lateral directions to allow
Poisson’s contraction. They are simulated with tetragonal
supercell with its surface normals pointing along the [111],
[112̄], and [1̄10] directions. The NW diameters range from
0.32 to 6.53 nm which are sufficient to cover the thinnest

FIG. 2. (a) Twelve-atom unit cell of 3C-SiC with its two or-
thographic projections on the {1̄10} and {11̄2} planes. The loading
direction is the [111] direction (aligned along the unit vector êx).
(b) Cross-sectional view of a [111]-SiC nanowire of 0.98-nm diame-
ter. Atoms are identified as Si and C.

possible nanowire and wide enough for drawing conclusive
analysis on d-dependent mechanical behavior. We choose
only hexagonal cross sections with side-length b which give
the effective diameter d = 1.818 78b. This d is used only
to discuss the effective behavior of the NWs in terms of an
effective geometric quantity, but it is not used in calculating
stress for the reason stated in Sec. III A.

DFT simulation details. All of the DFT simulations are
performed using the code SIESTA [54]. The core electrons
are replaced by norm-conserving pseudopotentials following
a Troullier and Martins scheme [55]. The valence electrons
are represented by an extended numerical atomic basis set
of polarized double-ζ type. For the exchange-correlation part
of the electron energy we used the GGA with the Perdew-
Burke-Ernzerhof functional [56]. The pseudopotentials (PPs)
for Si and C were obtained from the SIESTA pseudopotential
database. In generating the PPs the valence configuration used
for Si was 3s2, 3p2, 3d0, and 4f 0 with cutoff distances of
1.75, 1.94, 2.09, and 2.09 bohrs, respectively, for the pseu-
doatomic orbitals, whereas for C the valence configurations
used were 2s2, 2p2, 3d0, and 4f 0 with a cutoff at 1.54 bohrs.
The energy shift used for the basis was 50 meV. For all the
DFT calculations, an energy threshold of 1.0 × 10−4 eV per
supercell and a force tolerance of 0.01 eV/Å were used to
ensure convergence of the results. The relaxation of atoms
and supercell was carried out by using the conjugate gradient
optimizer with a maximum displacement of 0.05 Å at each
relaxation step of the deformed configurations.

The DFT calculations involve simulations with two dif-
ferent bulk configurations (which we denote as B-1 and B-2
supercells) and five different nanowire configurations (which
we denote as NW supercells). The B-1 supercell containing
eight atoms and periodic in all directions is used to obtain
the equilibrium structural parameters of the lattice (a0, kb,
and Ec) for use in developing the SW potential. In this
calculation hydrostatic deformation is applied to the lattice for
100 different lattice constants (ranging from 3.4 to 12.0 Å). At
each deformation state, only the atoms were allowed to relax
keeping the volume of the supercell fixed. The Brillouin zone
(BZ) integration was performed with a Monkhorst-Pack (MP)
k mesh of 10 × 10 × 10 that resulted in 560 k points in the
reciprocal space of the domain. From the energy vs lattice
constant data the equilibrium lattice constant is extracted as
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a0 = 4.385 Å which agrees with the experimental value of
4.36 Å [57] within 0.67%.

The B-2 supercell (containing 96 atoms and bounded
by orthogonal sides with their surface normals along the
[100], [010], and [001] directions in a 8.809 67 × 13.214 51 ×
8.809 67 Å

3
periodic box) is used to determine the ideal

strength of bulk SiC along the [100] direction. This strength
value is used in calibrating the parameters (γ and λ) for
the SW potential. In this DFT calculation, uniaxial stress
deformation is applied along the [100] direction—and under
the constraint of fixed dimension along the loading direction,
the cell dimension along the [010] and [001] directions as
well as the atoms are allowed to relax using the “volume cell
optimization” scheme [54] (the corresponding stress-strain
MD and DFT results were illustrated in Fig. 1). In this process
a stress tolerance of 0.5 GPa was found to be sufficient to
get convergence of the stress-tensor components. The BZ
integration is conducted with a MP k mesh of 6 × 4 × 6.
Although the energy calculations were found to converge for
a coarser mesh of 4 × 2 × 4, the integration on a denser mesh
was necessary to confirm convergence in each component of
the stress tensor, particularly, at larger deformation.

The NW-supercell calculations involve uniaxial deforma-
tion simulation of nanowires. They are used to check the
validity of the MD results on NWs. Due to large compu-
tational cost, these DFT-GGA simulations on NWs were
limited to a maximum strain state of 10% for the five smallest
nanowires containing 38, 74, 122, 182, and 254 atoms (with
one unit cell along the [111] direction). The diameter of
the nanowires ranges from 0.65 to 1.0 nm, and the 10%
strain level is sufficient to calculate the first-order elastic
modulus to validate the corresponding values obtained from
MD. To avoid interactions between the periodic replicas of
a nanowire along the [112̄] and [1̄10] directions, an empty
space of 10 Å is considered on each side of the nanowire
in the lateral directions—and at each deformation step, the
atoms were relaxed keeping the cell-volume constant. For
these calculations, we used a MP k mesh of 8 × 1 × 1 where
eight grid points were taken along the loading or periodic
direction (along which the supercell contains only one unit
cell).

MD simulation details. The MD simulations were per-
formed using large-scale atomic/molecular assively parallel
simulator (LAMMPS) [58] with the SW potential introduced
in this paper. MD is used to obtain uniaxial stress-strain
response of bulk SiC along the [100] direction (for the B-2
supercell) and for 20 NWs along the [111] direction.

Prior to applying deformation, the atomic system was
relaxed using the conjugate gradient optimizer. During defor-
mation of the B-2 supercell, the N -P -T ensemble [59] was
used to allow Poisson contraction in the lateral directions. A
pair of Nóse-Hoover thermostats [60] and Anderson barostats
[61,62] were applied to keep the temperature of the system at
1 K and pressure at 0 bars, respectively. To enable exploiting
the periodic boundary condition along the loading direction
and allow the Poisson contraction along the lateral directions
under the isobaric condition in LAMMPS, the temperature
was chosen to be 1 K. This low temperature essentially gives a
static condition but yet allows using the LAMMPS MD setup.
The static condition is needed to compare the MD results

FIG. 3. Heterogeneity in bond lengths for (a) d = 0.98 nm and
(b) d = 1.96 nm NWs at 15% macroscopic strain. The vertical lines
mm and nn represent two cross-sectional planes at different locations
along the loading direction highlighting nonuniformity in cross-
sectional area and bond lengths. The atomic structures are rotated
slightly with respect to the [111] direction to reveal heterogeneity in
bond strain.

with those of DFT. The damping parameters used to control
the thermostatic and barostatic effects were found to produce
physically meaningful mechanical behavior for tdamp = 1 ps
and pdamp = 1 ps with the time step of 1 fs. Here tdamp
and pdamp are the parameter symbols used in LAMMPS. For
the NW calculations with MD, ten unit cells were considered
along the [111] direction. The cell dimensions along the lat-
eral directions ([112̄] and [1̄10]) were kept fixed at each of the
deformed state applied along the [111] direction at a strain rate
of 1.0 × 10−4/ps (or 1.0 × 108/s). An empty space of 20 Å
was introduced in the lateral directions to avoid interactions
between the periodic images of the physical domain.

III. RESULTS AND DISCUSSIONS

A. Theoretical approach

In determining the elastic and extreme properties of
nanowires, average stress needs to be calculated at different
strain states in the linear and nonlinear regimes of mechanical
deformation. Traditionally, this is performed by dividing the
resultant force F acting on the supercell by the cross-sectional
area A of the nanowire such that stress is defined as σ = F/A.
This force-based approach is reliable when: (a) A is a well-
defined quantity and constant throughout the nanowire along
its axial direction, and (b) σ is uniform on A obeying the
Saint-Venant’s (SV) principle [63–66]. For smaller nanowires,
these conditions are easily violated as illustrated in Fig. 3 for
two nanowires of diameters 0.98 and 1.96 nm.

It is evident that there are large variations in bond strain
(thereby stress) at the given 15% macroscopic loading.

Although the bond deformation has some patterns follow-
ing the repetition of the unit cell, there is a substantial varia-
tion in bond strain along the axial direction as well as across
the nanowire section. The situation gets worse at finite temper-
atures because of the appearance of thermal fluctuations and
phononic instability of the nanowires. Therefore, nonuniform
bond deformation and associated variation in potential-energy
density across the nanowire can make the stress fields highly
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heterogeneous causing the force-based evaluation of mechan-
ical properties violate the SV principle and susceptible to
inaccuracies. Moreover owing to the ill conditioning of the
effective diameter of nanowires, any macroscopic quantity
(such as diameter or volume) that goes into predicting stress
can potentially lead to spurious outcomes [30]. In some cal-
culations reported in the literature, a new definition of radius
has been proposed by adding first-order corrections [41]. Yet
accurate computation of stress from force remains a nontrivial
task for nanowires.

To address this challenge, we apply an energy-based ap-
proach that eliminates the use of diameter or a macroscopic
geometric quantity in calculating stress thereby strength or
toughness. Using nonlinear elasticity theory [67], elastic en-
ergy density of a solid can be written in terms of the strain
components (up to the fifth order) as

u = Cijklεij εkl + Cijklmnεij εklεmn + Cijklmnopεij εklεmnεop

+ Cijklmnopqrεij εklεmnεopεqr , (3)

where u is the elastic energy density (in the units of eV/Å
3

per atom), εij is the second-rank strain tensor, Cijkl is the
fourth-rank elasticity tensor, Cijklmn is the sixth-rank elastic-
ity tensor, Cijklmnop is the eighth-rank elasticity tensor, and
Cijklmnopqr is the tenth-rank elasticity tensor. For uniaxial load-
ing along the x direction, the above relation can be reduced
to u = Cxxxxε

2
xx + Cxxxxxxε

3
xx + Cxxxxxxxxε

4
xx + Cxxxxxxxxε

5
xx .

Since each of the elasticity tensor components is a con-
stant, we denote Cxxxx = C2, Cxxxxxx = C3, Cxxxxxxxx = C4,
and Cxxxxxxxxxx = C5 to write u in a simple form

u = (
C2ε

2
xx + C3ε

3
xx + C4ε

4
xx + C5ε

5
xx

)
. (4)

Substituting u = U/v0 in Eq. (4), where v0 is the effective

atomic volume and its units is in Å
3

per atom. It arises from the
transition from total energy of the solid to the energy density
of elasticity theory. And U is the total elastic energy of the
solid, we obtain

U = v0
(
C2ε

2
xx + C3ε

3
xx + C4ε

4
xx + C5ε

5
xx

)
. (5)

The constitutive relation can then be extracted by taking
the first derivative of U with respect to εxx and taking the
parameter v0 as a constant and strain-independent quantity:
σxx = ∂U

∂εxx
. This results in the following constitutive relation:

σxx = v0
(
2C2εxx + 3C3ε

2
xx + 4C4ε

3
xx + 5C5ε

4
xx

)
. (6)

Therefore, as long as the elastic energy density and stress state
of the material have fifth-order and fourth-order dependences
on strain, respectively, v0 needs to be evaluated only once for
a material. It should be noted that for a bulk material, both U

and σxx are separately available from simulations. For NWs,
on the other hand, the total energy is readily available but not
the stress as the latter needs some conversion to account for
the empty space. This can be avoided if v0 is estimated from
bulk simulations as described below.

Because the energy-based definition of stress stated above
results in a fourth-order expression in εxx , we can consider
fitting a similar polynomial to the atomistic stress-strain data
obtained from bulk simulations. Let us denote that polynomial

FIG. 4. (a) Potential energy per atom as a function of macro-
scopic strain in bulk SiC for loading along the [100] direction.
(b) Stress-strain curve obtained from DFT-given energy-strain data
using v0 is shown in black. It is compared with the DFT-given
stress-strain data shown in red.

as

σatomistic = β1εxx + β2ε
2
xx + β3ε

3
xx + β4ε

4
xx. (7)

By construction σatomistic yields the same stress-strain re-
lation for a bulk as that of σxx (derived from energy through
Eq. 6), and the equality σxx = σatomistic holds for any value
of εxx provided that each of the following relations is satis-
fied: β1 = 2C2v0, β2 = 3C3v0, β3 = 4C4v0, and β4 = 5C5v0.
In other words the parameter v0 can be understood as a scaling
factor between the stress-strain and energy-strain polynomi-
als:

v0 = β1εxx + β2ε
2
xx + β3ε

3
xx + β4ε

4
xx

2C2εxx + 3C3ε2
xx + 4C4ε3

xx + 5C5ε4
xx

, (8)

such that one needs to find out the scaling of the energy-strain
curve that matches with the stress-strain curve. The scaling
emerges from the existence of one-to-one mapping between
stress and energy at every deformation/strain state of the solid
[63]. Therefore, in situations where σatomistic is not accurately
obtainable from atomistic data (such as in NWs), the energy-
strain data can be employed to predict σxx with the parameter
v0 known a priori from a bulk simulation.

Following the above procedure, we compute v0 from
the DFT-generated energy- and stress-strain data for
bulk SiC and use it for NWs. Fitting Eq. (7) to the
DFT-generated stress-strain data shown in Fig. 1 and Eq. (5)
to the corresponding DFT-generated energy-strain data
presented in Fig. 4(a), we obtain the fitting parameters as
β1 = 352.2807, β2 = −58.9595, β3 = −65.1047, β4 =
−1824.1879, C2 = 11.400 671, C3 = −1.272 050, C4 =
−1.053 475, and C5 = −23.614 083. The R2 measure of the
goodness of the fit was found to be >0.9996 for each of

the parameters. The parameters yield v0 = 15.45 Å
3

which
satisfies each of the following relations: β1 = 2C2v0, β2 =
3C3v0, β3 = 4C4v0, and β4 = 5C5v0 with relative errors
of 9.6 × 10−6%, 2.96 × 10−5%, 8.44 × 10−5%, and
6.44 × 10−7%, respectively. The relative errors are calculated
by using

(β1 − 2C2v0)/β1, (β2−3C3v0)/β2, (β3 − 4C4v0)/β3, (β4

− 5C5v0)/β4, respectively. The negligible relative errors and
excellent goodness of the fit are a direct consequence of
the one-to-one mapping between stress and energy in the
solid. Moreover, we obtain the same value of v0 = 15.45
using the MD-generated stress-strain and energy-strain data.
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FIG. 5. (a) Potential-energy density relative to the equilibrium as
a function of macroscopic strain for 20 nanowires with diameters
ranging from 0.32 to 6.53 nm in a log-log plot. (b) Stress-strain
curves for the same set of nanowires derived from the energy-strain
data. Colors from blue to red represent the diameter cases going from
0.32 to 6.53 nm.

The consistency between the DFT- and MD-predicted values
of v0 indicates the accuracy of the force field fitting. It
is noteworthy that the deviation of stress-strain response
between MD and DFT in the nonlinear regime of mechanical
deformation (as shown in Fig. 1) does not influence the
values of v0 obtained from MD and DFT—this is for the
reason that v0 is a strain-independent constant quantity. It
should however be noted that v0 can vary with temperature
as the mapping between stress and energy is temperature
dependent, although its effect in brittle solids can be deemed
negligible. In Fig. 4(a), the DFT-generated energy-strain data
is shown, and in Fig. 4(b) the DFT-generated stress-strain
data are compared with the stress-strain curve obtained from
energy-strain data through using the effective atomic volume
v0.

B. Diameter-dependent mechanical behavior

Applying the aforementioned scheme, we determine the
uniaxial stress-strain response for 20 nanowires of different
diameter from their energy-strain data as illustrated in Fig. 5.

Strain-dependent energy and stress response of the
nanowires reveal a number of qualitative trends: (a) The
energy density and stress increase nonlinearly with increasing
diameter; (b) the higher is the diameter, the stronger, stiffer,
and tougher are the nanowire; (c) for sufficiently larger di-
ameters the mechanical properties become diameter indepen-
dent; (d) the largest diameter considered in this paper has a
substantially different mechanical response compared to the
bulk; and (e) strength, toughness, and fracture strain follow a
different diameter-dependent behavior. Strength is calculated
as the maximum of the stress-strain curve: σmax = max{σ (ε)};
toughness by integrating the area under the stress-strain curve:
�c = ∫ εf

0 σ dε; and fracture strain as the maximum strain at
the onset of fracture: εf = max{ε}. Stiffness or the Young’s
modulus is calculated by taking the first-order derivative of
the total energy with respect to applied strain,

Y = 1

v0

(
dU

dε

)∣∣∣∣
ε=0

. (9)

To develop a quantitative understanding of the diameter-
dependent properties of the nanowires, we plot stiffness,
strength, toughness, and fracture strain as a function of di-
ameter as depicted in Fig. 6.

Due to high computational demand in exploring the frac-
ture of a nanowire using DFT, we limit our validation effort to
Y for a few smaller diameter nanowires using DFT-GGA cal-
culations. As illustrated in Fig. 6(a), DFT and MD results ex-
hibit consistent behavior on stiffness for all five nanowires—
their stiffnesses agree within 1%, and both DFT and MD
results show a clear nonlinear trend of higher stifnesses with
increasing diameter. This highlights its reliability for use in
situations where DFT is inapplicable due to large computa-
tional demand.

To extract the mathematical expressions describing the
diameter-dependent mechanical behavior of SiC NWs, we fit
the following function (to each of the properties as shown in
Fig. 6):

� = �(∞) + αdn, (10)

where � ∈ {σmax, Y,�c, εf } is a diameter-dependent prop-
erty, Y is the first-order elastic modulus or the Young’s mod-
ulus, �(∞) is the value of the property for nanowires with
large diameter as d → ∞, α is a fitting parameter denoting
the intensity of the diameter-dependent variation, and n is the
exponent indicating how strong is the effect of diameter on
that property. The values of the fitting parameters are tabulated
in Table I. They exhibit several important characteristics of
the mechanical behavior in nanowires: (a) �(∞) does not
approach the value of bulk SiC; (b) diameter-dependent varia-
tion does not exactly follow the surface-area-to-volume ratio,
which varies as 1/d; in other words, neither of the exponents
is −1 and α �= 1; (c) the existence of a nonzero value for
the quantity χ = �bulk − �(∞) suggests the existence of
mechanistic effects that are present only in the nanowires (at
least, up to d = 6 nm) but not in the bulk; and (d) stiffness,
strength, toughness, and fracture strain differ in terms of their
sensitivity to diameter. For example, compared to bulk SiC,
the NW of d = 2 nm exhibits a 10% reduction in stiffness,
a 14% reduction in strength, a 27% reduction in toughness,
and a 12% reduction in fracture strain. The objective of this

174111-6



HETEROGENEITY GOVERNS DIAMETER-DEPENDENT … PHYSICAL REVIEW B 98, 174111 (2018)

FIG. 6. Diameter-dependent (a) Young’s modulus (Y ), (a) ideal
strength (σmax), (b) toughness (�c) and (c) fracture-strain (εf ) varia-
tion in [111] 3C-SiC nanowires. The horizontal dashed lines indicate
the corresponding value of that property in bulk SiC along the [111]
direction. The fitting parameters and bulk values are reported in
Table I.

paper is to explain these characteristics and investigate their
atomistic origins.

TABLE I. Fitting parameters describing the diameter-dependent
elastic moduli, strength, toughness, and fracture strain in the 3C-SiC
[111] nanowire. The goodness of fit is computed using the R2 mea-
sure and given below. The units of Y, σmax, and �c are gigapascals,
gigapascals, and J m−3, respectively, and εf is dimensionless.

Property Fit accuracy

�i �bulk �(∞) α n R2

Y1 445.0 443.0 −607.35 −0.845 0.9991
σmax 65.0 62.63 −106.01 −0.902 0.9999
�c 9.58 7.66 −20.17 −1.112 0.9999
εf 0.235 0.208 −2.058 −3.0 0.9993

C. Atomistic origin of the diameter-dependent properties

The presence of a surface can affect mechanical properties:
(a) by changing the energy density in the nanowire and
(b) by altering the distribution of atomic stress. Here, we show
that the former governs the elastic state of the nanowire, par-
ticularly, in the linear regime forming the basis for softening
and stiffening behavior of the nanowire and the latter governs
extreme mechanical properties, such as toughness, strength,
and fracture strain that describe the condition for fracture.

Although for a nanowire, failure is assumed to originate
from the surface—it remains unknown if the location and
condition for crack initiation and its propagation path can
be predicted to circumvent its ramifications. Although the
surface atoms are the highest potential-energy atoms in a NW
due to their missing neighbors, they are the least stressed
atoms because of the traction-free condition on the surface.
Also, they can accommodate larger displacements due to
softening of the bonds. With increasing d, the number of
surface atoms becomes insignificant compared to the core
so that the behavior of the nanowires is dominated by the
core—and a generic trend can be approximated using the
surface-area-to-volume ratio that varies as 1/d. Although our
MD data support an inverse diameter dependence for both
toughness and strength, there is a sizable deviation from this
simpler approximation. We examine the energy density and
atomic stress to determine the underlying atomistic basis be-
hind the inverse d dependence of toughness and strength in the
NWs.

1. Diameter-dependent energy density

Plotting the average potential-energy density (eV/atom)
u as a function of diameter d, we find u(d ) − u∞ =
3.0209d−0.6954 which manifests a slower decrease in u com-
pared to what is obtained from d−1 approximation at the un-
deformed state of the nanowires (see Fig. 7). This dependence
is obtained by computing u for different nanowires and fitting
them to u(d ) − u∞ = αdn with R2 = 0.9993 as a goodness
of fit for the fitted parameters.

We attribute the slower decay in stiffness to arise from
the atoms at the intersection of the core and surface in the
nanowires. With increasing diameter, the energy density u

at the surface increases as d1, at the core as d2, and at the
surface-core intersection between d1 and d2. Thus their com-
bined effect on energy density is d−0.69, and it is substantially
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FIG. 7. Potential-energy density at the equilibrium as a function
of nanowire diameter relative to the potential-energy density in bulk
SiC.

smaller than what we would get from the surface-area-to-
volume ratio. Nonetheless this d−0.69 dependence of potential-
energy density at the equilibrium does not explain fully the
atomistic basis for the d−0.9 dependence of strength. We
propose two mechanisms behind this. First, d−0.845-dependent
stiffness variation in NWs indicates a higher stress level
in wider nanowires for a given amount of applied strain.

Although at the equilibrium the energy density is higher in
thinner nanowires due to a higher ratio of surface vs core
atoms, under the application of axial force, the change in
energy density is smaller in thinner nanowires due to the
possibility of higher deformational energy accommodation
by the surface atoms. As a result, the larger is the diameter,
the stiffer is the nanowire, and the higher is the change in
energy density. This picture is consistent with Fig. 6(a) that
shows higher stiffness with increasing diameter. Second, the
presence of stress heterogeneity in the nanowire that can
enhance the average stress level with increasing deformation
and play a critical role in governing the condition for fracture
as elucidated in the following section.

2. Heterogeneity in atomic stress

To determine the diameter-dependent trends in σmax, �c,
and εf and the observation that χ �= 0, we calculate atomic
stress in the nanowires using the virial scheme [68,69] as
implemented in LAMMPS. The atomic stresses obtained from
MD are in the units of pressure times volume that we convert
to stress by dividing the quantity with the effective atomic
volume v0. As illustrated in Fig. 8, the normal atomic-stress
σ atomic

xx is highly heterogeneous in the nanowire.
It is also evident that the pattern of the heterogeneous

stress field is diameter dependent for smaller NWs, but the
pattern saturates in wider nanowires. The maximum stress
occurs at the center in ultrathin NWs (of diameters 0.32–
0.65 nm), whereas it appears near the edge in larger NWs
at their six corners. For the nanowires of higher diameters,

FIG. 8. (a) Heterogeneous atomic-stress σ atomic
xx at 20% macroscopic strain in nanowires of (a) 0.32 nm, (b) 0.65 nm, (c) 0.98 nm, and

(d) 1.30 nm. The stress range used for all the plots is 20–70 GPa. The color in the plot corresponds to the value of stress shown on the vertical
axis.
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FIG. 9. Evolution of diameter-dependent heterogeneity in atomic-stress σ atomic
xx in (a)–(c) for 0.32-nm NW and in (d)–(f) for 0.65-nm NW.

The color in the plot corresponds to the value of stress shown on the vertical axis.

the stress field exhibits three distinct regimes: (i) The highest
stress appears at the intersection between the surface and the
core with a larger concentration at six corners, (ii) the lowest
stress appears on the surface, and (iii) the core exhibits uni-
form stress distribution. The stress intensity slowly decreases
radially inward and rapidly outward from the six corners.
Consequently, the surface atoms remain as the least stressed
atoms in the nanowire regardless of the loading intensity in
the nanowire or its diameter.

The heterogeneity in atomic stress does not affect the
elastic behavior in the linear regime because in the unde-
formed state the stress field is mostly homogeneous in all
the nanowires. Their mechanical behavior is governed by
the diameter-dependent energy density that is described in
the previous section. With increasing strain, the stress field
becomes heterogeneous, and the intensity of heterogeneity
increases with applied strain. As a result, the higher is the

diameter, the higher is the stress heterogeneity as exhibited
in Fig. 9 for two thin nanowires at three different strain states.

The presence of stress heterogeneity makes the nanowires
fail earlier compared to the bulk (as seen before quantitatively
in Fig. 6). Although stiffness of wider NWs approaches the
bulk value, their toughness, strength, and fracture strain do
not approach the same due to the continued presence of
stress heterogeneity in wider nanowires at higher deformation.
It can thus be concluded that no matter how large is the
diameter of the nanowire due to the presence of the surface,
there is a stress localization or stress heterogeneity present
in the nanowire, and it appears near the surface at higher
deformation in larger nanowires. As the loading is increased,
the intensity of stress heterogeneity increases. As a result,
even a very large diameter nanowire would fail earlier than
the bulk because of the appearance or activation of this stress
heterogeneity at higher deformation.
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FIG. 10. (a) Diameter-dependent maximum normal atomic-
stress σ atomic

xx and (b) diameter-dependent minimum normal atomic-
stress σ atomic

xx at 15% strain. (c) Comparison of the maximum and
minimum stresses and observation of saturation in stress heterogene-
ity indicated by the vertical line. (d) Diameter-dependent maximum
stress-heterogeneity σmHeterogeneity. The stress extremum is calculated
with an error bar of 0.1 GPa denoting the variation in values among
the six corner sites where it is the maximum.

Furthermore, for a given nanowire there is a sizable dif-
ference between the maximum and the minimum normal
atomic stresses in a section, and this difference increases
with diameter and saturates at higher diameters. To determine
their trend, we define the difference as the maximum stress
heterogeneity in the nanowire, and denote it as

σmHeterogeneity = max σ atomic
xx − min σ atomic

xx , (11)

where, max σ atomic
xx and min σ atomic

xx are the maximum and
minimum atomic stresses in the nanowire and plot their de-
pendence on diameter at a given strain in Fig. 10. At 20%
strain σmHeterogeneity becomes diameter independent beyond
2.0 nm, and its value saturates at around 25.19 GPa. The
diameter-dependent behavior at this loading state is well fitted
by 25.19 + 0.6093d−2.48 with a R2 measure of 0.9913. Due to
the large magnitude of max σ atomic

xx for the thinnest nanowire,
it fails upon reaching this loading, and the second thinnest
nanowire fails next. The remaining nanowires of d > 1 nm
continue developing stress heterogeneity with continued load-
ing and eventually all of them fail at the same strain level as
depicted in Fig. 6. Due to saturation of stress heterogeneity in
these nanowires diameter-dependent behavior of εf exhibits
rapid saturation with diameter. Therefore, the presence of sat-
urated stress heterogeneity in wider nanowires forms the basis
for the lower values of fracture strain in wide nanowires (with
d → ∞) and that of the bulk SiC, in other words σmHeterogeneity

explains the reason for εbulk
f − εNW

f �= 0 (as shown in Fig. 6).
Although diameter-dependent fracture-strain εf (d ) closely

follows the trend in stress-heterogeneity, diameter-dependent
strength σmax(d ) and toughness �c(d ) respond to stress het-
erogeneity differently: They vary much slower with changes
in diameter compared to εf . This is likely for the following
reasons. First, εf is governed by a condition wherein one bond

FIG. 11. Stress-heterogeneity-induced nanocrack nucleation and
its inward evolution in a 2.61-nm nanowire. The units of stress are
gigapascals.

has to reach the maximum bond force to initiate fracture.
There are six columns of atoms aligned along the loading
direction in [111]-SiC NWs, and all of them deform identi-
cally in nanowires with d > 1 nm owing to identical stress
heterogeneity state in them. On the other hand, in thinner
NWs d < 1 nm, stress heterogeneity is dominated in a single
column of atoms located at the core. Therefore, they fail
quickly due to a higher stress gradient across the nanowire.
Although fracture strain is directly related to the strain at
the bond level, the measure of strength involves the average
response of the nanowire and therefore involves contributions
of all atoms in a cross section. Despite the saturation of the
maximum stress heterogeneity at a given strain state, there
is a substantial difference among the NWs in terms of their
average stress state. The difference arises from combined ef-
fects of diameter-dependent stiffness and higher-order elastic
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moduli. Thus, heterogeneity in energy density correlates with
that in stress in governing diameter-dependent strength in
nanowires. Similarly, diameter-dependent toughness (which
integrates the stress-strain response of the solid over the
entire deformation) is modulated by the combined effects
of heterogeneities in energy density and atomic stress. As a
consequence, there is a significant effect of σmHeterogeneity on
�bulk

c − �NW
c , and its value is as large as 23% of bulk value in

SiC.
In addition to affecting the values of toughness and

strength, stress heterogeneity has a critical implication in the
nanowire: It localizes crack nucleation. As depicted in Fig. 11,
the location of highest stress heterogeneity precisely identifies
the breeding site for crack nucleation, and the gradient in
stress heterogeneity dictates the immediate direction of crack
growth. It is noticeable that at the highest stress state (ε =
0.208 2740), one of the six corners of the NW is randomly
picked by the nanowire as a breeding zone for nanocrack
nucleation. Continued loading makes the incipient nanocrack
invade the nanowire cross section radially inward causing
material separation to take place in a brittle manner. The entire
crack nucleation and separation process completes within a
strain window of only 1.0 × 10−4, exhibiting rapid invasion
of the nanowire cross section by the nucleated crack and
producing a brittle character for the failure process. Also,
during crack propagation, the maximum atomic stress in the
NW continues to increase its intensity at the propagating crack
front leaving a compressive trail behind. As soon as one of the
six nucleation sites becomes activate, the remain sites cease to
act as a nucleating site. We observe similar processes in failure
for all the NWs of d > 1 nm wherein nanocracks evolve from
the intersection of the core and surface atoms where the stress
heterogeneity is the maximum. The NWs of the d < 1-nm
crack, however, nucleates at the core and propagates radially
outward.

The above observation and analysis suggest that degra-
dation in extreme mechanical properties of the SiC NW is

substantially affected by heterogeneity in stress and energy
density, irrespective of its diameter. Due to pronounced stress
heterogeneity at the six corners of the nanowire in wider
nanowires, localization on nanocrack nucleation always oc-
curs at one of its six corners, and it ruptures the nearest bond
aligned normal to the surface due to a steep gradient in stress
heterogeneity. The propagation is then followed uniformly
radially toward to rest of the nanowire cross section. This
prediction is well manifested by the crack nucleation and
propagation events in a wider nanowire as shown in Fig. 11.

IV. CONCLUDING REMARKS

To conclude, we have shown that heterogeneity in atomic
stress plays a critical role in governing diameter-dependent
strength and toughness in SiC nanowires. As the scale of
materials shrinks to the nanometer scale, the surface potential
effects extend beyond the surface layers and into the core-
inducing diameter dependence into stiffness, strength, and
toughness of NWs. We propose that the nonuniformity in
potential energies across the cross section of the nanowire
penetrates into the core for smaller nanowires and config-
ures heterogeneity in atomic stress. For smaller diameter
nanowires the surface potential leads to substantial stress
heterogeneity making them more susceptible to fracture when
subjected to axial loading. For wider nanowires, the stress
heterogeneity saturates at higher deformation and constitutes
the reduction in strength and toughness compared to its bulk
counterpart. Our investigation was carried out with an energy-
based framework that eliminated the need for using macro-
scopic geometric information (such as volume or diameter)
and yet produced accurate estimation of elastic and strength
properties of SiC that are consistent with the DFT results. We
anticipate that the approach and results presented herein will
find important applications in designing NWs or nanowire-
based composites.
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