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Magnetic resonance in a high-frequency flow of a two-dimensional viscous electron fluid
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Two-dimensional electrons in high-quality nanostructures at low temperatures can form a viscous fluid. We
develop a theory of high-frequency magnetotransport in such a fluid. The time dispersion of viscosity should
be taken into account at the frequencies about and above the rate of electron-electron collisions. We show that
the shear viscosity coefficients as functions of magnetic field and frequency have the resonance at the frequency
equal to the doubled cyclotron frequency. We demonstrate that such a resonance manifests itself in the plasmon
damping. Apparently, the predicted resonance is also responsible for the peaks and features in photoresistance
and photovoltage, recently observed on the ultra-high-mobility GaAs quantum wells. The last fact should be
considered as important evidence for forming a viscous electron fluid in such structures.
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I. INTRODUCTION

In materials with enough weak disorder a viscous fluid con-
sisting of phonons or conductive electrons can be formed at
low temperatures. For the realization of such a hydrodynamic
regime, the interparticle collisions conserving momentum
must be much more intensive than any other collisions which
do not conserve momentum. This idea was proposed many
years ago for three-dimensional (3D) materials with strong
phonon-phonon and electron-phonon interactions [1,2]. The
hydrodynamic regime of thermal transport in liquid helium
and dielectrics was studied in sufficient detail [3]. However,
in those years there existed not enough pure conductors
where the hydrodynamic regime of charge transport could be
realized.

Recently, the crisp fingerprints of forming a viscous elec-
tron fluid and the realization of hydrodynamic charge trans-
port were discovered in novel ultra-high-quality materials: in
the two-dimensional (2D) monovalent layered metal PdCoO2

[4], the 3D Weyl semimetal WP2 [5], graphene [6,7], and
GaAs quantum wells [8–11]. These experimental discoveries
were accompanied by an extensive development of theory
[12–30]. The brightest of such phenomena is the giant neg-
ative magnetoresistance effect, which was discovered in the
best-quality GaAs quantum wells [8–11] and in the Weyl
semimetal WP2 [5].

The story of the giant negative magnetoresistance was
rather nontrivial. Most of the conventional bulk transport
theories predict either absent or parabolic positive magnetore-
sistance. The most well-known bulk mechanism for negative
magnetoresistance is the weak localization effect, which leads
to a relatively small negative magnetoresistance in very weak
fields for materials with enough strong disorder. The giant
negative magnetoresistance effect, which is the decrease in
resistance by one to two orders of magnitude in moderate
magnetic fields, seemed outstanding, surprising, and myste-
rious during 5 years after its discovery [31].

A possible explanation for the giant negative magnetore-
sistance was proposed within the hydrodynamic model taking

into account the dependence of the electron viscosity coef-
ficients on the magnetic field and temperature [16]. First, in
Ref. [16] a viscous flow of an electron fluid was considered
in a long sample with straight boundaries. In this case, the
regime of transport critically depends on the type of electron
scattering on longitudinal sample edges. If the edges are
rough and scattering of electrons on them is diffusive, the
Poiseuille flow is formed, and the magnetoresistance is pro-
portional to the diagonal viscosity that leads to giant negative
magnetoresistance. If the electron scattering on the edges
is completely specular, then the sample resistance is zero.
Second, in Ref. [16] it was noted that the presence [32] of
macroscopic oval defects in a high-mobility sample can also
lead to realization of the viscous magnetotransport. Indeed,
in vicinities of the defects the hydrodynamic velocity cannot
have a component in the direction perpendicular to the defect
edge. A slowdown of the flow occurs due to the viscous
transfer of the longitudinal component of the electron mo-
mentum in the transversal direction from the regions between
the defects to the regions which are immediately in front
of the defects. As a result, resistance is again proportional
to viscosity. It can be seen that within this picture it is
not important whether electron scattering on boundaries of
defects is diffuse or specular.

In Ref. [26] a crossover between the hydrodynamic and the
ballistic regimes of magnetotransport in a long sample with
rough boundaries was numerically examined. In Ref. [27] the
ballistic regime of the transport of interacting particles in a
long sample was studied in the framework of the analytical
model, and it was shown that in the ballistic regime the
magnetoresistance is also negative and can be independent of
temperature. High-frequency flows of a viscous 2D electron
fluid in samples with the Corbino and Hall geometries in
a zero magnetic field were studied in Refs. [28–30]. It was
shown that in the Hall samples the regions where the electron
flow is governed by viscosity are formed near the sample
edges [29,30].

In this paper we develop a theory of nonstationary hy-
drodynamic transport of a 2D viscous electron fluid in a
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magnetic field [33]. We derive the Navier-Stokes equation
for an ac viscous flow taking into account the time disper-
sion of viscosity. The obtained frequency-dependent viscosity
coefficients have a resonance at the frequency equal to the
doubled electron cyclotron frequency ω = 2ωc. Herewith the
other harmonics of the cyclotron resonance are absent. This
resonance is a very special type of the high-order cyclotron
resonance related to the viscosity effect. It can be regarded as
a novel type of magnetic resonance, which is characteristic for
viscous charged fluids and has the following physical nature.
A viscous flow is controlled by the diffusivelike transfer of the
electron momentum, which is accompanied by the presence
of the viscous stress. The last varies in magnetic field as
a product of two components of the electron velocity, thus
it oscillates with the doubled cyclotron frequency (in the
absence of any other fields).

We demonstrate that the proposed viscous resonance man-
ifests itself in the damping coefficient of magnetoplasmons.
Thus it can be observed in absorption of microwave radiation
by an electron fluid (specific details of the way of mani-
festation of the viscous resonance in samples with different
widths have been recently studied in Ref. [34]). We argue
that, apparently, the viscous resonance is also responsible for
the peaks and features at ω = 2ωc in the photoresistance and
the photovoltaic effects, recently observed on the best-quality
GaAs quantum wells [35–37].

In this way, we conclude that the possible observation of
the viscous resonance in Refs. [35–37] together with the giant
negative magnetoresistance evidence of forming a viscous
electron fluid in moderate magnetic fields in the ultrapure
GaAs quantum wells.

II. VISCOUS FLOW IN A MAGNETIC FIELD

The momentum flux density tensor (per one particle)
is defined as �ij (r, t ) = m〈vivj 〉, where m is the electron
mass, v = (vx, vy ) is the velocity of a single electron, and
the angular brackets stand for averaging over the electron
velocity distribution at a given time t and point r = (x, y).
The hydrodynamic velocity in this notation is Vi (r, t ) = 〈vi〉.
The values V and �ij are proportional to the first and second
angular harmonics (by the electron velocity vector v) of the
electron distribution function f (v; r, t ) (see the discussions in
Refs. [38–41]).

If electrons weakly interact between themselves and can
be regarded as an almost ideal Fermi gas, the hydrodynamic
approach can be used when the characteristic space scale, L,
of changing of V(r, t ) is far greater than, at least, one of
the following lengths: the electron mean free path relative
to electron-electron collisions lee = vF τee; the electron cy-
clotron radius Rc = vF /ωc; the length of the path that the free
electron passes during the characteristic period of changing
of V(r, t ), lω = vF /ω. Here vF is the Fermi velocity, τee

is the electron-electron scattering time (its exact definition
will be clarified below), ωc is the cyclotron frequency, and
ω is the characteristic frequency of a flow. If one of these
conditions is satisfied, then inside the regions of size L

the quasiequilibrium distribution of electrons is formed, and
the flow can be described by the values V and �ij . Below we

construct the motion equations for V and �ij following the
approach developed in Refs. [16,42].

The equation for the hydrodynamic velocity in the zero
magnetic field is as follows:

m
∂Vi

∂t
= −∂�ij

∂xj

− mVi

τ
+ eEi. (1)

Here e is the electron charge, τ is the momentum relaxation
time related to electron scattering on disorder or phonons [43],
and the summation over repeating indices is assumed. The
momentum flux density tensor �ij is equal to Pδij − σij ,
where P is the pressure in the fluid, δij is the Kronecker δ

symbol, and σij is the viscous stress tensor [39].
For slow flows which vary at a timescale much greater

than the time of relaxation of the inequilibrium part of the
momentum flux density tensor, �ij is given by [39]

�
(0)
ij = Pδij − m

[
η

(
Vij − 1

2
δijVkk

)
+ ζ

2
δijVkk

]
, (2)

where Vij = ∂Vi/∂xj + ∂Vj/∂xi and η and ζ are the shear
and the bulk viscosity coefficients. For the Fermi gas the
last is relatively small: ζ ∼ (T/εF )2η [47], where T is the
temperature and εF is the Fermi energy. In this regard, we
will neglect the bulk viscosity in further considerations.

Using Eqs. (1) and (2), one obtains the Navier-Stokes
equation in the linear by V regime,

∂V
∂t

= e

m
E − V

τ
− ∇P + η �V. (3)

In this paper we take into account the compressibility of the
electron fluid. Thus one needs to supplement Eq. (3) by the
gas equation of state P = P (n) (here n is the electron density)
and by the continuity equation. The last in the linear regime
has the form

∂n

∂t
+ n0div V = 0, (4)

where n0 is the unperturbed electron density.
The value given by Eq. (2) is attained during the time τee

as described by the Drude-like equation,

∂�ij

∂t
= − 1

τee

(
�ij − �

(0)
ij

)
. (5)

Here τee is the time of relaxation of the second angular
moment (by the electron velocity) of the electron distribution
function. As a rule, it is related to electron-electron scattering.
Hydrodynamic effects are significant for an electron fluid
in a solid if the scattering on disorder or phonons is much
less intensive than electron-electron scattering: τee � τ [1].
Formulas (1), (2), and (5) are the whole system of equations
describing nonstationary flows of a 2D viscous electron fluid
in a zero magnetic field.

For a high-frequency flow with characteristic frequencies ω

compared to 1/τee the relation between �ik (r, t ) and Vik (r, t )
is nonlocal by time. Owing to linearity of all equations, we
can decompose all the values by the time harmonics propor-
tional to e−iωt . For each pair of harmonic V(r, ω)e−iωt and
�ij (r, ω)e−iωt we obtain from Eqs. (1), (2), and (5) the re-
lations between the amplitudes V(r, ω) and �ij (r, ω). These
relations have the same form as Eqs. (2) and (3) but contain
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the amplitude E(r, ω) of the electric-field harmonic instead
of E(r, t ) and the frequency-dependent viscosity coefficient
η(ω) = η/(1 − iωτee ) instead of η.

Now let us consider a viscous electron flow in a magnetic
field B perpendicular to the 2D layer. In this paper we are
interested in the regime of moderate magnetic fields when
quantum effects do not play a significant role in the motion
of individual electrons and electron fluid as a whole. There-
fore, we consider sufficiently small nonquantizing magnetic
fields, satisfying the inequality h̄ωc � T � εF . Herewith the
relation among the parameters ωc, ω, and τee can be arbitrary.
The theory of high-frequency transport in Fermi systems in
quantizing magnetic fields was developed, for example, in
Ref. [48].

In the presence of a magnetic field additional terms will
appear in the equations for ∂Vi/∂t and ∂�ij /∂t since now
the quantities 〈vi〉 and 〈vivj 〉 will change in time not only
due to collisions and the electric-field force, but also due to
the magnetic-field force. The last force for each electron is
(eB/c)εikzvk , where εlik is the unit antisymmetric tensor and z

is the direction of magnetic-field B. For the averaged products
of the velocity components in the presence of only magnetic
field B we have as follows:

∂〈vi〉
∂t

= ωcεikz〈vk〉,
∂〈vivj 〉

∂t
= ωc(εikz〈vkvj 〉 + εjkz〈vivk〉). (6)

The terms (6) should be added to the right-hand side of
Eqs. (1) and (5) [49],

m
∂Vi

∂t
= −mVi

τ
− ∂�ij

∂xj

+ eEi + ωcεikzVk,

∂�ij

∂t
= −�ij − �

(0)
ij

τee

+ ωc(εikz�kj + εjkz�ik ). (7)

As in the case of a zero magnetic field, we first consider
the case of slow flows when the characteristic frequencies of
V(r, t ) are small in comparison with ωc and 1/τee. Putting
∂�ij /∂t = 0, we find from Eqs. (2) and (7) the values of �ij

as a linear combination of the values of �
(0)
ij and, thus, of P

and Vij ,

�ij = Pδij − σij ,

σij = m

[
ηxx

(
Vij − 1

2
δijVkk

)
+ ηxy

2
εikzVkj

]
, (8)

where ηxx and ηxy are the stationary shear viscosity coef-
ficients of the 2D electron fluid in the magnetic field {see
Ref. [16] and Eq. (10) for the case ω = 0}.

With the help of Eqs. (7) and (8), we arrive at the Navier-
Stokes equation of the compressible 2D electron fluid in a
magnetic field at low frequencies, which differs from Eq. (3)
by the change in η on ηxx and the appearance the two magnetic
terms ωc[V × ez] and ηxy[�V × ez] [16].

Second, we consider the case of a high-frequency flow
when the characteristic frequencies ω are compared to ωc and
1/τee. As in the case of a zero magnetic field, we decompose
the values of V(r, t ) and �ij (r, t ) by the time harmonics
proportional to e−iωt . As a final result, we arrive at the

(a) (b)

ωc

2ωcωc

v=0

e e

e

e

e
e e

v=0

v=(0,V) v~ (0,Π  )yy

ωc v~ (0,-Π  )yy

vx

vy

vx

vy

vF vF

FIG. 1. Schematic of the two distributions f (v) of 2D electrons
by their velocities v = (vx, vy ). The equilibrium Fermi distributions
fF (v) are shown in gray in both panels (a) and (b). The quasiequilib-
rium distribution fV(v) = fF (v − V) with the mean hydrodynamic
velocity V = (0, V ) is shown in green in panel (a). In the magnetic
field, such a distribution function together with each individual
electron rotates with frequency ωc. The nonequilibrium distribution
f�(v) = fF (v) + f2(v) with zero mean velocity and the second-
harmonic f2(v) corresponding to a nonzero component �yy of the
momentum flux density tensor �ij is shown in brown in panel (b).
The rotation of individual electrons with the frequency ωc leads to
the rotation of such a distribution function f� with frequency 2ωc.

Navier-Stokes equation for amplitude V(r, ω) of each velocity
harmonic,

−iωV = e

m
E(r, ω) + ωc[V × ez] − V

τ
− ∇P

m

+ ηxx (ω)�V + ηxy (ω)[�V × ez], (9)

where the viscosity coefficients depend on the magnetic field
and the frequency as follows:

ηxx (ω) = η
1 − iωτee

1 + ( − ω2 + 4ω2
c

)
τ 2
ee − 2iωτee

,

ηxy (ω) = η
2ωcτee

1 + ( − ω2 + 4ω2
c

)
τ 2
ee − 2iωτee

. (10)

It is seen that at ωc � 1/τee the viscosity coefficients
ηxx (ω) and ηxy (ω) exhibit a resonance at ω = 2ωc. Indeed,
the internal frequency of rotation of the value �ij = m〈vivj 〉
is the doubled cyclotron frequency 2ωc (see Fig. 1). Thus
when frequency ω of the variation of a flow is close to the
internal frequency 2ωc, the resonance occurs. It is not just a
second harmonic of the one-particle cyclotron resonance as
it is related not to the motion of individual electrons but to
the motion of the momentum flux of the electron ensemble
(see Fig. 1). Such resonance is a special type of the high-order
cyclotron resonance of collective electron motion related to
the viscosity effect in a magnetic field, and so it can be named
the viscous resonance.

If the interaction between 2D electrons is strong, they must
be treated as a Fermi liquid. A preliminary analysis [34],
following Ref. [47], shows that, for a sufficiently large value
of interaction between the Fermi-liquid quasiparticles, the
kinetic equation reduces to the Navier-Stokes equation for a
highly viscous electron fluid, which at very high frequencies
is just the Newton equation of vibrations of an amorphous
medium with damping. The coefficients η and ζ will contain
the Landau parameters describing the interaction between
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quasiparticles. The conditions of applicability of the theory
will expand significantly. In particular, Eqs. (9) and (10) will
be applicable even at short wavelengths and high frequencies
L ∼ lω.

III. PLASMON DAMPING

The time dispersion of viscosity can manifest itself in
damping of the magnetoplasmons. Below we calculate the
magnetoplasmon damping coefficient related to viscosity
using Eqs. (4), (9), and (10). Herewith, we will not consider
the retardation effects which can be important in the region
of small wave vectors in some structures (see, for example,
Refs. [50,51]).

For the case of waves in the absence of external ac fields,
the electric-field E(r, ω) in Eq. (9) is induced by the per-
turbation of the 2D electron density δn = n − n0. When we
can neglect the retardation effects, we just have E = −∇δϕ,
where δϕ is related to δn by the electrostatic equations. For the
structures with a metallic gate located at the distance d from
the 2D layer we have as follows: δϕ = (4πed/κ )δn, where
κ is the background dielectric constant. For the structures
without a gate the relation between δϕ(r, t ) and δn(r, t )
is given just by the Coulomb law with the charge-density
�(r, z) = e δn(r)δ(z), where δ(z) is the δ-function depicting
the position of the 2D layer.

We solve together Eqs. (4) and (9), and the electrostatic
equation assuming that δn(r, t ), δϕ(r, t ), V(r, t ) ∼ e−iωt+q·r.
The ratio of the terms −∇P/m and eE/m in Eq. (9) is
estimated as aB/d for the structures with a gate and as aBq

for the ungated structures, where aB is the Bohr radius.
Both these values must be much smaller than unity when
the 2D electrostatic equations are applicable. Neglecting the
terms describing the relaxation processes, we obtain from
Eqs. (4) and (9) the usual formula for the dispersion law of
magnetoplasmons. For the gated structures it is as follows:

ω0,q =
√

ω2
c + s2q2, (11)

where s =
√

4πe2n0d/mκ . The second term under the root in
Eq. (11) s2q2 is the squared plasmon frequency in the absence
of a magnetic field. For the ungated structure it changes on
2πe2n0q/mκ .

The viscosity terms and the terms describing scattering on
disorder leads to a small correction to the magnetoplasmon
dispersion (11) as well as to the arising of a finite damping:
ωq = ω0,q + �ωq − i ϒq . The damping coefficient ϒq takes
the form

ϒq = ω2
c + ω2

0,q

2ω2
0,q

[
1

τ
+ Re ηxxq

2

]
+ ωc

ω0,q

Im ηxyq
2. (12)

Here the viscosity coefficients ηxx (ω) and ηxy (ω) are taken at
ω = ω0,q .

At high frequencies and high magnetic fields, ω,ωc �
1/τee, we obtain from Eqs. (10) and (12),

ϒq = 1

τ

w2 + 1

2w2
+ ηq2

w2

w4 + 13w2 + 4

4w2 + β2(w2 − 4)2
, (13)

where β = ωcτee � 1 and w = w(q ) = ω0,q/ωc. Near the
resonance of the shear viscosity coefficients, when w ≈ 2, the

sq/ω

ω /q

/q

ωc

c

mΥ Υ

1 2 30

1

2

3

0
3

FIG. 2. The magnetoplasmon dispersion law ω0,q and the damp-
ing coefficient ϒq calculated by Eqs. (11) and (14) for a gated
structure. The maximum value of ϒq , ϒm = 5/(8τ ) + 27ηω2

c /(8s2)
is attained at the wave-vector qm = √

3ωc/s corresponding to the
equality ω0,q = 2ωc.

value ϒq takes the form

ϒq = 5

8τ
+ 9ηq2

8(1 + ε2β2)
. (14)

where ε = ε(q ) = w(q ) − 2, ε � 1. In high-quality struc-
tures at low temperatures the inequality 1/τ � ηq2/β2 can
take place in certain intervals of wave vectors and magnetic
fields. Provided this condition, the damping coefficient ϒq in
the resonance is greater than outside the resonance in β2 � 1
times [see Eq. (14) and Fig. 2].

IV. DISCUSSION AND CONCLUSION

A linear response V(r, t ) on ac electric-field Eex (t ) in a
given sample should be calculated from Eqs. (4) and (9) with
appropriate boundary conditions. Such a calculation has been
performed in Ref. [34] for the flow in a long sample with
rough boundaries. The linear response is directly related to
the absorbtion of energy from an ac external field. It has
been shown in Ref. [34] that the response of the fluid in not
too wide samples consists of the two parts. The first is the
plasmon contribution, formed by standing magnetoplasmon
waves and located in the bulk of the sample. The second
is the viscous contribution, located in the narrow near-edge
regions and formed by standing waves of the transverse zero
sound associated with the time dispersion of viscosity. The
viscous resonance manifests itself via both contributions.
In the plasmon contribution, the viscous resonance can be
observed by the dependence of the width and the amplitude
of the plasmonic resonances on ω and ωc, which are governed
by the damping coefficient of magnetoplasmons ϒq (12). The
maximum width of the plasmonic resonance occurs when an
integer or half-integer number of plasmon wavelengths 2π/q

is close to the sample width W and ω is close to 2ωc [34].
It is possible that the viscous resonance is also responsible

for the strong peak and features observed at ω = 2ωc in the
photoresistance [35,36] and the photovoltaic effects [37] in the
high-mobility GaAs quantum wells. Indeed, it was stressed in
Ref. [35] that the strong peak in photovoltage and the very
well-pronounced giant negative magnetoresistance, explained

165440-4



MAGNETIC RESONANCE IN A HIGH-FREQUENCY FLOW … PHYSICAL REVIEW B 98, 165440 (2018)

in Ref. [16] as a manifestation of forming of a viscous flow,
are observed in the same best-quality GaAs structures. If 2D
electrons in such structures form a viscous fluid, than any
response of the structure on an ac field (absorption, photovolt-
age, and photoresistance) must inevitably have peculiarities at
the frequency of the viscous resonance.

To construct the theories of the photoresistance and
the photovoltaic effects, one should supplement the hy-
drodynamic equation (9) by the nonlinear terms following
Refs. [52,53]. The peak and features at ω = 2ωc in photo-
voltage and photoresistance were observed in Refs. [35–37]
at rather high magnetic fields when the inequality Rc � W

was fulfilled. A preliminary analysis shows that this justifies
the applicability of the Fermi-gas model for the description
of hydrodynamics near the viscous resonance. However, the
Fermi-gas model outside the resonance, in particular, in small
magnetic fields, seems to be irrelevant. Justification of the
realization of the hydrodynamic regime outside the resonance
has been performed in Ref. [34] by use of the phenomenolog-
ical Fermi-liquid model.

To conclude, we predict the viscous resonance at ω = 2ωc

related to the motion of the viscous stress tensor in a magnetic

field. This resonance manifests itself in the dependence of
the damping of magnetoplasmons on their wave vectors and,
probably, in the photoresistance and the photovoltaic effects.
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