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We investigate nonlinear magnetotransport in a Hall bar device made from a strained InGaAs/InP quantum
well: a material system with attractive spintronic properties. From extensive maps of the longitudinal differential
resistance (rxx) as a function of current and magnetic (B) field, phase diagrams are generated for quantum Hall
breakdown in the strong quantum Hall regime reaching filling factor ν = 1. By careful illumination, the electron
sheet density (n) is incremented in small steps and this provides insight into how the transport characteristics
evolve with n. We explore in depth the energetics of integer quantum Hall breakdown and provide a simple
picture for the principal features in the rxx maps. A simple tunneling model that captures a number of the
characteristic features is introduced. We present results on the quantum Hall transport diamonds, a spin-flip
resonance at high current near ν = 1, instabilities at large B field and current, and a zero-current anomaly. In
addition, parameters such as critical Hall electric fields and the exchange-enhanced g factors for odd-filling
factors including ν = 1 are extracted. A detailed examination is made of the B-field dependence of the critical
current as determined by two different methods and compiled for different values of n. A simple rescaling
procedure that allows the critical current data points obtained from rxx maxima for even filling to collapse onto
a single curve is demonstrated. Exchange-enhanced g factors for odd filling are extracted from the compiled
data and are compared to those determined by conventional thermal-activation measurements. The exchange-
enhanced g factor is found to increase with decreasing n.
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I. INTRODUCTION

The quantum Hall effect occurs in a two-dimensional
electron gas (2DEG) confined in a quantum well (QW) when
subjected to a high perpendicular magnetic field [1]. By
passing a sufficiently high current through a Hall bar, the
quantum Hall effect can be destroyed [2]. Current-induced
quantum Hall breakdown is a valuable tool to access nonlinear
magnetotransport phenomena in a 2DEG (see the extensive
review in Ref. [3] and references therein). Some examples of
the rich variety of nonlinear phenomena that can be accessed
in a strong magnetic field at and beyond current-induced
quantum Hall breakdown include the following: hysteresis
arising from dynamic nuclear polarization through the inter-
play of electron and nuclear spins via the hyperfine interac-
tion near integer odd-filling factors [4,5], cyclotron emission
at terahertz frequency arising from nonequilibrium electron
distribution in Landau levels [6,7], electric instability leading
to resistance fluctuations and negative differential resistance
[8–11], and reentrant quantum Hall states of the second Lan-
dau level [12,13].

The above-mentioned phenomena are typically observed
in widely studied GaAs/AlGaAs heterostructure 2DEGs with
high mobility. Here we report on the general characteristics
of quantum Hall breakdown in an InGaAs/InP QW Hall bar
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device. Such indium-based QWs are of current interest for
spintronic applications. As compared to widely employed
GaAs/AlGaAs QWs, InGaAs/InP QWs offer larger electron
g factors, stronger spin-orbit coupling, and the nuclear spin
for indium (9/2) is larger than for gallium (3/2) [14–20]. We
examine in detail two-dimensional maps of the differential
resistance as a function of current and magnetic field. These
maps may be regarded as phase diagrams and provide a wealth
of information about quantum Hall breakdown (including the
conditions for, and the energetics of, quantum Hall break-
down), and a number of other rarely studied phenomena for
sheet current densities up to ∼1 A/m. We describe how
quantum Hall breakdown and nonlinear phenomena evolve
systematically not only with increasing magnetic field (B) up
to 9 T (equivalently decreasing filling factor ν) but also with
increasing electron sheet density from 1.6 × 1011 cm−2 up
to 3.9 × 1011 cm−2. The capability to increment the electron
density in small steps by careful illumination was particularly
valuable and enabled us to compile sufficient data to examine,
for example, trends in electronic g factors and to compare
different methods by which the breakdown current can be
extracted. In contrast to an earlier study of an InGaAs/InP QW
in Ref. [21], here we access the strong quantum Hall regime
(ν = 1). We note that there are some reports of current-
induced breakdown in other indium-based QW systems where
ν = 1 is also attained (see Ref. [22] for InGaAs/InAlAs QWs
and Ref. [23] for InSb/AlInSb QWs).

The outline of this paper is as follows. Section II describes
details of the InGaAs/InP heterostructure and the Hall bar
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investigated, and transport characteristics of the 2DEG as a
function of the electron density. Section III explains how dif-
ferential resistance color maps are generated and outlines the
principal features that are revealed. Section IV describes how
the breakdown characteristics evolve with electron density.
Section V provides a simple picture for the principal features
in the differential resistance color maps and introduces a
simple tunneling model that captures a number of charac-
teristic features. Section VI describes parameters that can be
extracted from the transport diamonds in the strong quantum
Hall regime: principally, the critical Hall electric fields for
ν = 1 and ν = 2 and an estimate of the g factor for ν = 1.
Section VII examines in detail the B-field dependence of the
critical breakdown current as determined by two different
methods compiled for different electron densities. The g

factors for odd-filling factors extracted from the compiled data
are compared to those determined by conventional thermal-
activation measurements. Lastly, Sec. VIII discusses a curious
and as yet unexplained zero-current anomaly readily visible in
the experimental data over a wide B-field range.

II. EXPERIMENTAL DETAILS AND 2DEG
CHARACTERISTICS

The investigated 2DEG is formed in the QW region of
a strained In0.76Ga0.24As/In0.53Ga0.47As/InP heterostructure
grown by chemical beam epitaxy. The conducting channel
in the QW is an undoped 10 nm In0.76Ga0.24As layer. As
compared to lattice matched In0.53Ga0.47As/InP QWs, the 0.76
indium fraction is intended to reduce the effective mass and
maximize the mobility at the cost of introducing strain [24].
Because of the mobility enhancement, InxGa1−xAs QWs
with In fraction x of ∼0.75 have attracted attention over the
years [25–33]. Other details of the growth and heterostructure
are given in Refs. [21,34]. All the transport measurements de-
scribed in this report are for a 15 -μm-wide Hall bar prepared
by standard optical lithography and wet etching [34]. Three
pairs of potential probes separated by 50 μm are positioned
along the Hall bar and the potential probes have width 7.5 μm
where they join the Hall bar. The Hall bar is ∼200 μm long
and opens out at either end to avoid sharp corners on the entry
to the source and drain regions. The Hall bar device design and
dimensions were motivated by the work in Refs. [4,5]. Sol-
dered indium beads that are subsequently annealed at 350 ◦C
in vacuum for 30 mins form Ohmic contacts. The device is
maintained at the base temperature of a top-loading 3He Janis
cryostat equipped with a 9 T superconducting magnet.

Before discussing the nonlinear transport measurements,
we describe the standard characteristics of the 2DEG. As
an alternative approach to changing the electron sheet den-
sity (n) by applying a voltage to a front or back gate, we
could controllably increment n in small steps from ∼0.5 to
∼4.0 × 1011 cm−2 by careful illumination of the Hall bar at
∼0.3 K with a standard red-light-emitting diode passing a
small current up to a few tens of nanoamperes. Figure 1 shows
the 0.3 K values of n and (transport) mobility μ obtained
using a standard lock-in technique with ac excitation current
of 100 nA at 13.5 Hz. We note that here, n is the Hall
carrier density. Data points were collected on three separate
cooldowns. The dependence of mobility on electron density

FIG. 1. 0.3 K values of electron density n and mobility μ

attained by illumination over three separate cooldowns nos. 1–3.
Estimated uncertainties in n and μ are included for each data point.
Empirically, over the accessible density range, we find that the
mobility follows a power-law dependence μemp∼(n − n0)p , where
n0 = 0.50 ± 0.02 × 1011 cm−2 and p = 0.42 ± 0.02 (see dashed
magenta trace). Following the model in Ref. [35], we have also
fitted our data for ionized impurity scattering and short-range alloy
disorder scattering. Included in the figure are the calculated mobility
vs density traces for background ionized impurity scattering (μB :
green trace), remote ionized impurity scattering (μR: blue trace),
short-range alloy disorder scattering (μA: red trace), and the total
mobility [μtot = (μ−1

B + μ−1
R + μ−1

A )−1: black trace] [36]. For the
fits, we excluded the anomalous outlying point near 4.0 × 1011 cm−2.

is reproducible from cooldown to cooldown except near the
highest density, ∼4.0 × 1011 cm−2, attained for maximum
illumination that leads to saturation of the persistent photo-
conductivity effect [37]. We note that n = 4.0 × 1011 cm−2 is
well below the electron density required to populate the first-
excited subband of the QW (estimated to be 1.8 × 1012 cm−2

based on a simple calculation using appropriate material
parameters). Empirically, we find that the observed sublinear
dependence of mobility on electron density follows a power-
law relationship, μemp ∼ (n − n0)0.42, where n0 is a constant;
see magenta trace in Fig. 1. The observed dependence is
qualitatively similar to those reported in earlier works on
InGaAs QWs (see, for example, Refs. [27,37,38]). The de-
pendence is consistent with theoretical models for disorder
scattering mechanisms in 2DEG structures [35,38]. At low
electron density, μ is expected to increase with n when limited
by ionized impurity scattering. At high electron density, μ

is expected to saturate in quantum wells [39] (or even de-
crease with n in heterojunctions [40]), when limited by alloy
disorder scattering. Following the model in Ref. [35] which
includes screening, we have fitted our data incorporating the
appropriate scattering mechanisms. Figure 1 includes calcu-
lated mobility versus density traces for background ionized
impurity scattering (μB), remote ionized impurity scattering
(μR), short-range alloy disorder scattering (μA), and the total
mobility μtot = (μ−1

B + μ−1
R + μ−1

A )−1 [36].

165434-2



PHASE DIAGRAM OF QUANTUM HALL BREAKDOWN AND … PHYSICAL REVIEW B 98, 165434 (2018)

For the experiments discussed below, we focus on data
taken during the third cooldown (no. 3) for which n is in
the range 1.6–3.9 × 1011 cm−2. Over this range, from the
determined values of the transport mobility, we find that the
transport mean free path (transport lifetime) increases from
1.2 μm (4.8 ps) to 2.7 μm (7.1 ps). For the transport lifetime,
we took the effective mass (m∗) to be 0.047m0, where m0 is
the free-electron mass [21]. From other measurements (data
not shown [34]), we also determined the quantum mobility
μq and, subsequently, the quantum lifetime τq by Dingle
plot analysis of the low B-field Shubnikov–de Haas (SdH)
envelope [21,41]. μq (τq) is found to be ∼12 000 cm2/Vs
(∼0.31 ps) for n in the range 1.6–3.2 × 1011 cm−2, but rises
to ∼19 000 cm2/Vs (∼0.51 ps) near 3.9 × 1011 cm−2 when
the electron density is close to saturating. From τq , we can
then estimate the Landau- level broadening �. Defining the
full width at half maximum (FWHM) of a Lorentzian-shaped
Landau level to be 2� [21], we find 2� = h̄/τq to be in
the range ∼1.2–2.0 meV. Note that for this Hall bar, the
longitudinal resistance becomes very large at low density, n =
n0 ∼ 0.5 × 1011 cm−2, when the 2DEG is almost insulating
and the mobility collapses (see Fig. 1). This density (marking
the percolation threshold for transport) equates to a Fermi
energy of ∼2 meV. From this observation, we conclude that
there are effective random potential fluctuations of amplitude
∼2 meV.

III. DIFFERENTIAL RESISTANCE COLOR MAPS

A map (or “phase diagram”) displaying how the nonlinear
transport properties of quantum Hall breakdown depend on
current (I ) and B field can be built up by sweeping the
current and stepping the B field. Color maps of directly
measured as opposed to numerically derived longitudinal and
transverse differential resistances rxx and rxy , respectively, are
shown in Fig. 2 for n = 1.6 × 1011 cm−2. The four-point mea-
surements of the differential resistances, rxx (Idc ) ≡ dV xx/dI

and rxy (Idc ) ≡ dV xy/dI , were performed simultaneously by
driving a combination of a dc current Idc and a small ac
excitation current of 100 nA at 13.5 Hz through the Hall bar
and measuring the ac voltage component drop �Vxx and �Vxy

between appropriate potential probes of the Hall bar using a
standard lock-in technique [21,42].

The distinctive dark-blue diamond-shaped regions in the
map of rxx identify where rxx ∼ 0. These regions are the
so-called transport diamonds [21]. In the map of rxy too,
diamonds are visible within which the rxy is quantized. The
diamonds in rxx and rxy occupy the same region in the I -B
plane. We can now assign these transport diamonds to specific
integer filling factors from the value of rxy consistent with the
expected quantized values of the Hall resistance. We conclude
that the two most prominent diamonds centered at 3 and 6 T
in Fig. 2 are related to filling factors ν = 2 and 1, respectively.

We note the following about the transport diamonds re-
vealed in Fig. 2: (i) a horizontal cut through the diamonds
in rxx near Idc ∼ 0 would essentially give a traditional plot
of Rxx = Vxx/Idc with swept B field when measured in the
low current linear response regime (Rxx = rxx) and reveals
zeros in Rxx at integer filling factors at high B field in the
quantum Hall regime and SdH minima at low B field; (ii) with

FIG. 2. Experimental color maps of (a) rxx and (b) rxy : n =
1.6 × 1011 cm−2, μ = 170 000 cm2/Vs. Note that the regions of rxy

exceeding 26 k� are colored black. In both panels, the ν = 2, 3, and
4 transport diamonds are outlined, and the high-current protrusion
features emerging from near the high current tips of the ν = 1
transport diamond are identified. The color maps are built up with
three overlying data sets. The current sweep rate is typically a few
tens of nanoamperes per second. The B-field step at low (high) B

field is 25 mT (100 mT).

increasing B field, the diamonds become more pronounced
and bigger (most clearly reflected in the maximum width in
the current of the diamonds); (iii) on passing from inside
a diamond to outside a diamond, the quantum Hall effect
breaks down; and (iv) beyond the diamonds, the quantum Hall
effect has broken down and transport is generally nonlinear
(Rxx �= rxx).

The color maps provide a wealth of information in the
strong quantum Hall regime beyond that reported in Ref. [21],
which describes transport diamonds for an InGaAs/InP Hall
bar but only for B fields up to 5 T and for n = 5.3 ×
1011 cm−2, so filling factors no lower than ν = 5 were investi-
gated. We found it insightful to capture color maps over a wide
range of B field and for sheet current densities up to ∼1 A/m.
The color maps in Fig. 2 together with those presented in the
next section for progressively higher electron density provide
access to a wide range of filling-factor diamonds from ν = 1
to at least 10. We note that a color map of Vxx showing the
ν = 2 diamond is presented in Ref. [43] for a GaAs/AlGaAs
Hall bar of width 10 μm, and color maps of differential
resistance between ν = 2 and 4 are presented in Refs. [12,13]
for high-mobility GaAs/AlGaAs structures of width 500 μm
or greater and for sheet current densities much less than
1 A/m.

In particular, with the capability to measure the ν = 1
transport diamond, we uncovered distinctive high-current fea-
tures that emerge from near the high-current tips of the
diamond. These “protrusions” (resonances) are clear in Fig. 2
as peaks in rxx and valleys in rxy that track to lower current
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as the B field is reduced, and end near the high B-field
side of the ν = 2 diamond. Note that the value of rxy in
the valley is ∼h/2e2 or lower. The protrusion features were
also seen in a second Hall bar device made from a simi-
lar In0.76Ga0.24As/In0.53Ga0.47As/InP heterostructure (data not
shown [34]). The protrusions are discussed further in Secs. IV
and V.

IV. ELECTRON DENSITY DEPENDENCE OF QUANTUM
HALL BREAKDOWN FEATURES

Figure 3 shows measured color maps of rxx for six elec-
tron densities from the lowest (n = 1.6 × 1011 cm−2) to the
highest (n = 3.9 × 1011 cm−2). Several noteworthy trends are
clear with increasing electron density:

(1) The transport diamonds shift systematically to higher
B field, as expected. For example, the center of the ν = 2
diamond shifts from ∼3 T at n = 1.6 × 1011 cm−2 to ∼7.5 T
at n = 3.9 × 1011 cm−2. Note that the ν = 1 diamond is
substantially in range only for the first two densities.

(2) The size of the transport diamonds increases. For
example, the maximum critical current of the ν = 2 diamond
increases from ∼4 μA at n = 1.6 × 1011 cm−2 to ∼11 μA at
n = 3.9 × 1011 cm−2. We will return to the subject of how the
critical currents for even- and odd-filling factors vary with B

field and electron density in Sec. VII.
(3) The phenomenon of phase inversion of SdH oscillations

at high-filling factors discussed in Ref. [21] due to electron
heating is observed at low B field and high current (see also
Ref. [23] for a discussion of electron heating at low B field for
InSb/AlInSb QWs), and the phase inversion becomes more
visible at higher electron density. By phase inversion, we
mean that the minima (maxima) of SdH oscillations in rxx

versus B field at zero current develop into maxima (minima)
at high current (see also Fig. 4).

(4) High even-filling-factor (ν � 6) transport diamonds
reported in Ref. [21] appeared to have straight edges. This
would seem to be the case too in Fig. 3, but closer inspection
reveals otherwise for low-filling-factor diamonds. For exam-
ple, the ν = 4 diamond appears to have straight edges at low
density, but these edges become curved at higher density. The
edges of the ν = 1 and ν = 2 diamonds are clearly curved for
all densities shown [44].

(5) Regarding odd-filling factors, at n = 1.6 × 1011 cm−2,
only the ν = 1 transport diamond is well developed. At n =
3.9 × 1011 cm−2, the ν = 3 and ν = 5 diamonds become clear
too. The ν = 1 diamond is out of range beyond 9 T.

(6) Outside the ν = 1 transport diamond, features where
rxx � 10 k� protrude towards lower B field are clear for
the lower densities. These protrusions always start from near
the finite-current tips of the ν = 1 diamond and appear to
track towards zero current at 0 T. They also weaken and
eventually terminate at a point located approximately mid-
way along the high B-field sides of the ν = 2 diamond
(for example, near 4.3 T for n = 1.9 × 1011 cm−2). We will
discuss these protrusions later in Sec. V in connection to
Fig. 5.

(7) At higher density, the regions just outside the ν = 3 and
ν = 5 transport diamonds develop a distinctive double-peak
structure. These double-peak features where rxx � 5 k� are
clearest at n = 3.9 × 1011 cm−2 (in the color map, the peaks
are marked by asterisks on the positive current side). For both
the ν = 3 and ν = 5 diamonds, the leftmost peak is near the
finite-current tip of the diamond and the rightmost peak is
located on the high B-field side of the diamond. The origin
of the curious double-peak features is unknown.

FIG. 3. Experimental color maps of rxx for six electron densities in the range of n = 1.6 × 1011 cm−2 to n = 3.9 × 1011 cm−2 attained
after controlled illumination. Note that for the left- (right-)side panels, the color scales and the current axis ranges are different. White dashed
lines through the center of the protrusions are marked on the color map for n = 1.9 × 1011 cm−2. Asterisks identify distinctive “double-peak”
features for positive current polarity in the vicinity of the ν = 3 and 5 transport diamonds in the color map for n = 3.9 × 1011 cm−2. The color
map for n = 3.9 × 1011 cm−2 is replotted in Fig. 4 with a different color scale to highlight certain features more clearly.
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FIG. 4. Color map of rxx for the highest electron density n = 3.9 × 1011 cm−2 replotted with a different color scale to emphasize certain
features. Phase inversion (PI) of SdH oscillations due to electron heating is observed at low B field (high filling factor). The left panel
illustrates the PI effect. The black (red) rxx trace at 1.08 T (1.15 T) cutting through ν = 14 SdH minimum (neighboring SdH maximum) at
zero current develops into a maximum (minimum) at ∼4 μA (∼3 μA). The zero-current anomaly (ZCA) “dip,” discussed further in Sec. VIII,
is also clear in these two traces. Asterisks in the color map identify the distinctive “double-peak” features in the vicinity of the ν = 3 and 5
transport diamonds. Regions exhibiting negative differential resistance appear white (rxx � 350 �) and become widespread beyond 3 T (see,
for example, the crescent-shaped features marked I and II between 3 and 5 T. Concurrently, instability appearing as random “spots” of color
also develops above 6 T near the ν = 2 diamond (see region marked III) and becomes very pronounced on the high B-field side of the diamond
(see region marked IV).

(8) Starting at n = 2.7 × 1011 cm−2, close inspection of
the color maps on the right side of Fig. 3 reveals that outside
the transport diamonds (when the quantum Hall effect has
broken down), regions appear where: (i) rxx approaches zero
or even becomes negative, i.e., negative differential resistance
is exhibited, and (ii) rxx is unstable. These features become
even more pronounced at higher density. For clarity, in Fig. 4
we have replotted the color map for n = 3.9 × 1011 cm−2 with
a color scale that enhances these features. Regions appearing
white, where rxx � 0, become widespread beyond 3 T, and
instability develops near the ν = 2 diamond, especially on the
high B-field side (see the random “spots” of color). We will
examine these features of electric instability in more detail
elsewhere [45].

(9) Although integer filling-factor diamonds are clear in
Fig. 3, fractional filling-factor diamonds are not observed
even for n = 3.9 × 1011 cm−2 when the transport mobility is
highest (see Fig. 1). The absence of fractional filling-factor
diamonds in our data contrasts with those observed between
ν = 2 and 4 in Refs. [12,13] for high-mobility GaAs/AlGaAs
heterostructures (μ ∼ 2 × 107 cm2/Vs). Based on a simple
Coulomb interaction picture [46,47], we estimate the energy
gap for fractional states to be 0.56 meV (0.74 meV) at 4 T
(7 T) [48]. However, the disorder strength in the measured In-
GaAs/InP heterostructure is significant (h̄/τq ∼ 1.2–2.0 meV;
see Sec. II) and is comparable to or exceeds the estimated
energy gap for fractional states. This accounts for the ab-
sence of fractions. Moreover, alloy disorder scattering in the
In0.76Ga0.24As QW channel is likely even more disruptive to
the fractional states [49].

V. SIMPLE PICTURE OF TRANSPORT DIAMONDS

We now present a simple picture of how we interpret key
features related to quantum Hall breakdown that appear most
clearly in the color maps of rxx . We will use the color map of
rxx for n = 1.9 × 1011 cm−2 in Fig. 5 for this purpose.

It is nontrivial to directly relate current (y axis in the color
maps) to energy: a point that will be emphasized further in
Sec. VII. However, two features of the transport diamonds
stand out. First, the diamond size generally increases with
increasing B field (for odd-filling and even-filling factors
separately). Second, the diamond size alternates between
relatively small for odd-filling factors and relatively big for
even-filling factors. These observations strongly suggest that
the width of the diamond in current is related to the Zeeman
energy splitting (|g∗|μBB) at odd filling and to the cyclotron
energy (h̄ωc = h̄eB/m∗) at even filling. Here, g∗, μB, h̄, and
e, respectively, are the effective g factor, Bohr magneton,
reduced Planck constant, and charge of an electron. For odd-
filling factors, we would then expect the maximum width of
the (2N + 1)th diamond (N = 0, 1, 2, . . . for ν = 1, 3, 5, . . .)
to reflect the transition (N,↑) → (N,↓) where the Landau-
level index N is conserved, but electron spin is flipped (by
hyperfine or spin-orbit coupling [5]) from up to down. For
even-filling factors, the maximum width of the (2N + 2)th
diamond (N = 0, 1, 2, . . . for ν = 2, 4, 6, . . .) could reflect
the transition (N,↓) → (N + 1,↓), where N is changed but
electron spin is conserved. More likely, it reflects the lower-
energy transition (N,↓) → (N + 1,↑) where electron spin
is flipped too. This transition has energy h̄ωc − |g∗|μBB. In
Fig. 5, we have added white guide lines that separately bound
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FIG. 5. Experimental color map of rxx for n = 1.9 × 1011 cm−2. White guide lines bounding tips of even- (odd-)filling-factor diamonds are
shown and reflect principally the growth in the cyclotron energy (Zeeman energy splitting) with B field. Cartoons (a)–(g) illustrate alignment
of Landau levels for the feature marked on the color map. See text for full description.

odd- and even-filling-factor diamonds and interpolate to zero
current at zero field. In Sec. VII, we will more carefully
examine the magnetic field dependence of the critical currents.

The transitions that we picture as relevant are princi-
pally tunneling transitions between Landau levels that are
tilted in the y direction (across the Hall bar). These transi-
tions are induced by the Hall electric field when current is
applied. This Zener-type tunneling mechanism is discussed
in Refs. [50,51]. Inter-Landau-level tunneling is also referred
to in the literature as quasielastic inter-Landau-level scatter-
ing [50]. Figures 5(a)–5(g) illustrate alignment of spin-split
Landau subband energy levels for the features marked on
the color map. In each cartoon, there are two ladders of
energy levels. Relevant levels are labeled in compact form, for
example, 0 ↑= (0,↑). Extended states in each level are shown
as bars, and blue (white) identifies filled (empty) states. The
left (right) ladder of levels is filled up to the local chemical
potential μL (μR). L and R represent two points along the y

axis. L and R are defined such that μL �μR so that transitions
occur from the left ladder to the right ladder for either current
polarity. In the next section, we will specify further what
points ideally L and R represent and discuss the characteristic
length scales that could be associated with the separation
between these two points.

The specific features marked in Fig. 5 are the following:
(1) At ν = 2, the chemical potential is midway be-

tween (0,↓) and (1,↑). At the tips of the ν = 2 diamond
[Fig. 5(a)], breakdown occurs when fully filled (0,↓) at L

aligns with empty (1,↑) at R [Fig. 5(a) depicts a resonant

inter-Landau-level transition with spin flip]. Similarly, at ν =
1, the chemical potential is midway between (0,↑) and (0,↓).
At the tips of the ν = 1 diamond [Fig. 5(f)], breakdown
occurs when fully filled (0,↑) at L aligns with empty (0,↓)
at R [Fig. 5(f) depicts resonant transition between spin-split
subband levels of the N = 0 Landau level].

(2) Figure 5(f) also corresponds to the high B-field end
of the protrusion. Figures 5(e) and 5(c) depict alignment for
points along the protrusion to lower B field for the same
(0,↑) → (0,↓) resonant transition when μR approaches (0,↓)
[Fig. 5(e)] and lies through (0,↓) [Fig. 5(c)].

(3) At zero current, the ν = 1 and ν = 2 diamonds touch
near 4.9 T [Fig. 5(b)] [52]. For small currents, in the vicinity
of the point at Fig. 5(b), intrasubband transitions occur.

(4) Lastly, Figs. 5(d) and 5(g), respectively, represent
processes responsible for the edges of the ν = 1 diamond
on the low (dashed pink line) and high (dashed green line)
B-field side. In both cases, localized states in the Landau-level
subband tails are important and the processes occur similarly
for the other diamonds. Figure 5(d) depicts transitions from
localized states at L in the high- [low]-energy tail of (0,↑)
[(0,↓)] to extended states in empty (0,↓) at R. Figure 5(g)
depicts transitions from extended states in full (0,↑) at L to
localized states at R in the high- [low]-energy tail of (0,↑)
[(0,↓)]: extended states in (0,↑) at L are no longer all filled.

We are not aware of any calculation or model that
would substantially reproduce, even qualitatively, many of the
notable features in the color map of rxx in Fig. 5 (and color
maps in Fig. 3). We have developed a toy model that does
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generate a number of general features observed in the experi-
mental color maps. The model is a one-dimensional tunneling
model (see the Appendix for further details). The motivation
for this approach is that the measured color map in its entirety
primarily reflects the B-field evolution of the Landau levels
and the broadening of the Landau levels. This is captured by
the model. The model though is not microscopic and it does
not explicitly include details of spin-flip mechanisms, i.e., all
energetically allowed transitions are permitted whether or not
electron spin is flipped. The generated color maps are also
sensitive to the choice of the form of the density of states (see
the Appendix for an example of a color map generated with
our model).

VI. TRANSPORT DIAMONDS IN STRONG QUANTUM
HALL REGIME

Two metrics are frequently quoted in the literature to char-
acterize breakdown: the critical current density Jc = Ic/w at
a given filling factor ν (where Ic and w, respectively, are the
critical current and Hall bar width) and the corresponding
critical Hall electric field Ec = hI c/νe2w (where h is the
Planck constant). Although in the following section we will
more carefully discuss how one can define and extract Ic,
from Fig. 5, we estimate that Ic ∼ 6 μA (∼5 μA) from
the tips of the dark-blue colored ν = 2 (ν = 1) diamond
at 3.9 T (7.8 T) for n = 1.9 × 1011 cm−2. Thus, Jc and Ec

are, respectively, ∼0.4 A/m and ∼5.2 kV/m (∼0.33 A/m and
∼8.6 kV/m) at ν = 2 (ν = 1). We can compare these numbers
with those compiled in Refs. [53,54] for GaAs/AlGaAs 2DEG
heterostructures. Interestingly, the numbers we obtain for the
InGaAs/InP QW here are quite similar in value. For example,
from Refs. [53,54], we infer Ec is in the range of 2–6 kV/m
at 4 T (∼6 kV/m at 8 T) for even-filling (odd-filling) factors.
In our estimation of Jc and Ec, we took w to be the nominal
width of the Hall bar (=15 μm) and neglected any reduction
due to wet etching and side-wall depletion.

Assuming the Landau levels are tilted uniformly across the
Hall bar, one would anticipate that one could make a crude
estimate of the minimum characteristic separation between
points L and R (δ in the toy model described in the Appendix)
required to induce the transitions depicted in Fig. 5. We shall
examine the estimated value for Ec of ∼5.2 kV/m at ν = 2
(B = 3.9 T) for n = 1.9 × 1011 cm−2. For the pure Zener tun-
neling mechanism represented in Fig. 5(a), we might expect
Ec ∼ �/eδ where � = h̄ωc − |g∗|μBB is evaluated at 3.9 T
with appropriate values of 0.047m0 and 4.8, respectively,
for m∗ and |g∗| [55]. Hence, a value for the characteristic
length scale δ ∼ �/eEc ∼ (8.5 mV)/(5.2 kV/m) of 1.6 μm
is determined. Reasonably, δ 
 w = 15 μm: we would not
expect direct tunneling from one side of the Hall bar to the
other side. However, δ is two orders of magnitude larger than
the distance over which we would expect direct inter-Landau-
level tunneling to be significant. As discussed in Ref. [53], the
tunneling distance can be related to the spatial extent of wave
functions of electrons in the Landau levels. This is comparable
to the magnetic length �B = 25.6 nm/

√
B, with B in units

of Tesla. For B = 3.9 T, �B ∼ 13 nm 
 δ. The values for Ec

that we determine experimentally are similar to those reported
in the literature for GaAs/AlGaAs 2DEGs and are up to two

orders of magnitude smaller than expected based on a simple
pure Zener tunneling picture (also see Ref. [51]).

While a fully satisfactory answer to the longstanding prob-
lem of accounting for the empirical values of Ec remains
to be found [53], we make the following comments. The
experimentally derived critical Hall electric fields, equally
the critical current densities, should be regarded as average
quantities across the width of the Hall bar. Furthermore, the
Landau levels are not tilted uniformly across the Hall bar.
Two effects locally can significantly enhance the electric field.
First, the Landau levels bend up strongly near the edges of
the Hall bar [43,56,57]. Second, in reality, there are random
potential fluctuations in the 2DEG due to disorder [9,58–61].
Lastly, although Zener tunneling is almost certainly involved
in quantum Hall breakdown, it is not the only factor. In the
electron heating model of Komiyama and Kawaguchi [51], the
role of Zener tunneling is primarily to kickstart an avalanche
multiplication of excited carriers, the conditions for which
depend upon the details of energy balance between gain and
loss processes [62].

To finish this section, we describe how the ν = 1 and ν = 2
transport diamonds in Fig. 5 can be used to make a crude
estimate of the g factor for ν = 1. n = 1.9 × 1011 cm−2 is
the highest electron density for which the ν = 1 diamond
is substantially visible with the 9 T magnet available in the
experiments. Note that the energy gap associated with the
ν = 1 diamond is too large for the g factor to be determined by
performing thermal-activation measurements over the accessi-
ble temperature range of 270 mK to 1.5 K. Instead, we start
with the observation that the maximum breakdown current for
the ν = 2 diamond is ∼6 μA at 3.9 T. We take this current
to be proportional to energy h̄ωc − |g∗

e |μBB ∼ 8.5 meV. The
subscript e is to emphasize that the g factor should be that
appropriate for an even-filling factor (we have used the value
of 4.8 estimated from separate measurements [55]). For the
ν = 1 diamond, the maximum breakdown current is ∼5 μA
at 7.8 T. We take this current to be proportional to energy
|g∗

o |μBB. The subscript o is to emphasize that the g factor
should be that appropriate for an odd-filling factor subject
to enhancement by many-body electron-electron exchange
interactions [21,63–66]. Assuming the constant of proportion-
ality for converting current to energy is the same for both
diamonds, the 5 μA breakdown current for ν = 1 is equated
to the energy ∼7 meV, implying |g∗

o | ∼ 16. Our estimation of
|g∗

o | here has neglected Landau-level broadening and assumed
that the breakdown currents quoted above for the ν = 1 and
2 diamonds reflect the corresponding resonant transitions
(effectively, method B to be described in Sec. VII). We will
discuss these assumptions further in the following section.
Nonetheless, recent calculations of the exchange enhance-
ment of g factors in strained InGaAs/InP heterostructures
suggest that values of magnitude exceeding 10 are possible for
ν = 1 [66].

VII. B-FIELD DEPENDENCE OF CRITICAL
BREAKDOWN CURRENT

The maximum critical current Ic at integer filling (where
the transport diamond is widest) and how it depends on the
magnetic field with varying electron density have received
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considerable attention for a number of decades. Not only has
this subject been of interest for metrological reasons, but, in
principle, the dependence can shed light on the physical mech-
anisms that drive quantum Hall breakdown; see, for example,
Refs. [3,51,53,54,67]. Controlled illumination allows us to
compile sufficient data for different values of n to examine
the magnetic field dependence of Ic for even- and odd-filling
factors for an InGaAs/InP QW 2DEG: a system other than
GaAs/AlGaAs which is usually investigated.

The choice of how one defines the onset of breakdown
can influence the value of Ic. The following two methods are
reasonable and have been used in the literature. For method
A, Ic is taken to be the value at which rxx exceeds a small
threshold. The value of the threshold though is influenced to a
degree by the noise level in the measured rxx . Furthermore,
deviation from rxx = 0 above a small threshold may occur
for a gentle prebreakdown increase or for multiple-step tran-
sitions prior to abrupt breakdown [2,68]. For method B, Ic

is simply given by the position of the rxx maximum usually
clear at the high-current tip of a transport diamond. Note
that this corresponds to where the rise in Vxx with current is
steepest. This is the most direct method to apply except if rxx

exhibits multiple-peak features or becomes unstable, which
is sometimes the case, as noted in Sec. IV, for high electron
density and high B field (low-filling factor) [68]. In general,
the value of Ic determined by method A is smaller than that
determined by method B; however, these methods can give
similar values if breakdown is very abrupt.

Figure 6 shows the critical current Ic determined by
method A [Fig. 6(a)] and method B [Fig. 6(b)] for even (E)-
and odd (O)-integer filling factors for six electron densities in
the range 1.6–3.9 × 1011 cm−2 [68]. For method A, since the
noise level in rxx near zero current for the largest transport
diamonds is a few ohms, we have set the threshold value to
be 10 �. From Fig. 6(a), for method A, we find that data
points essentially fall on distinct common straight lines for
even- and odd-filling factors. The common line for even-
filling factors is steeper than that for odd-filling factors. The
lines clearly do not extrapolate to the origin. The even- (odd-
)filling-factor line intercepts zero current at ∼1.5 T (∼2.5 T).
From Fig. 6(b), for method B, although the even- and odd-
filling-factor families of lines are clear, there is considerably
more variation and scatter than for method A, i.e., data points
for different electron densities do not fall on a single com-
mon line. Even-filling-factor points above ∼1.5 T for each
specific electron density appear to have approximately linear
trends that would extrapolate to the origin, although there are
deviations from the linear dependence near 1 T. Also, with
increasing electron density, Ic for even-filling factors clearly
changes more rapidly with B field. Although less pronounced,
a similar behavior is observed too for the odd-filling-factor
points. The odd-filling-factor trends intercept zero current
near 1 T.

We make the following comments. First, the linear de-
pendence with the B field for Ic data points determined by
method A in Fig. 6(a) is, to a certain degree, unexpected. For
GaAs/AlGaAs 2DEG heterostructures, it is often argued that
the critical Hall electric field Ec ∝ Ic/ν is proportional to B3/2

(for example, see the discussion and plots of compiled data
in Refs. [53,54] mostly extracted by method A). However,

models for breakdown generally predict values for Ec that
are larger than experimental values, and depend on factors
such as the inclusion of higher-order tunneling processes,
details of scattering (particularly the B-field dependence of
the scattering rate), and Landau-level broadening induced by
the Hall electric field [51,53]. Others have also suggested that
a linear B dependence fit of compiled data appears to be at
least as good as a B3/2 dependence fit [67]. For our data, we
do not find a power-law dependence for even- or odd-filling
factors if we examine Ic/ν (data not shown). Consistent with
our observations, we note that a linear dependence of the
ν = 1 and 2 breakdown currents with B field was also recently
reported in Ref. [23] for InSb/AlInSb heterostructures with
mobility exceeding ∼160 000 cm2/Vs. To emphasize this
point, data points for ν = 1 and ν = 2 are circled in Fig. 6(a).
Second, the characteristics of Ic determined by method A
[Fig. 6(a)] are notably different from the characteristics of
Ic determined by method B [Fig. 6(b)], especially regarding
the scatter of data points, i.e., method A data points appear
to collapse onto two common lines but clearly method B data
points do not. However, we stress that the two methods reflect
two quite different features of Landau levels. Consistent with
the discussion in Sec. V, we expect method A to be sensitive
to how electrons tunnel between states in the tails of Landau
levels (when the tunnel barrier for inter-Landau-level transi-
tions becomes sufficiently transparent), and method B to be
sensitive to how electrons tunnel resonantly between Landau
levels at higher Hall electric field. Since in the framework of
our simple picture for the transport diamonds method B offers
a means to extract g factors for odd filling (crudely done for
ν = 1 in Sec. VI at n = 1.9 × 1011 cm−2), we now examine
this method more closely after introducing a simple procedure
to account for the data scatter.

At first sight, the scatter in data points in Fig. 6(b) is
counter to our intuition. In particular, based on our simple
picture described in Sec. V, we take the individual Ic traces
for even-integer filling in Fig. 6(b) to reflect the energy
h̄ωc − |g∗

e |μBB (see also Sec. VI). This energy is dominated
by the cyclotron energy and is not expected to have any
significant n dependence. However, this expectation neglects
electrostatic details that determine the proportionality factor
between current and energy. Since the Hall electric field is the
dominant field and is proportional to I/n at fixed magnetic
field, this prompted us to examine Ic/n instead of Ic (method
B rescaled); see Fig. 6(c) in which all data points of Fig. 6(b)
are replotted. Noticeable immediately, even-integer filling
data points now effectively collapse onto a single (solid) line.
This universal behavior means Ic is proportional not just to
B, but also n, i.e., Ic/n and not Ic should be equated with
energy h̄ωc − |g∗

e |μBB. Regarding the odd-integer filling data
points, rescaling reduces the scatter to a degree and they
lie in a region bounded by the dashed line (with steeper
slope) and the dash-dotted line (with shallower slope) [69].
Interestingly, the order by slope of the rescaled odd-integer
filling data point traces is inverted with respect to those prior
to rescaling [see Fig. 6(b)]. The linear B-dependence trace
now appears steepest (shallowest) for n = 1.6 × 1011 cm−2

(n = 3.9 × 1011 cm−2), i.e., there is a trend for the slope to
decrease with increasing n. Values of Ic estimated from the
tips of the dark-blue colored ν = 1 and ν = 2 diamonds for
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FIG. 6. Critical current Ic compiled for even (E)- and odd (O)-integer filling factors for electron densities in the range 1.6–3.9 × 1011 cm−2.
The values are determined by two methods on examination of rxx (Idc) traces that are used to build up the color maps in Fig. 3. In (a), Ic is the
current at which rxx exceeds 10 � (method A), and in (b), Ic is the current position of the rxx maximum at the high-current tip of a transport
diamond (method B). Guidelines are shown joining two or more data points for even- (dashed) or odd- (solid) integer filling factors at a given
electron density. In (a), data points for ν = 1 and ν = 2 are circled. In (c), the data points from (b) are replotted to show Ic/n instead of Ic

(method B rescaled). Even-integer filling data points effectively collapse onto a single (solid) line. Odd-integer filling data points lie in a region
bounded by the dashed line (with steeper slope for n = 1.6 × 1011 cm−2 data points) and the dash-dotted line (with shallower slope for n
3.9 × 1011 cm−2 data points); see main text for further discussion. Although not strictly determined by method B, values of Ic estimated from
the tips of the dark-blue colored ν = 1 and ν = 2 diamonds for n = 1.9 × 1011 cm−2 in Fig. 5 (see Sec. VI) and rescaled are also included
(open red circles). In (d), the data points from (b) are replotted on a log-log scale and sorted by ν instead of n to show absolute values of Ic/ν
(also effectively method B is rescaled since ν = nh/eB). The dashed black line with a ∼B2 dependence is included as a guide to the eye. In
the legend, +ve I (−ve I ) means positive (negative) current polarity.

n = 1.9 × 1011 cm−2 in Fig. 5 (see Sec. VI) and rescaled are
also included in Fig. 6(c); see open red circles. Although not
strictly determined by method B, since breakdown is fairly
abrupt, these extra points nonetheless lie either very close
to data points extracted by method B at the corresponding
density, in the case of ν = 1, or very close to the single
common line for even-filling factor points, in the case of
ν = 2.

The rescaling procedure also implies that the critical Hall
field Ec is proportional to B2 when method B is applied

since, empirically, Ic ∝ Bn (Ec = hI c/νe2w = BIc/new).
To corroborate this, in Fig. 6(d) all data points of Fig. 6(b)
are replotted on a log-log scale and sorted by ν instead of
n to show absolute values of Ic/ν (also, effectively, method
B rescaled). The dependence we see for both even and odd
filling is closer to B2 than B or B3/2. Interestingly, this is
similar to observations for Hall-induced resistance oscilla-
tions (HIROs) in high-mobility GaAs/AlGaAs 2DEGs at low
magnetic fields (<0.5 T), where Zener tunneling between
Landau levels takes place across distance 2Rc ∼ 1/B (the
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cyclotron diameter) [70]. If we equate the characteristic length
scale δ for Zener tunneling introduced in Sec. VI to 2Rc, this
would lead to a B2 dependence for Ec. However, in the strong
quantum Hall regime at large magnetic fields, 2Rc is much
smaller than the length of 1.6 μm at 3.9 T that we estimated
earlier. We stress the rescaling in Fig. 6(c) and Fig. 6(d)
involves no fitting or knowledge of quantities other than n

or ν.
Having demonstrated that data points of Ic/n for even-

integer filling collapse onto a single line which can be equated
to the energy h̄ωc − |g∗

e |μBB, we proceed to estimate g

factors for odd filling from Fig. 6(c). We now expect the in-
dividual Ic/n traces for odd-integer filling to be a measure of
the energy |g∗

o |μBB (see also Secs. V and VI). By examining
the ratio of the slopes of the single solid line for even filling
and the dashed and dash-dotted bound lines for odd filling,
we estimate |g∗

o | to be in the range ∼15–21 if we take values
of 0.047m0 and 4.8, respectively, for m∗ and |g∗

e |. The value
for the g factor appears to be larger for lower density [71]. In
contrast to |g∗

e |, not only is a larger value for |g∗
o | expected,

but an n dependency is reasonable too. The increase of |g∗
o |

with decreasing n is significant and likely reflects an increase
in the strength of the effective electron-electron interactions
[63,65,72,73]. To investigate this point further, we end this
section by comparing the effective exchange-enhanced g fac-
tors estimated for odd filling from the rescaled compiled data
in Fig. 6(c) to those determined by conventional thermal-
activation measurements over the same range of electron
density.

At exact odd-integer filling, the Fermi level is midway be-
tween two broadened spin-split Landau subbands (N,↑) and
(N,↓). Close to equilibrium (Idc = 0 and small ac excitation
current), the energy to activate electrons from the Fermi level
to extended states in the broadened level (N,↓) is Egap/2,
where Egap = |g∗

o |μBB − 2� (the effective energy gap be-
tween (N,↑) and (N,↓) [21,63–66,74–76]). This activation
energy can be extracted from the temperature (T ) dependence
of rxx at odd-filling-factor minima, namely, from an Arrhenius
plot if rxx ∼ exp(−Egap/2kBT ), where kB is the Boltzmann
constant. We examined the temperature dependence of rxx at
Idc = 0 for odd-filling-factor minima as a function of B. Plots
of ln(rxx) vs 1/T for T in the range 0.3 to ∼1.6 K were found
to be close to linear for T � 1 K for electron densities in the
range 1.6–3.9 × 1011 cm−2 (data not shown [34]). Fitting the
plots at higher temperature where they are reasonably linear,
Egap was extracted. The values of Egap are plotted in Fig. 7
as a function of B (B field at which the rxx minima are
located). From this plot, except for the lowest density, |g∗

o |
can be estimated from the linear dependence on B [77], while
� can be estimated from the zero B-field intercept [65,74–
76,78]. For n = 1.9, 2.3, 2.7, 3.2, and 3.9 × 1011 cm−2, |g∗

o |
is determined to be 9.8, 9.7, 7.6, 7.1, and 5.9, respectively. The
uncertainty in these numbers is estimated to be ±0.4. This
number reflects uncertainty in the slopes of the fit lines for
n = 2.7, 3.2, and 3.9 × 1011 cm−2 for which there are three
data points in each case.

The trend of increasing |g∗
o | with decreasing n suggested

from the analysis of the rescaled method-B data in Fig. 6(c)
is thus also seen in the thermal-activation data in Fig. 7.
We note the similarity between our data in Fig. 7 with

FIG. 7. Values of Egap determined from the temperature depen-
dence of rxx at the ν = 3, 5, 7, and 9 minima (Idc = 0) for different
electron densities n as a function of B. The number next to a point
identifies ν. The lines intercept the B axis in the range 1.2–1.4 T.
Estimated values of |g∗| from the slopes are also tabulated. There is
no value shown for n = 1.6 × 1011 cm−2 since only one data point
(for ν = 3) could be extracted.

that in Ref. [65] for GaAs/AlGaAs 2DEGs: namely, for a
given electron density, an energy gap for odd-filling factors
(ν > 1) extracted by thermal-activation measurements (for
out-of-plane B field) which is approximately linear in the
B field (and with a negative intercept at B = 0 reflecting
the level broadening that is effectively constant), and an
effective g factor determined from the slope that decreases
with increasing n. The values of the exchange-enhanced g

factor determined by thermal-activation measurements here
are consistent with those extracted by the same technique
and reported in earlier work for similar materials [21,66].
Notable, however, is that the estimated values for |g∗

o | from the
rescaled method-B approach are a factor of ∼2–3 times higher
than those from the thermal-activation measurements [79].
Currently we do not have a fully detailed understanding of
the difference. We believe some of the discrepancy may arise
because the compared values were estimated for different
density and filling-factor ranges, and Ref. [22] also reports a
g factor for an In-based QW estimated by thermal activation
that is lower than the value determined by other techniques;
see note in Ref. [79]. A number of other factors may be
relevant. For example, thermal-activation measurements are
influenced by the Landau-level broadening which can vary
to a degree with magnetic field. Furthermore, the exchange
energy also depends on the difference in population of spin-
up and spin-down subbands. Under certain conditions and
dependent on details of disorder and spin-flip scattering, the
spin polarization may not be at a maximum and this can im-
pact the measured dependence of the spin gap [64,65,73,74].
Outside the scope of this paper, a more quantitative evaluation
of the enhanced g factor requires involved self-consistent
calculations for the density of states that depend on details
of scattering mechanisms for InGaAs/InP QWs. Lastly, from
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FIG. 8. rxx sections through color map for B fields near where
neighboring transport diamonds touch for electron density n = 3.2 ×
1011 cm−2. See rxx color map in Fig. 3. The zero-current anomaly
(ZCA) “dip” is labeled and is present in all traces shown.

the zero B-field intercepts in Fig. 7, we find 2� to be in the
range ∼0.4–0.8 meV. These numbers are about a factor of 2
lower than those given in Sec. II that were determined by the
more well-established Dingle plot method. Our estimation of
� from analysis of Fig. 7 though neglects any contribution
to conduction by mechanisms such as variable-range hopping
[63,80] and assumes that the boundary in energy between
localized and extended states in a density-of-states peak is
well defined.

VIII. ZERO-CURRENT ANOMALY

Close inspection of the rxx color maps in Fig. 3 reveals
a narrow “dip” in rxx in regions close to zero current, most
notably where the transport diamonds touch. This dip is a
signature of the zero-current anomaly (ZCA) described in
Ref. [21]. In fact, the ZCA can be observed over a wide
range of B field provided that rxx is not zero in the vicinity
of zero current over a current range exceeding ∼0.4 μA (see
also Fig. 4). To illustrate this, Fig. 8 shows rxx sections on a
logarithmic scale for n = 3.2 × 1011 cm−2 that cut through
the points close to where neighboring transport diamonds
touch at zero current. At such points, encompassing the ν = 1
to 8 transport diamonds, the ZCA is clear and has FWHM of
typically ∼0.4 μA [81].

Studenikin et al. [21] described basic properties of the
ZCA for InGaAs/InP Hall bars, but only for B fields up to
∼5 T and for an electron density ∼5.3 × 1011 cm−2, so filling
factors no lower than ν = 5 were investigated. The ZCA
FWHM was found to be ∼2.1 μA (∼0.25 μA) for a 100 -μm
(10- μm)-wide Hall bar, so this indicates, consistent with the
FWHM 0.4 μA for the 15- μm-wide Hall bar measured here,
that the FWHM is proportional to the Hall bar width [82].
From the near linear increase in width of even-filling-factor
transport diamonds with B field which principally reflects the
growth in cyclotron energy (see discussion in Secs. V–VII),
we can convert the FWHM of the ZCA into an energy set

by h̄ωc − |g∗|μBB. For an effective mass of 0.047m0 and
taking |g∗

e | ∼ 4.8, we estimate that the FWHM ∼0.4 μA here
is equivalent to an energy ∼0.3 meV.

Reference [21] also reported the ZCA in higher-mobility
GaAs/AlGaAs Hall bar structures so the phenomenon ap-
pears to reflect intrinsic properties of a 2DEG. The origin
of the ZCA is not understood and we are not aware of any
theoretical description on this subject. In Ref. [21], it is
speculated to originate from modifications to the density of
states of interacting electrons in the presence of disorder and a
magnetic field.

IX. CONCLUSIONS

We have investigated nonlinear magnetotrans-
port in a Hall bar device made from a strained
In0.76Ga0.24As/In0.53Ga0.47As/InP quantum-well heterostruc-
ture (with mobility approaching 300 000 cm2/Vs for
n ∼ 4.0 × 1011 cm−2 at 0.3 K). We have demonstrated
that maps of the differential resistance (rxx and rxy) over
a wide range of sheet current density (up to ∼1 A/m) and
magnetic field (up to 9 T) provide a valuable insight into
quantum Hall breakdown and a number of other nonlinear
phenomena (including a spin-flip resonance at high current
near ν = 1, electric instability, phase inversion of SdH
oscillations, and a zero-current anomaly). We have shown
that these maps (phase diagrams) give detailed information
about the conditions for and the energetics of quantum
Hall breakdown. Compared to earlier work in Ref. [21],
we extended our study to the strong quantum Hall regime
(reaching filling factor ν = 1). Also, an additional perspective
was gained by incrementing the electron density in small
steps by careful illumination and tracking the systematic
evolution of the transport characteristics with n. We presented
a simple picture for the principal features in the maps,
namely, the distinctive transport diamonds and high-current
protrusions (resonances) emerging from near the high-current
tips of the ν = 1 transport diamond, and introduced a
simple tunneling model that qualitatively reproduces these
features. Primary parameters such as critical current densities
and critical Hall electric fields for ν = 1 and 2, and an
exchange-enhanced g factor for ν = 1 were extracted. The
critical Hall electric fields for the InGaAs/InP quantum well
were found to be comparable to those reported for widely
studied GaAs/AlGaAs 2DEG heterostructures.

A detailed examination was made of the B-field depen-
dence of the critical current Ic as determined by two different
methods and compiled for different values of n. From the first
method (method A by which Ic is defined to be the current
when rxx exceeds a small threshold), we found Ic for both
even ν and odd ν has an approximate linear dependence with
the B field. This finding is similar to that for an investigation
in another In-based quantum-well system [23], but does not
fit with the often cited B3/2 dependence for the critical Hall
field Ec. From the second method (method B by which Ic is
defined from the current position of the rxx maxima at the tips
of the transport diamonds), we found Ic for both even ν and
odd ν also has an approximate linear dependence with the B

field. While method B was easier to apply, there was (on initial
inspection) seemingly more scatter in data points. However,
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FIG. 9. The local density of states (LDOS) including disorder
broadening in a quantizing magnetic field is shown in blue. A suf-
ficiently large electric field E (typically the transverse Hall electric
field across the Hall bar) will lead to a Zener tunneling transition
between regions i and j separated by distance δ. Relevant for
breakdown at ν = 1, the dashed red arrow depicts the transition (0,↑)
→ (0, ↓). The corresponding Landau levels are shifted in energy by
μi − μj .

by simple rescaling, Ic/n data points for even ν were found
to collapse onto a single curve. This universal behavior un-
covered on rescaling even-ν data points also implies that Ec

has a B2 dependence when method B is applied. Ic/n data
points for odd ν do not all collapse onto a single curve and we
attributed this to signs that the exchange-enhanced g factor,
g∗

o (a quantity that can be estimated from the slopes of the
Ic/n traces for even and odd ν), increases with decreasing n.
This trend was corroborated by examination of the effective
energy gap for odd ν determined from conventional thermal-
activation measurements. By method B, we estimated |g∗

o | to
be in the range ∼15–20 at base temperature.

We have demonstrated that building up a map of quan-
tum Hall breakdown provides access to numerous nonlinear
phenomena for carriers confined in two dimensions that are
driven out of equilibrium. We have provided a perspective of
the quantum Hall system from the quasiclassical regime at
low magnetic field to the strong quantum Hall effect regime at
high magnetic field by analyzing the entire phase diagram and
presenting a step-by-step guide toward the different elements
of that phase diagram. The measurement and analytical tech-
niques we have described here can, in principle, be applied
to any material hosting a two-dimensional electron or hole
system. Furthermore, method B can complement existing
techniques such as the coincidence technique [64] and the
thermal-activation technique for estimation of exchange en-
hancement of spin splitting.
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FIG. 10. Example of a color map of dI

dV
generated using ex-

pression (A2) with B in units of 4ν−1n, taking n = 1.9 in units
of 1011 cm−2 (compare the color map with the experimental color
map in Fig. 5). We have set h̄ωc/gμBB = 3.75. This corresponds to
g ≈ 11.5: a value between g∗

e and g∗
o mentioned in Sec. VI. Since

we have assumed a single value for the g factor, we have neglected
many-body interaction effects. We also used �DOS = h̄ωc at 0.2 T,
which is equivalent to ∼0.5 meV. V and dI/dV are in arbitrary units.

APPENDIX: TUNNELING DENSITY-OF-STATES MODEL

Here we formulate a single-particle model describing the
inter-Landau-level tunneling processes exemplified in Fig. 9.

We will assume that the system can be described by a
simple tunneling Hamiltonian, which is given by the standard
expression

I = e

h

∑
ij

Tijni (1 − nj )δ(εj − εi ), (A1)

where Tij are the tunneling matrix elements. The local chemi-
cal potentials across the tunneling region are determined by
the electric field E and the distance δ between i and j :
μi = μ + eEδ/2 and μj = μ − eEδ/2. The uniform electric
field in the model is governed by the dc bias, V , applied to the
Hall bar (equivalent in the experiment to the dc current driven
through the Hall bar, which causes the Landau levels to tilt
across the Hall bar). For simplicity, we will assume V = eEδ

and that the matrix elements Tij do not depend on energy,
which leads at zero temperature to

I (V ) ∼
∫ μ+eV/2

μ−eV/2
dεD(ε − eV/2)D(ε + eV/2), (A2)

where D(ε) is the LDOS of the broadened Landau levels.
The broadened Landau levels are typically rounded close
to the Landau-level energies (elliptic in the self-consistent
Born approximation) with exponential tails between Landau
levels. To mimic this behavior and in order to simulate the
experimental findings, we assume the form of the Landau
levels to be e−|ε/�DOS|2/3

in the tails and e−|ε/�DOS|4/3
close to

the Landau levels (ε � 0), where ε is the energy relative to
the center of a Landau level and �DOS is the broadening. The
qualitative features will depend on the particular choice of
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Landau-level broadening. We tried different forms but chose
one that reproduces well the main features observed.

The differential conductance is given by g ∼ dI/dV . To
apply this model to the four-terminal experimental configura-
tion, we note that for large magnetic fields where σxx < σxy ,
rxx � σxx/σ

2
xy : here, σij are the magnetoconductivity tensor

elements. Hence we assume rxx ∼ dI/dV , using expression
(A2), which we evaluate as a function of V and magnetic field.

An example of a calculated rxx color map is shown in Fig. 10.
Although we do not expect our toy model to explain all
aspects of the experimental rxx color maps, it does nonetheless
reproduce a number of key features: (i) transport diamonds
that grow in size with B field and the alternating larger and
smaller transport diamonds for even- and odd-filling factors,
(ii) transport diamonds with clearly curved edges, and (iii)
resonant features beyond the transport diamonds.
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