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Third-order frequency-resolved photon correlations in resonance fluorescence
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We investigated third-order correlations between photons born in single quantum dot resonance fluorescence
that were filtered with narrow-band tunable etalons. Three-time autocorrelation measurements in which photons
were identically filtered resulted in correlation maps that are functions of two relative delays. A comparison with
the correlation maps computed using the “sensors method” introduced by del Valle et al. [Phys. Rev. Lett. 109,
183601 (2012)] reveals faithful agreement with theory, with the strongest correlations obtained when filtering
between Mollow triplet sidebands and the central peak. We characterized the correlations associated with these
virtual transitions and compared them with correlations at other Mollow triplet frequency windows. Accentuated
nonclassical characteristics are amongst the distinguishing features of three photon spectra.
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I. INTRODUCTION

Photon correlations are the primary tool for characterizing
light-matter interactions at the few or single quantum level. In
principle, if photon correlation functions to all orders were
known, all measurable properties of a given light source
would be known.

The first-order photon correlation function, g(1)(τ1), of a
light source is readily obtained interferometrically; its Fourier
transform is the power spectrum. Although it provides invalu-
able information about the light and the mechanism underly-
ing its generation, a g(1)(τ1) measurement alone reveals little
about the source itself. For example, a light source consisting
of a single radiating atom, and a light source consisting of
an ensemble of noninteracting radiating atoms could have
identical g(1)(τ1). To distinguish the two, a second-order
photon correlation measurement is required; the single atom
source would uniquely exhibit photon antibunching [1]. The
second-order correlation function, g(2)(τ1, τ2), is proportional
to the histogram of photon arrival time differences between
two detection channels and has been used extensively in
the past decades to characterize a variety of light sources
such as lasers and single photon emitters [2–7]. Crucially,
a g(2)(τ1, τ2) measurement serves as a unique identifier of
nonclassical light sources, i.e., sources of light which cannot
be described without quantum theory [8].

Recently, there has been increasing interest in correla-
tion measurements which go beyond second order. Early
work using a streak camera showed strong photon bunching
statistics in third-order correlation measurements of micro-
cavity laser light [9,10]. The third-order correlation function,
g(3)(τ1, τ2, τ3), was shown to provide more refined informa-
tion about nonclassical light sources such as multiphoton dif-
ferentiation [11] and the ability to analyze components [12].
Most recently, the nonclassical character of light emitted
by a strongly coupled quantum dot-cavity system has been
demonstrated up to fourth order [13]. For a wide range of

*mullera@usf.edu

quantum processes, including those involving multiparticle
interactions [14], photon correlations are an enabling inves-
tigative tool which is now more powerful than ever thanks to
increasingly performant detection systems [15].

A fascinating development in the understanding of photon
statistics has been the generalization of frequency-resolved
photon correlations. The pioneering theoretical work of del
Valle et al. has introduced a method for computing the “N -
photon spectrum” g

(N )
�1...�N

(τ1, ω1; ...; τN , ωN ), which is pro-
portional to the joint probability of detecting a photon in chan-
nel 1 at time τ1 filtered at frequency ω1 with a bandwidth �1,
a photon in channel 2 at time τ2 filtered at frequency ω2 with a
bandwidth �2,..., and a photon in channel N at time τN filtered
at frequency ωN with a bandwidth �N [16]. An interesting
aspect of g

(N )
�1...�N

(τ1, ω1; ...; τN , ωN ) is that it reveals informa-
tion about pathways underlying the generation of light in a
given source [5]. Although the computation of such a function
is challenging using direct integration, the “sensors method”
of Ref. [16] makes the calculation straightforward even at
high orders. Recently, we have experimentally measured the
function g

(2)
�1�2

(τ1, ω1; τ2, ω2), a two-photon spectrum, and
verified distinguishing features predicted by theory such as
the existence of “leap-frog” transitions [4].

Here we explore third order correlation func-
tions which make up the three-photon spectrum
g

(3)
�1�2�3

(τ1, ω1; τ2, ω2; τ3, ω3) of single quantum dot (QD)
resonance fluorescence under strong monochromatic laser
illumination. Contrary to its second-order counterpart, the
function g

(3)
�1�2�3

(τ1, ω1; τ2, ω2; τ3, ω3) involves three-photon
pathways down the ladder of dressed states, adding a new
dimension to potential communication schemes in quantum
information science applications [17]. Our measurements
provide further confirmation of the validity of the method of
Ref. [16] and may lead to more advanced experiments, such
as those involving heralded photon bundles [18].

II. BACKGROUND

Resonance fluorescence is generated when a two-level
electronic system is interacting resonantly or very near
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FIG. 1. (a) A resonantly-driven two-level system generating resonance fluorescence is weakly coupled to three sensors so that correlations
between sensor populations are proportional to filtered resonance fluorescence intensity correlations. (b) Experimental setup: the light near-
resonantly scattered by a strongly-driven QD excitonic two-level system was collected by a lens, spectrally filtered, split three ways, and
detected. Time tagging was performed on each channel independently.

resonantly with a monochromatic laser. It is well known
that under a sufficiently intense applied field, the resonance
fluorescence spectrum consists of a “Mollow triplet” centered
at the laser frequency, with individual peaks approximately
separated by the Rabi frequency, � [19]. The light emission
process may be viewed as a cascade down a ladder of dressed
states, i.e., the eigenstates of the coupled light-matter Hamil-
tonian [1]. Extensively documented for isolated atoms [20],
molecules [21], quantum dots [22–26], and Josephson junc-
tions [27], a two-level system in the Mollow triplet regime
serves as a unique platform for testing novel quantum optics
concepts. Despite its apparent simplicity, it continues to be
researched for its fascinating properties which may benefit
emerging quantum information science applications [28].

A N -photon spectrum as a generalization to the ordinary
spectrum is one such concept. It is built on the notion of
a time-dependent physical spectrum introduced by Eberly
et al. [29] and of time-dependent correlation functions studied
extensively by Knöll et al. [30]. At N th order, however, the
computation of such a quantity becomes challenging once
N > 2 [31]. Del Valle et al. proposed and demonstrated that
correlations of spectrally filtered photons emitted by a system
under test can be calculated by weakly coupling the system to
N sensors with a finite bandwidth, �i , and computing corre-
lations between sensor populations, as depicted schematically
in Fig. 1(a).

The objective of this work is to test the theory of del Valle
et al. against experimental measurements for the case of third
order correlations. After briefly describing our experimental
setup in Sec. III, we report the measurement of raw two-time
correlation maps in Sec. IV. In Sec. V, theoretical simulations
are presented for comparison. We then present a summary of
extracted N -photon spectra in Sec. VI and finally provide a
simple dressed-states interpretation in the discussion Sec. VII.

III. EXPERIMENTAL SETUP

From an experimental point of view, a N -photon spectrum
measurement is based on a straightforward extension of a
Hanbury-Brown and Twiss type measurement, wherein light

from a source is split into N channels each equipped with
a spectral filter and detector. We probed molecular-beam-
epitaxy-grown InAs QDs held in a cryostat (base temper-
ature of 4 K) and interacting with a resonant wave-guided
monochromatic laser beam [32]. Our setup, depicted in
Fig. 1(b), is optimized to efficiently collect the light scattered
by a single QD while minimizing unwanted background laser
scattering [22]. We focus here exclusively on autocorrelation
measurements, i.e., measurements involving only one filter,
a thick solid etalon, whose resonance frequency, ωf , is tun-
able [33]. The bandwidth of the filter was fixed at �f /2π =
330 MHz approximately matching the linewidths of the peaks
in the Mollow triplet. After traversing the filter the QD
scattered light was split three ways by two nonpolarizing
beam splitters and detected by single photon detector modules
(Excelitas SPCM-AQRH-14). Tagging of photon arrival times
was performed for each detection channel independently with
the help of a router (PicoQuant PHR 800 router with 100 ns
cable delay to avoid the router dead-time window) and time-
tagging electronics (PicoQuant PicoHarp 300) at an overall
detector-limited resolution of about 400 ps. Note that the
router is used here for no purpose other than as a replacement
for a more expensive multichannel time-tagging system.

IV. THREE-PHOTON CORRELATION MAPS

All measurements were performed for a fixed Rabi
frequency �/2π = 1.88 GHz. Time tags were stored for each
channel separately so that correlation functions could be com-
puted as histograms of arrival time delays between “clicking”
detectors. Due to the long exposure times needed to collect
sufficiently many third order coincidence events (on the order
of hours), we focus here on two specific measurements each
with a different filter frequency setting.

In Fig. 2(a), the experimental three photon correlation
map with a 1 ns bin width is shown for a filter frequency
ωf ≈ ωL + �/2. The map reveals a strong coincidence peak
at t = t ′ = 0 demonstrating that for this filter configura-
tion photons are more likely to be detected in bunches
than spread over time. In addition, the map also reveals
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FIG. 2. Experimental (a) and theoretical (b) third-order correlation map for a filtering frequency ωf ≈ ωL + �/2 with fixed Rabi frequency
�/2π = 1.88 GHz, a radiative decay rate �/2π = 200 MHz, a filter bandwidth �f /2π = 330 MHz (where �1 = �2 = �3 = �f ), and a laser
detuning � = 0. (c) (top) corresponding density plot for the same data as in part (a) and (bottom) selected cross sections as indicated. (d)–(f)
Same as in (a)–(c) but for a filtering frequency ωf ≈ ωL + �.

diagonal ridges which indicate that events in which two pho-
tons are detected simultaneously and one photon is accidental
are more frequent than events in which all three detectors
“click” accidentally at different times. Selected cross sections
at t = 0 and t = 8 ns through the maps are shown at the
bottom of Fig. 2(c) for a more quantitative comparison. In
a second configuration, namely for a filter frequency ωf ≈
ωL + �, the correlation map looks quite different, as shown
in Figs. 2(d)–2(f). For this case, nonclassical correlations are
seen at coincidence (t = t ′ = 0) and whenever two out of
three detectors click simultaneously, producing antibunching
troughs.

V. THEORY

To quantitatively describe the frequency-filtered
correlation maps of Fig. 2 we turn to a theoretical modeling
following the method of del Valle et al. For simplicity we
describe the QD exciton generating resonance fluorescence
as a two-level system radiatively decaying at a rate � while
being driven by a monochromatic laser at frequency ωL.
The laser may be detuned from the QD resonance frequency,
ω0, by � = ωL − ω0. As detailed in the Appendix, a matrix
M [Eq. (A1)] determines this system’s observables such
as 〈a〉, 〈a†〉, and 〈a†a〉, at time τ , where a† and a denote

the creation and annihilation operators of the resonance
fluorescence photons, assumed proportional to the two-level
system creation and annihilation operators [19].

In order to describe filtered photon correlations at any or-
der, del Valle et al. considered a larger system, which includes
a set of sensors weakly coupled to the QD through the QD
resonance fluorescence as depicted in Fig. 1(a). The coupling
constants εi are assumed to be small enough such that these
sensors do not disturb the QD in any measurable way. The
sensors are most simply modeled as two-level systems with
resonance frequencies ωi , decay rates �i , and creation and
annihilation operators ς

†
i and ςi . The observables of this more

general system are conveniently captured by a parameterized
vector which for three sensors reads:

w[μ1ν1,μ2ν2,μ3ν3] =

⎛
⎜⎜⎜⎜⎜⎝

〈
ς
†μ1
1 ς

ν1
1 ς

†μ2
2 ς

ν2
2 ς

†μ3
3 ς

ν3
3

〉
〈
ς
†μ1
1 ς

ν1
1 ς

†μ2
2 ς

ν2
2 ς

†μ3
3 ς

ν3
3 a

〉
〈
ς
†μ1
1 ς

ν1
1 ς

†μ2
2 ς

ν2
2 ς

†μ3
3 ς

ν3
3 a†〉〈

ς
†μ1
1 ς

ν1
1 ς

†μ2
2 ς

ν2
2 ς

†μ3
3 ς

ν3
3 a†a

〉

⎞
⎟⎟⎟⎟⎟⎠, (1)

where μi and νi are zero or one. In their supplemental material
to Ref. [16], del Valle et al. provided the system’s equation of
motion to first order in the couplings εi , derived from a master
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FIG. 3. First (a), second (b), and third (c) order filtered resonance fluorescence intensity correlations as a function of filter resonance
frequency ωf relative to the laser frequency ωL with the same parameters as Fig. 2. Dressed-state diagrams illustrate the transitions each
located at their corresponding filter frequency [i.e., ωf = ωL ± (0, �/3, �/2, �)].

equation. For three sensors, this equation of motion reads:

∂tw[μ1ν1,μ2ν2,μ3ν3] =
{
M + I

[
(μ1 − ν1)iω1 − (μ1 + ν1)

�1

2
+ (μ2 − ν2)iω2 − (μ2 + ν2)

�2

2
+ (μ3 − ν3)iω3

− (μ3 + ν3)
�3

2

]}
w[μ1ν1,μ2ν2,μ3ν3] + μ1(iε1T+)w[0ν1,μ2ν2,μ3ν3] + ν1(−iε1T−)w[μ10,μ2ν2,μ3ν3]

+μ2(iε2T+)w[μ1ν1,0ν2,μ3ν3] + ν2(−iε2T−)w[μ1ν1,μ20,μ3ν3] + μ3(iε3T+)w[μ1ν1,μ2ν2,0ν3]

+ ν3(−iε3T−)w[μ1ν1,μ2ν2,μ30], (2)

where I is the identity matrix, and the matrices T+ and T− are
given in the Appendix [Eq. (A5)].

Using this equation of motion, any relevant correlation
function can be obtained by applying the quantum regression
theorem. By repeated applications, the three photon spectrum
of the QD resonance fluorescence can then be obtained via

correlations between sensor populations ni = ς
†
i ςi as

g
(3)
�1�2�3

(0, ω1; t, ω2; t ′, ω3) = 〈n1(0)n2(t )n3(t ′)〉
〈n1(0)〉〈n2(0)〉〈n3(0)〉 . (3)
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FIG. 4. Simulated third-order correlations for which all parameters are identical to those in Figs. 2 and 3 except for the Rabi frequency,
which is now �/2π = 15 GHz. Part (a) shows the normalized one photon spectrum (top) and the diagonal of the three photon spectrum at zero
time delay (bottom), whereas parts (b) and (c) show correlation maps at selected filter frequencies of ωL + �/2, and ωL + �/3, respectively.

All the calculations shown in the present work involved
numerically integrating Eq. (2) using MathematicaTM in a
recursive manner as detailed in the Appendix.

Figures 2(b) and 2(e) show the result of simulations
with the same parameters as those of the corresponding
experiments. As can be seen, these theoretical maps closely
resemble the experimental observations even without includ-
ing more realistic solid-state processes such as spectral diffu-
sion and phonon scattering [24,26,32].

VI. N-PHOTON SPECTRA

Before further scrutinizing the third-order correlation maps
presented above it is helpful to view them as constituents of
a three photon spectrum which can then be discussed using
the dressed-state formalism. Following the language of del
Valle et al. we refer to the coincidence value of the normalized
N th order frequency-filtered correlation function simply as
the “N -photon spectrum.”

The lowest order function, the one-photon spectrum is then
simply proportional to the count rate of one of the detectors,
as shown in Fig. 3(a), as a function of ωf . This is the familiar
Mollow triplet at a resolution ωf . The origin of the three peaks
is best visualized using the dressed-states picture, wherein
the resonance fluorescence process is interpreted as a cascade
down the ladder of superposition states which result from the
diagonalization of the coupled QD-laser Hamiltonian [1]. In
this picture, the one-photon spectrum emerges out of four
transitions, two of which are degenerate and at the laser
frequency, ωL, as indicated in Fig. 3(a). These are the only
possible transitions between successive rungs.

The spectrally resolved correlation function of next higher
order is the two photon spectrum. It has recently been doc-
umented theoretically [18] and experimentally [4] for the
case of light scattered by a resonantly driven QD. In gen-
eral it involves two filter frequencies and must therefore be
represented as a two-dimensional map. However, when the
two photons emitted are detected at the same frequency as
in the single filter experiments discussed here, only the full
map’s diagonal, as plotted in Fig. 3(b), is relevant. The two
photon spectrum then represents the probability of simultane-

ous emission of two photons at the same frequency. Its most
obvious features are two dips positioned at the location of the
Mollow triplet sidebands, two peaks located halfway between
the central peak and a sideband, and a nearly vanishing peak
at the location of the Mollow triplet central peak. The dressed
states picture has been used to interpret the origin of these
peaks. All possible pathways between states separated by one
rung must now be considered [Fig. 3(b)]. If the upper (lower)
state from the upper rung connects the upper (lower) state
from the lower rung, then the two photons generated are at
the central (laser) frequency. These two pathways interfere to
give rise to nearly Poisson statistics [34,35]. If on the other
hand the upper (lower) state from the upper rung connects the
lower (upper) state from the lower rung then there can be no
real intermediate state and the emitted photon’s frequencies
are at approximately ωL + �/2 and ωL − �/2. Since these
two-photon cascades can only proceed through virtual inter-
mediate states, strong correlations are expected and observed
experimentally [Fig. 3(b)]. These transitions have been coined
“leapfrog” transitions [5]. Lastly, the antibunched photon
statistics (dips) at the location of the sidebands can be viewed
as originating in disconnected pathways.

One order up, the three photon spectrum describes the
probability of simultaneous frequency-resolved detection of
three photons. The relevant dressed-states transitions are those
between states separated by two rungs. For the presently
considered case of three photons with the same frequency, the
distinguishing pathways are the ones from the upper (lower)
state of the upper rung to the lower (upper) state of the lower
rung which necessarily must proceed via two virtual inter-
mediate states and require the photons to have frequencies
of approximately ωL + �/3 and ωL − �/3. This sequential
photon emission is in fact observed in our experimental data
plotted in Fig. 3(c).

VII. DISCUSSION

In order to better understand the presence of the ridges
and troughs in the maps of Fig. 2, we turn to simulated maps
where the only difference from those shown in Fig. 2 is an
increased Rabi frequency, specifically �/2π = 15 GHz. It

165432-5



YAMIL NIEVES AND ANDREAS MULLER PHYSICAL REVIEW B 98, 165432 (2018)

then is revealed that what seemed to be single correlation
peaks in the three photon spectrum of Fig. 3(c) are actually
two pairs of correlation peaks. One set of peaks at ωf ≈
ωL ± �/3 is associated with leap-frog transitions over three
rungs of the dressed states ladder whereas the other set of
peaks at ωf ≈ ωL ± �/2 is due to transitions in which only
two of the three photons are connected by a transition through
a virtual intermediate state. Accordingly, the latter are associ-
ated with correlation maps exhibiting ridges [Fig. 4(b)] while
the former are associated with correlations maps in which
the ridges are nearly vanishing relative to the coincidence
peak [Fig. 4(c)]. The larger Rabi frequency relative to the
filter bandwidth and the QD decay rate is the reason that the
peaks can be separably viewed in the three photon spectrum
of Fig. 4(a) but not in that of Fig. 3(c). While it is straight-
forward to increase the Rabi frequency in our experiments
by increasing the applied laser’s intensity, the emission rate
then becomes low enough that the overall recording time
becomes impractical. This problem can likely be remedied by
improving the collection and propagation efficiency, as well
as the detector quantum efficiency in our experiments (com-
bined these amount to ≈1% here). In addition, other more
complex approaches have been proposed to overcome the
reduced emission rate with increased Rabi frequency, such as
the use of photonic nanowires [36], microlenses [37], broad-
band enhancement solution using bullseye structures [38], and
using the Purcell effect of cavity quantum electrodynamics
[39] to enhance the rate of emission. Then, according to the
simulations of Fig. 4(a), correlations larger by many orders of
magnitude than in the current experiments may be obtained.
Comparing correlations measured for second and third order it
can nevertheless already be seen that a three photon spectrum
provides more pronounced photon antibunching compared to
the two-photon spectrum when the filter frequency matches
the Mollow triplet sidebands, in addition to increased correla-
tions when the filter frequency is between a sideband and the
central peak.

An interesting prospect emerging from the N -photon spec-
trum measurement and analysis is the possibility of generating
heralded emission of groups of photons of any desirable num-
ber. Such photon bundle emission is due to the structure of the
dressed-states ladder system. For example, when considering
the pathways analyzed in Fig. 4(c)] which consist of three
photons emitted subsequently, it is clear that no second such
sequence is allowed immediately following the first since the
system is left in a lower dressed state. Therefore, there is a
tendency to emit in bundles in between other emission events.
This feature has been analyzed in detail theoretically and was
explicitly verified using Monte Carlo simulations [16]. With
the use of independently tunable filters, a large parameter
space exists to select pathways for the generation of heralded
N -photon sequences [17].

VIII. CONCLUSION

In conclusion, spectrally-filtered third-order photon cor-
relations were recorded for resonance fluorescence from an
individual semiconductor QD. Only a single filter was used,
thus yielding the autocorrelation cross section of the complete
three-photon spectrum as introduced by del Valle et al. Our

measurements establish a firmer foothold of this concept and
show its utility for characterizing nonclassical light sources.
The three-photon spectrum exhibits significantly more pro-
nounced photon antibunching compared to its two-photon
counterpart. In addition, three photon pathways through vir-
tual states are found to lead to more strongly correlated
emission than at second order. Future directions include the
measurement of cross correlations at third order, i.e., the use
of independently tunable filters for each channel which brings
about new experimental challenges. Extension to fourth order
and heralded photon bundle generation are also possible in
principle.

ACKNOWLEDGMENT

The authors acknowledge financial support from the Na-
tional Science Foundation (NSF Grant No. 1254324).

APPENDIX: THREE PHOTON
SPECTRUM CALCULATION

The master equation describing the evolution of the density
matrix for the QD-laser system leads to an equation of motion
for the system’s observables, the inputs of which can be
captured in the form of a single matrix:

M =

⎛
⎜⎜⎜⎝

0 0 0 0

−�/2 −�/2 − i� 0 �

−�/2 0 −�/2 + i� �

0 −�/2 −�/2 −�

⎞
⎟⎟⎟⎠. (A1)

The quantum regression theorem then states that for any
operators X and Y of the system, the evolution of the vector
vX,Y (τ ) defined by:

vX,Y (τ ) =

⎛
⎜⎜⎜⎝

〈X(0)Y (0)〉
〈X(0)a(τ )Y (0)〉
〈X(0)a†(τ )Y (0)〉

〈X(0)(a†a)(τ )Y (0)〉

⎞
⎟⎟⎟⎠ , (A2)

is also determined by M . Specifically it must obey the differ-
ential equation:

∂τ vX,Y (τ ) = MvX,Y (τ ) , (A3)

so that the steady-state observables are given by:

vss = lim
τ→∞ v1,1(τ ) = lim

τ→∞ eMτ

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ . (A4)

For the larger system which includes the sensors, the
relevant equation of motion is Eq. (2) in the main text, wherein
two matrices T± are defined which introduce an extra a† for
T+ and an extra a for T− between X and Y when acting on
vX,Y (τ ) [16]:

T+ =

⎛
⎜⎝

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞
⎟⎠ and T− =

⎛
⎜⎝

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎠.

(A5)
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These matrices are useful for recursively computing the steady state solutions of Eq. (2) via the algebraic parametrized vector
equation:

wss[μ1ν1,μ2ν2,μ3ν3] =
(

1

−M − I
[
(μ1 − ν1)iω1 − (μ1 + ν1)�1

2 + (μ2 − ν2)iω2 − (μ2 + ν2)�2
2 + (μ3 − ν3)iω3 − (μ3 + ν3)�3

2

]
)

× (μ1(iε1T+)wss[0ν1,μ2ν2,μ3ν3] + ν1(−iε1T−)wss[μ10,μ2ν2,μ3ν3] + μ2(iε2T+)wss[μ1ν1,0ν2,μ3ν3]

+ ν2(−iε2T−)wss[μ1ν1,μ20,μ3ν3] + μ3(iε3T+)wss[μ1ν1,μ2ν2,0ν3] + ν3(−iε3T−)wss[μ1ν1,μ2ν2,μ30] ) (A6)

down to the vector wss[00,00,00] = vss.
According to the quantum regression theorem the vector y defined as:

y[11,μ2ν2,μ3ν3](t ) =

⎛
⎜⎜⎜⎜⎜⎝

〈
n1(0)

(
ς
†μ2
2 ς

ν2
2

)
(t )

(
ς
†μ3
3 ς

ν3
3

)
(0)

〉
〈
n1(0)

(
ς
†μ2
2 ς

ν2
2 a

)
(t )

(
ς
†μ3
3 ς

ν3
3

)
(0)

〉
〈
n1(0)

(
ς
†μ2
2 ς

ν2
2 a†)(t )

(
ς
†μ3
3 ς

ν3
3

)
(0)

〉
〈
n1(0)

(
ς
†μ2
2 ς

ν2
2 a†a

)
(t )

(
ς
†μ3
3 ς

ν3
3

)
(0)

〉

⎞
⎟⎟⎟⎟⎟⎠ (A7)

satisfies the same equation of motion as the vector w[00,μ2ν2,00], namely Eq. (2), with initial condition y[11,μ2ν2,μ3ν3](0) =
wss[11,μ2ν2,μ3ν3]. We can further define a vector:

z[11,11,μ3ν3](t, t
′) =

⎛
⎜⎜⎜⎜⎜⎝

〈
n1(0)n2(t )

(
ς
†μ3
3 ς

ν3
3

)
(t ′)

〉
〈
n1(0)n2(t )

(
ς
†μ3
3 ς

ν3
3 a

)
(t ′)

〉
〈
n1(0)n2(t )

(
ς
†μ3
3 ς

ν3
3 a†)(t ′)

〉
〈
n1(0)n2(t )

(
ς
†μ3
3 ς

ν3
3 a†a

)
(t ′)

〉

⎞
⎟⎟⎟⎟⎟⎠ (A8)

which obeys the same equation of motion as w[00,00,μ3ν3] [Eq. (2) with t → t ′] with initial conditions z[11,11,μ3ν3](t, 0) =
y[11,11,μ3ν3](t ). At last, the three photon spectrum is obtained, based on the definition of Eq. (3), as:

g
(3)
�1�2�3

(0, ω1; t, ω2; t ′, ω3) = [z[11,11,11](t, t ′)]1

[wss[11,00,00]]1[wss[00,11,00]]1[wss[00,00,11]]1
, (A9)

where [· · · ]1 denotes the first element of a vector. Likewise, the two photon spectrum is given by:

g
(2)
�1�2

(0, ω1; t, ω2) = [y[11,11,00](t )]1

[wss[11,00,00]]1[wss[00,11,00]]1
, (A10)

and the one photon spectrum is given by g
(1)
�1

(0, ω1) = [wss[11,00,00]]1.
All the computations shown in the main text were performed recursively with MathematicaTM using parameterized functions

of solutions to the relevant differential equations. First all steady-state quantities were computed, followed by y[11,μ2ν2,μ3ν3](t )
and z[11,11,μ3ν3](t, t ′). The coupling constants εi cancel out in the final normalized expressions for the two photon and three
photon spectra.

[1] C. Cohen-Tannoudji and S. Reynaud, Phil. Trans. R. Soc. Lond.
A 293, 223 (1979).

[2] A. Aspect, G. Roger, S. Reynaud, J. Dalibard, and C. Cohen-
Tannoudji, Phys. Rev. Lett. 45, 617 (1980).

[3] C. A. Schrama, G. Nienhuis, H. A. Dijkerman, C. Steijsiger,
and H. G. M. Heideman, Phys. Rev. A 45, 8045 (1992).

[4] M. Peiris, B. Petrak, K. Konthasinghe, Y. Yu, Z. C. Niu, and A.
Muller, Phys. Rev. B 91, 195125 (2015).

[5] A. González-Tudela, F. P. Laussy, C. Tejedor, M. J. Hartmann,
and E. del Valle, New J. Phys. 15, 033036 (2013).

[6] V. N. Shatokhin and S. Y. Kilin, Phys. Rev. A 94, 033835
(2016).

[7] P. Michler, A. Kiraz, C. Becher, W. Schoenfeld, P. Petroff, L.
Zhang, E. Hu, and A. Imamoglu, Science 290, 2282 (2000).

[8] R. H. Brown and R. Twiss, Nature (London) 178, 1046 (1956).

[9] J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M.
Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A.
Forchel, C. Kruse, J. Kalden, and D. Hommel, Nature (London)
460, 245 (2009).

[10] M. Aßmann, F. Veit, M. Bayer, M. van der Poel, and J. M.
Hvam, Science 325, 297 (2009).

[11] D. Elvira, X. Hachair, V. B. Verma, R. Braive, G. Beaudoin,
I. Robert-Philip, I. Sagnes, B. Baek, S. W. Nam, E. A. Dauler,
I. Abram, M. J. Stevens, and A. Beveratos, Phys. Rev. A 84,
061802 (2011).

[12] M. J. Stevens, S. Glancy, S. W. Nam, and R. P. Mirin, Opt.
Express 22, 3244 (2014).

[13] A. Rundquist, M. Bajcsy, A. Majumdar, T. Sarmiento, K.
Fischer, K. G. Lagoudakis, S. Buckley, A. Y. Piggott, and J.
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