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Interplay of structural design and interaction processes in tunnel-injection semiconductor lasers
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Tunnel-injection lasers promise various advantages in comparison to conventional laser designs. In this paper,
the physics of the tunnel-injection process is studied within a microscopic theory in order to clarify design
requirements for laser structures based on quantum dots as active material and an injector quantum well providing
excited charge carriers. We analyze how the electronic states of the injector quantum-well and quantum-dot levels
should be aligned and in which way their coupling through the tunnel-injection barrier should be adjusted for
optimal carrier injection rates into the quantum-dot ground state used for the laser transition. Our description
of the tunnel-injection process combines two main ingredients: the tunnel coupling of the wave functions as
well as the phonon- and Coulomb-assisted transition rates. For this purpose, material-realistic electronic state
calculations for the coupled system of injector quantum well, tunnel barrier, and quantum dots are combined
with a many-body theory for the carrier scattering processes. We find that the often assumed longitudinal-optical-
phonon resonance condition for the level alignment has practically no influence on the injection rate of carriers
into the quantum-dot states. The structural design should provide optimal hybridization of the injector quantum-
well states with excited quantum-dot states.

DOI: 10.1103/PhysRevB.98.165431

I. INTRODUCTION

In conventional semiconductor lasers, the modulation re-
sponse is limited by the nonlinearity of the differential gain.
This nonlinearity originates from several effects, the most
important ones being spectral hole burning and carrier heat-
ing. The latter can be mitigated in semiconductor lasers with
quantum wells (QWs) as active material by injection of cold
carriers through a tunnel-injection (TI) barrier [1]. Hereby,
the temperature stability and modulation speed have been im-
proved. TI structures are also promising to overcome current
limitations of quantum-dot (QD) devices [2,3] and progress in
growth and optical characterization of QD-TI devices [4–13]
was made.

In a QD laser, the pump process typically generates excited
carriers in the delocalized states, while the QD ground state is
used for the carrier recombination into the laser mode. The
capture of carriers from extended into localized states is as-
sisted by carrier-phonon [14–16] and carrier-carrier Coulomb
scattering processes [17–20]. The design with an injector QW
separated by a thin TI barrier from QDs (see Fig. 1) can lead
to more efficient capture of excited carriers from extended
into localized states, as the energy difference between injector
QW states and QD states can be engineered to lower values in
comparison to energy differences occurring in dot-in-a-well
or dot-on-wetting-layer structures. Furthermore, the TI design
contributes to a suppression of detrimental hot carrier effects
[5]. In recent experiments, improvements of GaAs-QD-based
high-power lasers due to the TI scheme has been demonstrated
[21] and ultrafast gain recovery has been achieved [22]. To
benefit from the advantages of the TI design in telecommu-
nication applications, InAs QDs within an InGaAlAs barrier
lattice matched to the InP substrate are attractive due to their
emission around the 1.55 μm wavelength and their reduced

size inhomogeneity [8,23–28]. Further investigations of the
InAs/InP material system include studies of the behavior of
the QD ground state under the influence of varying QW
parameters, as well as the carrier dynamics in TI structures at
cryogenic temperatures [28,29]. For the simulation of carrier
and laser dynamics in TI laser devices, the tunneling process
is often described via rate equations [30–34], using time
constants extracted from experiments [2]. Also, the tunneling
process itself was the subject of investigations [35,36]. Based
on the calculation of carrier-phonon interaction using pertur-
bation theory, a phonon bottleneck has been predicted, which
has led to the conclusion that a precise attunement of the
level separations of QDs and injector QW to the longitudinal-
optical (LO)-phonon energy is necessary for tunnel-injection
devices to operate.

In this paper, we analyze the carrier dynamics of TI-QD
laser structures in terms of the interplay between structural
properties and carrier interaction effects to gauge the engi-
neering possibilities of the TI design and its advantages over
conventional laser designs. Electronic states are determined
from three-dimensional k · p calculations for the coupled sys-
tem of injector QW, TI barrier, and QDs in order to quantify
electronic hybridization effects. The influence of QD and QW
geometry and material composition on level alignment and
hybridization strength and the resulting relaxation and capture
dynamics of excited carriers due to carrier-carrier Coulomb
scattering and carrier scattering with LO phonons are deter-
mined. The carrier dynamics is an important component for
efficient laser operation, as it controls, e.g., the nonlinear gain,
the modulation properties, and the temperature stability of the
laser. We analyze the conditions for the level alignment to
achieve optimized carrier injection rates.

It is shown that a phonon resonance condition does not ap-
pear, for two distinct reasons. The electronic states of the joint
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FIG. 1. Confinement potential of the tunnel-injection structure in
the growth direction. The injector QW is separated by a barrier of
width w = 2 nm from the QD. The energy levels of the QD as well
as the bottom of the QW-like continuum states k0 are presented by
horizontal lines. The QD ground state has an energy difference of
34 meV to the bottom of the QW-like continuum states.

system of injector QW, TI barrier, and QDs are hybrid states
containing a natural spread of energies due to the quasicontin-
uous nature of the QW states. The phenomenon is related to
virtual bound states discussed in Ref. [37]. Furthermore, per-
turbation theory describes carrier-phonon interaction in terms
of free-carrier states, while a treatment beyond perturbation
theory reveals new joint eigenstates of the coupled carrier-
phonon system. These are known as polaronic states and can
be viewed as hybrid states of the carrier-phonon interaction.
For LO phonons providing the dominant coupling to lattice
vibrations, the inclusion of polaronic effects has been shown
to effectively lift the resonance criterion and thus avoid a
relaxation bottleneck [16]. Furthermore, laser devices operate
at elevated densities of excited carriers, for which Auger-
like carrier-carrier Coulomb scattering processes can provide
efficient additional relaxation channels [17–20]. While our
results demonstrate the absence of a relaxation bottleneck, we
find a dependency of the injection rate on the level alignment
for other reasons. The electronic hybridization effect has its
own (albeit weak) dependency on the placement of the excited
QD states with respect to the bottom of the injector QW states.
Furthermore, the population distribution of excited carriers in
the injector QW favors a tuning of the excited QD states to the
bottom of the injector QW. With such a design, faster scatter-
ing rates into the laser levels are obtained in comparison to
dot-in-a-well and QD-on-wetting-layer structures. TI devices
offer a design opportunity to modify the ratio between the

LO-phonon and Coulomb contributions to the carrier dynam-
ics. Our results provide tunneling rates as a function of various
device parameters to support device modeling.

II. ELECTRONIC STRUCTURE OF THE COUPLED
QUANTUM-DOT QUANTUM-WELL SYSTEM

For TI laser structures, the injector QW is placed in the
growth direction below a QD and separated by a tunnel
barrier, as sketched in Fig. 1. To investigate the influence
of design properties on the carrier injection rate into the
QD ground state, the morphology of the system is varied as
follows. For the injector QW, different material compositions
are used to modify its confinement potential depth and the
resulting two-dimensional (2D) band edge. The tunnel barrier
itself can be varied in its width and, via its composition,
in its potential height. This modifies the electronic coupling
of QW and QD states and determines the strength of the
hybridization (see below). Lastly, variations of the QD size
can be used for controlling its energy levels, which includes
level spacing among the QD states and relative to the injec-
tor QW states. With the NEXTNANO3 package [38], first the
spatial strain field distribution is determined, which serves
as input for the subsequent electronic state calculation via
the Pikus-Bir Hamiltonian in the k · p method. Furthermore,
periodic boundary conditions with large in-plane periodicity
are necessary to treat the continuum of the QW-like states.

For a material-realistic description of an existing sys-
tem, we consider InAs QDs with quarternary barriers lattice
matched to an InP substrate. A structural model of such a
system, which includes QD geometry as well as the alloy
concentrations for QDs and barrier regions and their spatial
variation inside and around the QD, is deduced from recent
high-resolution scanning transmission electron microscopy
(HRSTEM) measurements in Ref. [28]. The used material
compositions are summarized in Table I(a). We consider a
5 nm width of injector QW and ellipsoidal QDs with 16 nm
minor axis, 24 nm major axis, and 3 nm height (unless
otherwise noted in the text) on a thin monolayer wetting layer
(WL). The effective confinement potential including strain is
shown in Fig. 1. The results of the strain can be seen as band
bending, e.g., on the right side of the QD potential. The small
edge in the confinement on the left side of the QD denotes
the wetting layer (WL). For completeness, we note that the
WL is too thin to hold confined states. Additional information
regarding the structure can be found in Appendix A.

For the considered system, the QDs contain one confined
state for electrons and three confined states for holes. The
QD ground-state level (s shell in Fig. 1) is positioned about
one LO-phonon energy below the band edge of the injector
QW states (marked by k0 in Fig. 1). For this design, the
electron p state of the QD hybridizes with the energetically
nearby states of the QW continuum and the resulting wave
functions are partially localized in both QW and QD. This
is shown in Fig. 2, where a cut through the wave function
reveals the nodal structure of a p state and also a strong
contribution in the injector QW. As we find no node in
the growth direction (along the dashed green line), we can
infer that this is a bonding rather than an antibonding state.
This coupling mechanism is completely analogous to QD
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TABLE I. (a) Material composition of the TI structure regions
depicted in Figs. 1 and 2. (b) Material composition of different
injector QW-QD energy gaps �EQW−QD, as discussed in Fig. 4, and
(c) of the injector QW for different QD geometries, illustrated in
Fig. 5.

(a)
Region Material composition

Bulk
InP lattice matched In0.525Ga0.235Al0.24As

Injector QW In0.695Ga0.1525Al0.1525As

Barrier
InP lattice matched

h = 0 meV In0.525Ga0.235Al0.24As
h ≈ 175 meV In0.525Ga0.165Al0.31As

WL In0.8Ga0.1Al0.1As
QD In0.9Ga0.05Al0.05As

(b)
Injector QW material composition x Injector QW-QD energy gap

for InxGa(1−x )/2Al(1−x )/2As (QD geometry: 16 × 24 nm)

0.705 29 meV
0.695 34 meV
0.689 39 meV
0.682 44 meV

(c)
QD geometry Injector QW material composition x

for InxGa(1−x )/2Al(1−x )/2As

16 × 16 nm 0.675
16 × 24 nm 0.695
16 × 32 nm 0.705

molecules or coupled potential wells like in quantum cascade
structures. Figure 2(a) also reveals that the QD s state leaks
into the QW region, reemphasizing the hybridized nature of
the states. For the valence band, the qualitative analysis is
similar, but the energy spacing of the states is reduced (due
to a higher effective mass). Therefore, three discrete QD
states are confined. Also the variety of available QD states
in the QW-QD continuum affects the hybridization, e.g., by
providing a higher diversity of hybridized states. It should
be noted that not all resulting states of the QW continuum
are hybridized states. Schematically, this situation is depicted
in Fig. 3, showing hybridized states [Fig. 3(b)] as well as
states where the overlap between QD and QW states (and
the resulting tunneling) is only due to leaking of the wave
functions into the tunnel barrier region [Fig. 3(a)]. In the
first case, the overlap of the QD and QW wave function is
much higher, leading to more efficient carrier injection. If phe-
nomenological wave-function models are used to describe the
tunneling process [35], often only the leaking wave functions
[Fig. 3(a)] are included.

The foregoing discussion leads to the following picture
of the tunnel-injection process. Carriers are captured from
bulk states into the injector QW and thermalize via Coulomb
and carrier-phonon interaction. This populates the hybridized
states, which are partially localized within the QD. As a final
step, from these states, carrier scattering into the QD ground
state occurs.

FIG. 2. Profile of the probability distribution for (a) the QD
electron ground state and (b) a hybridized QW-like continuum state
for a barrier width of 2 nm.

III. THEORY OF CARRIER DYNAMICS IN
TUNNEL-INJECTION STRUCTURES

A. Perturbative and nonperturbative treatment
of carrier-phonon scattering

Using perturbation theory and scattering rates based on
Fermi’s golden rule, kinetic equations for the dynamics of
the carrier occupation probabilities fα of the electronic states
α can be derived, which contains Boltzmann scattering rates
[39],

d

dt
fα =

∑
β

fβ (1 − fα )|Mβα|2[(1 + nLO)δ(εβ − εα − h̄ωLO)

+ nLOδ(εβ − εα + h̄ωLO)]

− fα (1 − fβ )|Mαβ |2[(1 + nLO)δ(εα − εβ − h̄ωLO)

+ nLOδ(εα − εβ + h̄ωLO)] . (1)

Here, Mβα are the matrix elements of the carrier-phonon
interaction, nLO is the phonon occupation, εα is the energy of
the state α, and ωLO is the phonon frequency. The δ function
in Eq. (1) ensures exact energy conservation in the scattering
process. The kinetic equation contains all possible in- and
out-scattering processes between states α and β due to LO-
phonon emission and absorption processes. When applied to
the tunnel-injection system, this would require a tuning of the
considered electronic levels (QD ground state and the excited
QD state, which is coupled to the injector QW; see Fig. 3) to
the LO-phonon energy to achieve efficient carrier scattering.
The resonance condition is known as the phonon bottleneck
and is the basis of several earlier investigations [30–33].

A treatment of the carrier-phonon interaction beyond
perturbation theory has been introduced in the past in
Refs. [40,41] using the nonequilibrium Green’s functions
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FIG. 3. (a) Schematic wave functions for QD ground state and a
QW state, showing only leaking of the wave functions into the barrier
region. (b) For hybridized states, the overlap between the QD and
QW state is much larger than in (a).

technique. From a Dyson equation, a generalization of Eq. (1)
can be derived [42], which represents a quantum kinetic
equation,

∂fα (t )

∂t
= 2 Re

∑
β

∫ t

−∞
dt ′ |Mαβ |2Gr

β (t − t ′)
[
Gr

α (t − t ′)
]∗

∗ ({fβ (t ′)[1 − fα (t ′)]}ih̄[(1 + nLO)e−iωLO(t−t ′ )

+ nLOe+iωLO(t−t ′ )]

−{fα (t ′)[1 − fβ (t ′)]}ih̄[(1 + nLO)e+iωLO(t−t ′ )

+ nLOe−iωLO(t−t ′ )]) , (2)

in which two principal modifications are present. The δ

function, which represents strict energy conservation, is
replaced by functions that contain the spectral properties of
electrons and holes under the influence of the interaction. This
includes renormalization effects in the form of quasiparticle
energies and their broadening. Quasiparticles as eigenstates
of the interacting system are characterized by new energies
in comparison to the free-particle energies. The broadening
reflects the finite lifetime of the quasiparticle, caused by
emission and reabsorption of phonons. In the nonperturbative
regime, the new energies reflect the dressing of the electronic

states with a series of phonon replica due to emission and
absorption processes. It is the overlap of these dressed states
and their quasiparticle broadening which is lifting the phonon
resonance condition. Furthermore, non-Markovian effects
are included via the t ′ integral and the explicit dependence
of the population functions on the system evolution in the
past. Non-Markovian effects reflect the finite built-up time
of quasiparticles and the influence of this built-up process on
scattering rates. In systems with a quasicontinuous electronic
density of states, such as bulk semiconductors or QWs, the
perturbative treatment of carrier-phonon interaction is often
a good approximation, while the nonperturbative treatment
provides quantitative corrections to the scattering rates—in
particular to the ultrafast carrier dynamics [43,44].

On the other hand, for QDs, it has been shown that a
strong-coupling situation can be realized when the bosonic
LO phonons interact with discrete electronic states [40,41].
The situation resembles the Jaynes-Cummings interaction
with a monochromatic light field. The carrier-phonon cou-
pling is enhanced by the electronic-state confinement. In these
situations, the nonperturbative treatment of carrier scattering
strongly deviates from perturbative results [16]. While per-
turbation theory predicts a strong dependence of the scatter-
ing rate on the transition energies matching the LO-phonon
energy, nonperturbative calculations reveal efficient carrier
scattering even if the electronic energy difference strongly
departs from the LO-phonon energy, as a particular electronic
state can hybridize with a state spaced approximately one LO-
phonon energies apart. This affects both scattering between
QD states and carrier capture from QW states into QD states
[16]. For further details of the theoretical model, we refer to
Appendix B.

B. Resonance condition for LO-phonon scattering

In the following, we discuss the physics behind the ab-
sence of a resonance condition for the LO-phonon-assisted
carrier scattering from the injector QW and upper QD states
into the QD ground state. One origin lies in the electronic
states of the coupled system. Instead of calculating just the
overlap of unperturbed quantum-well and quantum-dot states
through the tunnel barrier, we determine new eigenstates of
the coupled system. For the considered level alignment, the
excited quantum-dot state hybridizes with the quasicontin-
uum of quantum-well states. As a result, the discrete upper
quantum-dot state is replaced by a band of electronic energies
with a width of several meV. This itself lifts the resonance
condition for scattering from the hybrid injector quantum well
and excited quantum-dot state into the discrete quantum-dot
ground state due to LO phonons.

As a second origin, Fermi’s golden rule (which has led to
the prediction of a phonon bottleneck) should not be applied
to the coupling of discrete quantum-dot states by LO phonons
(see, e.g., Seebeck et al. [16]). A nonperturbative treatment
of the carrier-phonon interaction provides quasiparticle (po-
laron) effects that broaden the individual levels, thereby weak-
ening the resonance condition.

The combination of electronic-state hybridization and non-
perturbative carrier-phonon interaction essentially negates the
resonance criterion to a very large degree, as can be seen from
the results in the following section; see especially Figs. 4(a)
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FIG. 4. Energy difference between the QD ground state and the bottom of the QW-like continuum states vs (a) material composition of
the QW, (b) barrier width, and (c) barrier height. (d) Population of the QD electron ground state vs time for phonon-mediated QW to QD
relaxation using 2 nm barrier width and an excess barrier height hcb + hvb (relative to the InGaAlAs bulk material; see Fig. 1) of 0 meV (solid
lines) and 175 meV (dashed lines). (e) Population dynamics of the QD hole states for 2 nm barrier width and 175 meV excess barrier height.
In (d) and (e), carrier densities of 2 × 1011 cm−2 (green lines) and 5 × 1011 cm−2 (black lines) are compared. (f) Carrier injection times for
varying barrier width and QW material composition [see (a) and (b)].

and 4(f). Also at high excited carrier densities relevant for
laser action, Coulomb scattering complements the carrier-
phonon scattering. As Coulomb scattering has no preferred
energy resonance, this is just another contribution known to
lift the LO-phonon bottleneck.

C. Carrier-carrier Coulomb scattering

In analogy to the carrier-phonon interaction, a kinetic
equation for Coulomb scattering can be formulated as

∂fα (t )

∂t
= 2h̄2 Re

∑
βγ δ

∫ t

−∞
dt ′|Wαγδβ |2

×Gr
β (t − t ′)[Gr

α (t − t ′)]∗Gr
δ (t − t ′)[Gr

γ (t − t ′)]∗

∗{fβ (t ′)[1 − fα (t ′)]fδ (t ′)[1 − fγ (t ′)]

− fα (t ′)[1 − fβ (t ′)]fγ (t ′)[1 − fδ (t ′)]} . (3)

For the Coulomb scattering, we apply a quasiparticle ap-
proximation for the retarded Green’s functions (GFs) us-
ing polaronic energies and the corresponding quasi-particle
broadening.

Within the Markov approximation, Eqs. (2) and (3) can be
written in the form of Boltzmann scattering rates,

d

dt
fα = (1 − fα )�in

α − fα�out
α , (4)

where �in
α and �out

α describe the in and out scattering of
the state α. For a small deviation from quasiequilibrium, the
scattering time τ can be calculated according to

τ = (
�in

α + �out
α

)−1
. (5)

IV. CARRIER DYNAMICS

A. Phonon-mediated tunneling

In the following, we describe our numerical results for the
carrier scattering. To identify their relative importance, the
carrier phonon and the Coulomb interaction are investigated
separately in the next two sections. Scattering processes are
described in terms of hybridized QD-QW states, as discussed
in Sec. II. We utilize the nonperturbative treatment of the
carrier-phonon interaction via Eq. (2), including quasipar-
ticle and non-Markovian effects that reflect the additional
hybridization of the electronic states with the phonons.

The TI scheme provides multiple possibilities to tune
the system. In Figs. 4(a)–4(c), we depict the variations that
will be investigated in the following. Here, each data point
corresponds to a structural design for which the electronic
states, as explained in Sec. II, and the carrier dynamics,
as shown in Sec. III, are evaluated. The injector QW can
be varied in its composition (blue crosses), modifying the
energetic distance between QW and QD states. The tunnel
barrier can be modified in its width (red crosses) and height
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(green circles). This controls the strength of the hybridization.
The y axis in Figs. 4(a)–4(c) gives the resulting energetic
difference between the QW and QD ground states, �E

QW
QD =

Ee
k=0 − Ee

s . As a figure of merit, we investigate the capture
from electrons from the injector QW into the QD, assuming
a 300 K quasiequilibrium distribution in the injector QW as
well as an initially empty QD ground state.

The temporal evolution of the electron population for the
QD ground state and the hole population for the three lowest
QD states are shown in Figs. 4(d) and 4(e), respectively. Two
different carrier densities below (green lines: 2 × 1011 cm−2)
and at the onset of optical gain (black lines: 5 × 1011 cm−2)
have been used. We find no significant variation of the
scattering time with carrier density, as expected for the carrier-
phonon interaction. The results in Fig. 4(d) demonstrate that
for a barrier width of 2 nm and excess barrier heights (relative
to the surrounding bulk material) of 0 meV (solid lines) and
175 meV (dashed lines), efficient carrier injection into the
QD state is possible due to strong hybridization effects, even
though in neither case is a matching between the QW-QD en-
ergy and the LO-phonon energy present. The height variation
has only a minor influence on the injection efficiency. The
hole scattering is slightly faster than the electron scattering,
especially due to the decreased level spacing between the
QD and QW-like continuum states. In Fig. 4(f), the injection
time extracted with the help of an exponential fit function
for varying barrier width (red) and QW material composition
(blue) is shown. The barrier width, directly controlling the
hybridization efficiency, strongly influences the injection
time, in agreement with recent experimental results in
Refs. [26,28]. The QW-QD energy gaps [corresponding to the
blue crosses in Fig. 4(a)] range from significantly below to
above the LO phonon resonance [horizontal line in Fig. 4(a)].
As long as the level spacing is below the LO-phonon energy,
the phonon-mediated capture is very efficient due to strong
hybridized QW-QD states. For energy spacings above the
LO-phonon resonance, the efficiency of the capture process
decreases as hybridization effects are reduced and scattering
mediated by polaronic effect is also diminishing. However,
for a detuning of about 10–20 meV from the LO-phonon
energy, the injection process is still efficient.

The results in Fig. 4 show that for intermediate changes of
the tunnel barrier and injector QW geometry and composition,
the influences on the phonon-mediated tunneling strength are
small and not strongly dependent on the energetic alignment
to the phonon energy as often assumed in the literature
[2–4,33].

While the scattering is not modified significantly by the
tuning to the phonon resonance, it does depend on the strength
of the hybridization. This opens a possibility to tune the
injection efficiency, e.g., by modifying the QD geometry. Such
a situation is demonstrated in Fig. 5, where for different QD
sizes (varying the long half axis of the ellipsoidal geometry
to 16, 24, and 32 nm for fixed short half axis lx = 16 nm),
the phonon-mediated tunneling dynamics is shown. The inset
depicts the QD ground state, QW conduction band (gray
shaded area), and region where hybridization occurs (color-
shaded area). This comparison reveals that the hybridization
is strongly affected by the energetic positions of the QD
excited states which are lying energetically in the continuum.

FIG. 5. Population dynamics of the QD electron ground state vs
time for the phonon-mediated relaxation of electrons from the QW
into the QD ground state for different QD sizes, leading to different
hybridization scenarios.

More precisely, for increasing QD size, the energetic spacing
between the QD ground and excited state decreases causing
the energetic region of hybridized states to move towards the
bottom of the conduction band. For the 32 nm QD, it is found
at the bottom of the QW conduction band. To achieve fast
carrier scattering, i.e., efficient phonon-mediated tunneling,
we see from the results in Fig. 5 that the last case is most
advantageous. This can be understood due to three reasons:
First, the population of the injector QW states is highest
at the conduction-band minimum due to the fast intra-QW
relaxation. Furthermore, the interaction strength decreases
with increasing energy difference between the states involved
due to the Coulombic nature of the carrier–LO-phonon
interaction. In other words, the interaction matrix elements
are larger if the hybridized part of the conduction band is
near the QW band edge. Finally, the overlap integral between
QD and QW states is higher for QW states with lower energy
and spatial frequency. This is schematically shown in Fig. 6
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QW plane wave PW1
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FIG. 6. Schematic wave function of the QD p state and two
different QW plane-wave (PW) states. PW1 has a periodicity that fits
well to the QD excited state, while PW2 has a much smaller oscill-
ation period. In consequence, the hybridization between PW1 and
the QD state is more efficient than between PW2 and the QD state.
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FIG. 7. Population dynamics of the (a) electron and (b) hole QD
ground states (solid line) and excited states (dashed and dotted lines)
vs time for the Coulomb relaxation process from the QW into the
QD for carrier densities of 2 × 1011 cm−2 (blue lines or inset) and
5 × 1011 cm−2 (black lines).

for model wave functions of a lower-energy (PW1) and
higher-energy (PW2) QW state and a p-like excited QD state.
In this example, PW1 has a periodicity that leads to a much
better overlap integral with the QD p state than PW2 and
hence to a more efficient hybridization.

As a result, the scattering rates of carriers in TI structures
from the injector QW into the QDs exhibits a tunability;
however, it is not governed by the energetic alignment with
the phonon energy, but due to the alignment of the excited QD
state with the QW conduction-band minimum that determines
the strength of the hybridization.

B. Coulomb contribution to tunneling and scattering times

In this section, we investigate the Coulomb scattering con-
tribution to the carrier injection processes. As for the phonons,
this interaction mechanism is described as scattering between
hybridized QD-QW states, using a generalized Boltzmann
equation including quasiparticle properties, as discussed in
Sec. III C. For the Coulomb interaction, no significant in-
fluence of the detuning is expected due to the absence of

FIG. 8. Coulomb (black) and phonon-mediated (red) scattering
times vs carrier density for the QD electron (solid lines) and hole
(dashed lines) states. The QD size is varied by the long half axis of
the ellipsoidal geometry from (a) 24 nm to (b) 32 nm.

characteristic energies like the one for LO phonons. We
choose a barrier width of 2 nm, an excess barrier height of
175 meV, and an indium concentration of 0.695 as an example
to discuss the influence of the Coulomb-mediated tunneling
in TI structures. To have comparable conditions to Sec. IV A,
we assume quasiequilibrium distributions with varying carrier
density at a temperature of 300 K in the injector QW and an
initially empty QD ground state.

The results for the Coulomb-mediated injection are shown
in Fig. 7. In contrast to findings for conventional QD laser
structures [16,20,45,46], the Coulomb-mediated scattering of
electrons [Fig. 7(a)] is significantly slower than the carrier-
phonon interaction for a carrier density of 2 × 1011 cm−2 and
even for an elevated carrier density of 5 × 1011 cm−2. This
is caused by the fact that in the TI structure, only continuum-
assisted capture processes are possible, which are known to be
much less efficient in comparison to other Coulomb scattering
processes [20]. For holes, the multitude of scattering channels
causes fast Coulomb scattering for both carrier densities in
Figs. 7(b). As in the case of carrier-phonon interaction, the
steady-state populations are significantly higher for electrons
than for holes due to the higher effective mass of the latter.

To facilitate the use of the presented results in device
models based on rate equations, we extract scattering times
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for the TI structure by considering the relaxation of a small
perturbation of a quasiequilibrium distribution. These scat-
tering times are calculated via Eq. (5) for two different QD
sizes and plotted in Fig. 8 for carrier-phonon and Coulomb
interaction. As expected, the Coulomb contribution shows a
stronger density dependence than the phonon-mediated cou-
pling. In agreement with the results of Fig. 7, the electron-
phonon interaction is dominant up to a carrier density of
1 × 1012 cm−2 for the 24 nm QD geometry. The reduction
of scattering efficiency between carrier densities of 2 × 1012–
1 × 1013 cm−2 is due to screening of the Coulomb interaction
in (3), while for densities above 1 × 1013 cm−2, electron-hole
Coulomb scattering dominates. Due to the different weighting
of the phase space in phonon and Coulomb interaction, the
different hybridization scenarios (see Fig. 5) shift the ratio
between Coulomb and phonon scattering for the electrons.
This is demonstrated by a comparison of the 24 nm with the
32 nm QD geometry in Fig. 8. In the latter case, the carrier-
phonon interaction is dominant for injection of electrons for
all densities considered. For hole scattering, the Coulomb
interaction becomes more efficient at a carrier density of
about 1 × 1011 cm−2 due to the efficient hole relaxation and
electron-assisted processes. The hybridization of the two QD
geometries is more similar for the holes and thus the expected
difference between the two QD geometries is less distinct.

V. CONCLUSION

In this paper, the carrier injection from a QW to the QD
ground state for TI structures has been investigated. The QW-
like hybridized states support a fast relaxation into the QD
ground state. In contrast to previous works, it is found that
the tunability of the interaction strength in the TI structure
is not governed by the energetic alignment with the phonon
energy, but by the alignment of the excited QD state with the
QW conduction-band minimum that determines the strength
of the hybridization. Unlike conventional QD laser structures,
only continuum-assisted capture processes are possible for the
electrons in the TI system. This decreases the importance of
the Coulomb interaction relative to the electron-phonon inter-
action. For structures with strong hybridization, the electron-
phonon interaction can be the dominant process even at high
carrier densities. The insensitivity of the carrier-phonon inter-
action to variations of the QW or barrier material composition
supports the experimental findings of high modulations rates
due to a reduction of the gain nonlinearity and spectral hole
burning.
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APPENDIX A: ELECTRONIC STRUCTURE
CALCULATION

In the TI structure, the injector QW and QDs are separated
by a tunnel barrier, as depicted in Fig. 1. For a microscopic
description of the physics underlying the phonon-mediated

tunneling, we determine the electronic structure of the coupled
injector QW and QD states. A subspace of the continuum
states forms hybridized injector QW-QD states, as discussed
in Sec. II. We find that these hybridized states play a central
role when calculating the scattering efficiency of carriers
from the injector QW into the QDs. Nevertheless, hybridized
states are often neglected in phenomenological models when
considering only the wave-function overlap of independent
QW and QD states separated by a TI barrier.

The results in this paper are based on three-dimensional
wave-function calculations of the TI structure for the dis-
cretized k · p Hamiltonian including strain and piezoelec-
tric effects; see Ref. [38]. To dissolve the continuum states
accurately to determine the weightage between hybridized
and nonhybridized continuum subspaces, we used in-plane
dimensions of 400 nm and checked the convergence for in-
plane dimensions up to 800 nm, thereby calculating over
1000 eigenstates of the coupled QW-QD system. Comparing
six-band k · p to single-band calculations, we find that band
mixing plays only a minor role and that the relevant hole states
are dominated by heavy-hole contributions. As a trade-off
between numerical effort and required accuracy, we therefore
use a single-band description in practical calculations.

Details of the parameters for the considered structure are
provided in Table I. For the investigations in Fig. 4, the alloy
concentrations of the injector QW are modified according
to Table I(b) in order to change the level alignment and
the wave-function properties. In Fig. 5, variations of the
hybridization effect are studied for an unchanged energy gap
between the injector QW and the QD ground state matching
the LO-phonon energy. This is accomplished by combining
the variation of the QD geometry (to change the hybridization
effect) with altered material compositions in the injector QW
to keep the energy gap unchanged according to Table I(c).

APPENDIX B: MICROSCOPIC DESCRIPTION
OF THE CARRIER-PHONON INTERACTION

Single-particle wave functions obtained from electronic
structure calculations are used to construct the Coulomb ma-
trix elements according to [20]

Vαβγ δ = 1

A

∑
q

Vq〈α | e−iq·r | δ〉〈β | e+iq·r | γ 〉, (B1)

with the Coulomb potential Vq. The index α contains states,
bands, and spin. For the screened Coulomb interaction matrix
elements Wαβγ δ , we use a generalization of the static Lind-
hard formula, which is explained in detail in Ref. [20]. This
procedure leads to the replacement Vq → Wq in Eq. (B1).
The matrix elements for the interaction of carriers with LO
phonons are [16,47]

|Mαβ |2 = M2
LO

e2/ε0
Vαβαβ , (B2)

with the prefactor

M2
LO = 4πα

h̄√
2m

(h̄ωLO)
3
2 (B3)

that includes the polar coupling strength α and the reduced
mass m.
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The functions containing the spectral properties of elec-
trons and holes under the influence of the interaction [see
Eq. (2)] are the so-called retarded Green’s functions. These
follow from a Dyson equation [16],[

ih̄
∂

∂t
− εα

]
Gr

α (t ) = δ(t ) +
∫

dt ′ �r
α (t − t ′) Gr

α (t ′) .

(B4)
For the corresponding retarded self-energy in random-phase
approximation (RPA) [48], we obtain

�r
α (t ) = ih̄

∑
β

|Mαβ |2Gr
β (t ) d<(−t ), (B5)

where the phonon propagators d≷ are given by

d≷(t, t ′) = [(1 + nLO)e∓iωLO(t−t ′ ) + nLOe±iωLO(t−t ′ )] , (B6)

and contain the phonon frequency and the phonon popula-
tion. The carrier-phonon scattering is described in terms of
a quantum-kinetic equation [see Eq. (2)] that includes the
retarded GF and contains scattering by phonon-emission and
-absorption processes.
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