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Driving forces behind the distortion of one-dimensional monatomic chains:
Peierls theorem revisited
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The onset of distortion in one-dimensional monatomic chains with partially filled valence bands is considered
to be well established by the Peierls theorem, which associates the distortion with the formation of a band gap and
a subsequent gain in energy. Employing modern total energy methods on the test cases of lithium, sodium, and
carbon chains, we reveal that the distortion is not universal but conditional upon the balance between distorting
and stabilizing forces. Furthermore, in all systems studied, the electrostatic interactions between the electrons
and ions act as the main driving force for distortion, rather than the electron band lowering at the Fermi level as
is commonly believed. The main stabilizing force which drives the chains toward their symmetric arrangement
is derived from the electronic kinetic energy. Both forces are affected by the external conditions, e.g., stress, and
consequently the instability of one-dimensional nanowires is conditional upon them. This brings a perspective
to the field of one-dimensional metals and may shed light on the distortion of more complex structures.
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I. INTRODUCTION

One-dimensional monatomic chains are of fundamental
interest [1–4] and a focus of applications in nanotechnol-
ogy [5–10]. In his seminal work [1,2], Peierls argued that
one-dimensional evenly-spaced metallic chains can never be
stable at zero Kelvin (neglecting the effect of zero-point
motion). According to Peierls’ theorem, such systems will
spontaneously undergo a transition into a more stable lower-
symmetry insulating state. This transition causes the Fermi
surface to coincide with the Brillouin zone boundaries, and
it is driven by the opening of an energy gap at the zone
boundaries. Peierls showed that the energy gain from such a
distortion is

�E ∝ −τ 2 · log(τ ), (1)

where τ is the relative displacement of atoms from their
symmetric (equally spaced) positions with a periodicity deter-
mined so that the Fermi surface and the edge of the Brillouin
zone intersect. At sufficiently small distortions, the energy
gain given in Eq. (1) is always greater than the repulsion
between the atomic cores which is assumed to vary as τ 2,
thus making the one-dimensional chain inherently unstable. In
particular, in the case of half-filled valence bands, the optimal
distortion is dimerization of the chain, where every second
atom is displaced by τ , and according to Peierls the energy
gain is the largest.

Experiments with one-dimensional carbon chains exhibit
dimerization [6,10], often attributed to Peierls distortion.
Complex, three-dimensional crystal structures are also often
considered to be distorted from higher symmetry lattices due
to Peierls-like transition, also referred to as Jones theory
[11–14]. However, several “Peierls immune” phases have
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been reported to appear in calculations of one-dimensional
chains of different elements, e.g., Refs. [3,8,15–17], but at-
tempts to explore their origin are few [3,4,18]. Littlewood
and Heine [4] stressed the importance of the electron-electron
interactions which were not taken into account in Peierls the-
orem, arguing that Eq. (1) is incorrect, but did not depart from
its conceptual framework which considers the lowering of
energy band at the Fermi level as the main cause of distortion.
Johannes and Mazin [18] also analyzed a canonical Peierls
system of Na atoms and argued that any expected dimerization
along the chain axis is energetically unfavorable and doubling
of the primitive unit cell occurs only if a transformation into a
two-dimensional pattern is allowed.

In this study we analyze the stability of quasi-one-
dimensional equally spaced monatomic chains from a total
energy point of view, in accordance with Peierls. The chains
are quasi-one-dimensional in the sense that three-dimensional
calculations are employed to describe one-dimensional lat-
tices with one-dimensional distortions. We study the asso-
ciated Born-Oppenheimer energy surface and its component
contributions which, to our knowledge, were not studied pre-
viously in this context in the framework of density-functional
theory (DFT) or similar methods. These modern, more accu-
rate methods may contradict prevailing conceptions and give
rise to surprising results.

II. METHODS

The total energy in Kohn-Sham DFT is given as

E[ρ] = Ts[ρ] + Exc[ρ] + EHartree[ρ] + Vnn[ρ] + Vne[ρ],
(2)

where Ts is the noninteracting kinetic energy, Exc is the
exchange-correlation energy, EHartree and Vnn are, respec-
tively, the Hartree and Ewald potentials describing the
coulombic repulsion between the electrons and between the
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ions, and Vne is the external potential due to the attraction
between the electrons and the ions. Using the Kohn-Sham
formulation, the energy can also be written as [19]:

E =
N∑
i

εi − 1

2

∫
ρ(r)ρ(r′)
|r − r′| drdr′ + EEwald

+Exc[ρ] −
∫

vxc(r)ρ(r)d(r), (3)

where the first term is the sum over the electronic band
energies, the second is minus the Hartree energy to correct
for overcounting, the third term is the Ewald energy, and the
last two terms are the exchange-correlation adjustment.

In Peierls’ analysis, the electrostatic repulsion is described
using an elastic approximation, and the energy gain is due
to the lowering of the top of the valence band at the Bril-
louin zone boundaries evaluated in the nearly-free-electron
approximation. Using DFT calculations we can evaluate both
the complete electrostatic (classical) contribution (including
the attraction between the ions and the electrons) and the
overall quantum contribution, which consists mainly of the
total kinetic energy of the electrons.

The electronic structure of the systems considered was
calculated using a pseudopotentials plane-waves method and
performed with the Quantum Espresso package [20]. The
exchange-correlation functional was approximated by the
PBE general gradient approximation (GGA) [21]. Carbon and
sodium pseudopotentials with four and nine valence elec-
trons, respectively, were taken from the GBRV database [22]
while lithium pseudopotential with three electrons was taken
from the PSlibrary database [23]. The quasi-one-dimensional
chains along the z axis were simulated in tetragonal supercells
with vacuum on the x and y dimensions, two atoms per unit
cell and periodic boundary conditions. The k points were
aligned homogeneously in the z direction of the reciprocal
lattice vector and centered at the � point. The calculated
systems—Li, Na, and C—were all set to their equilibrium
atomic separation along the z axis found in our calculations
(2.97 Å, 3.32 Å, and 3.83 Å, respectively) and subjected to
one-dimensional distortion which doubled the unit cell along
the main axis (dimerization).

III. RESULTS AND DISCUSSION

The variation of the energy components with the distor-
tion parameter τ for lithium and carbon monatomic chains
is presented in Fig. 1. The energy components were taken
according to equations (2) and (3) to be the kinetic energy,
Hartree, Ewald, external potential, and exchange-correlation
(XC). In addition Fig. 1 shows the total energy, the sum of the
coulomb energies (classical), and the sum over the electronic
band energies (E bands)

∑N
i εi which is defined as:

N∑
i

εi =
N∑
i

〈ψi | − 1

2
∇2 + veff (r)|ψi〉, (4)

where the effective potential is given by:

veff (r) = vext (r) +
∫

ρ(r′)
|r − r′|dr + vxc(r). (5)

FIG. 1. Energy change of carbon and lithium chains due to a
one-dimensional distortion. (a), (b) Total energy and the sum of the
electronic band energy (E bands) of carbon (a) and lithium (b) versus
distortion parameter τ . (c), (d) Energy components: Hartree, Ewald,
external potential, kinetic and exchange correlation (XC) of carbon
(c) and lithium (d) versus distortion parameter τ . Classic energy
denotes the sum of external potential, Ewald, and Hartree energies.
(e), (f) Selected energy components divided by τ 2.

As can be seen from Figs. 1(a) and 1(b), one-dimensional
equally-spaced carbon chains are Peierls unstable as expected
and their total energy acquires a double-well shape, while
lithium chains are stable, in contradiction to Peierls theorem.
However, both systems exhibit the same qualitative behavior
which demonstrates the main problem with Peierls theorem:
In contrast to previous notions, it is apparent that the classical
contribution to the overall energy, comprised of the coulombic
terms and drawn in Figs. 1(c) and 1(d), is the driving force
of distortion rather than the quantum energy. In all systems
studied, distorted and undistorted, the electrostatic attraction
between the electrons and the ions favors the distorted struc-
ture and dominates the classical contribution, whereas the
kinetic energy which dominates the quantum contribution
favors the symmetric lattice.

The overall electronic energy (Ebands) as plotted in
Figs. 1(a) and 1(b) shows that it is minimized at the equally-
spaced chain configuration rather than under distortion. This
is one of the most striking results, since the lowering of the
bands near the Fermi level is the main cause for distortion
according to Peierls, as all other contributions to the energy
from changes in the bands far from the Fermi level are
neglected.

The lower panels of Fig. 1 show the behavior of some
of the energy components divided by the square of the
distortion parameter versus the distortion parameter τ . Ac-
cording to Peierls’ analysis, the electrostatic forces opposing
the distortion are represented as an elastic energy which is
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(a)

0 %

(b)

C − 100 %
Li − 0.5 %

FIG. 2. Spatial electronic density distribution for carbon (a) and
for lithium (b) linear chains with τ = 0.03. Gray spheres represent
positions of the ions, and connecting bars are drawn between pairs
of nearest neighbors. Colors represent the percentage of maximal
density value between 0–100% (carbon) and 0–0.5% (lithium). The
scale for lithium is very narrow (maximal value of 0.5%, all values
above are depicted in red) as most of its charge is centered around
the ion cores.

proportional to τ 2 and thus should appear as a horizontal
line in these coordinates. However, different contributions to
the electrostatic energy, in this case the Ewald and Hartree
energies, demonstrate completely different behaviors: The
Ewald energy, a sum over an infinite lattice of point charges,
demonstrates a nearly-perfect quadratic dependence on the
distortion, whereas the Hartree energy deviates substantially
from a τ 2 behavior, resembling qualitatively the log τ be-
havior of the bands energy. This inevitably makes the entire
classical energy comprised of the coulombic forces deviate
from τ 2 behavior, especially at small distortions, in contrast
to Peierls’ analysis. A possible explanation for this behavior
is the realistic three-dimensional charge distribution and its
distortion which was not originally taken into account.

To further study the charge distribution we calculate the
electronic density, as demonstrated in Fig. 2. The very differ-
ent electronic structure of the two chains is apparent: In car-
bon the highest electron density occurs between neighboring
atoms, whereas in lithium the highest density is distributed in
an almost-perfect sphere around each atom. For both carbon
and lithium the distribution is not uniform, and the charge
density does not spread equally along the chain but rather
concentrates between pairs of neighboring atoms. This charge
concentration occurs due to the stronger attraction between
the electrons and the ions in the region between adjacent
atoms, which increases the energy gain from the interaction
between the external potential and the electrons, similar to the
function of a bonding orbital in the hydrogen molecule [24].

The integrated local density of states (ILDOS) of the
highest occupied band provides a good description of bond-
ing in real space, especially for lithium where most of the

 

 

(b)
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FIG. 3. Spatial distribution of the integrated local density of
states (ILDOS) of the highest occupied band in carbon (a) and
lithium (b) linear chains with τ = 0.03. Gray spheres represent
positions of the ions, and connecting bars are drawn between pairs
of nearest neighbors. Colors represent the percentage of maximal
ILDOS value between 0–100% (carbon) and 0–40% (lithium).

charge density belongs to the lower bands and is concentrated
spherically about the ion cores (Fig. 3). In carbon the highest
occupied band, corresponding to the σ bond of the pz orbital,
is broken into almost discontinuous pairs, whereas in lithium
the σ bond of the s orbital remains a continuous chain.

In order to understand the behavior of the band energy
with distortion, we analyze in Fig. 4 the electronic band
structures of carbon (left) and lithium (right) chains both in
their undistorted state and after a 3% distortion. As expected,
the distortion opens an energy gap at the Fermi level at the
edge of the Brillouin zone, although the gap is not symmetric
below and above the Fermi level, as demonstrated in the inset
of Fig. 4(d). The opening of the gap causes a decrease in the
electronic band energy and a metal-to-insulator transition. In
carbon, this band gap suffices to make the highest occupied
band energy obtain a maximum value in the undistorted
monatomic chain configuration [Fig. 4(a)]. In contrast, in
lithium the changes in the highest occupied band far from
the Brillouin zone boundaries [inset of Fig. 4(d)] cancel the
energy gain and result in a minimum on the equally spaced
monatomic chain [Fig. 4(b)]. In both materials, it is apparent
that the distortion significantly affects the bands far below
the Fermi level [see Fig. 4(d)], resulting in the increase of
the overall band energy with distortion [Figs. 1(c) and 1(d)].
It was previously observed [18] that in the closely related
three-dimensional materials exhibiting a charge density wave,
the distortion is not a result of Fermi surface nesting but rather
the outcome of combined electronic and ionic interactions in
agreement with the present results. These results deviate from
the commonly accepted analysis of the band structure in the
framework of the nearly-free-electron model used by Peierls
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FIG. 4. Electronic band energies of carbon and lithium chains.
(a), (b) The energy dependence on distortion of the different bands
from the lowest energy band to the highest energy band for carbon (a)
and lithium (b). (c), (d) The band structure of both equilibrium and
distorted carbon (c) and lithium (d). Blowups of the highest occupied
band of lithium at the edge of the Brillouin zone and at the zone
center are shown in the insets of (d).

but could be explained within the same framework by using a
stronger potential and taking additional higher order terms in
the Fourier expansion of the potential.

As has been experimentally observed, increasing pressure
decreases the distortion (e.g., in carbon [9,10,25]) and vice
versa. Subjecting a stable chain of sodium, for example,
to tension, destabilizes it, as was previously reported [17]
and can be seen in Fig. 5. As the total energy of sodium
acquires a double-well shape with stretching, it is insightful
to examine its classical (Hartree, Ewald, and external) and
quantum (kinetic and exchange-correlation) components in
order to determine which is the driving force of the instability.
It is apparent from Fig. 5 that both the classical and the
quantum energy components increase their tendency toward
distortion with increased lattice parameter. The combination
of the classical driving force enhancement with tension and

FIG. 5. Energy change per atom in a sodium one-dimensional
chain with distortion τ for equilibrium lattice parameter a = 3.32 Å
(solid lines) and stretched lattice parameter a = 3.81 Å (dotted lines)
corresponding to a tensile stress. Quantum energy is the sum over
the kinetic and exchange-correlation energies; classical energy is the
sum of Ewald, Hartree, and external energies. The sum over the
electronic band energies is drawn in the inset.

the decrease in resistance to distortion of the quantum energy
components results in the destabilization of the stretched
sodium chain. It is important to note that similarly to carbon,
the energy gain does not result from the lowering of the band
structure. This is demonstrated clearly in the case of sodium
as the total band energy becomes more stable at the symmetric
alignment with stretching (see inset in Fig. 5).

IV. CONCLUSIONS

In conclusion, a detailed analysis of all the energy compo-
nents involved in the dimerization of realistic one-dimensional
chains shows that the energy gain is dominated by the
coulomb energy, while the energy loss is mainly due to
the kinetic energy. The opening of the energy gap on the
boundary of the Brillouin zone at the Fermi level is just one
contribution to the energy gain which cancels, in some cases,
with other contributions from the band structure, including
zone-centered states at the valence band and lower energy
bands. The instability of one-dimensional chains is found
to be dependent on the external stress and not a universal
phenomenon as previously considered. This analysis can shed
light on the driving force for more complex distorted struc-
tures such as three-dimensional structures.

D.K. and U.A. contributed equally to this work.
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