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a-Sn phase on Si(111): Spin texture of a two-dimensional Mott state
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The «-Sn reconstruction on Si(111) is a prototype system for a two-dimensional Mott phase. In this study
we performed spin-resolved photoemission experiments and analyzed in detail the spin structure of this
electronically correlated surface state. The analysis of the spin-integrated bands as well as the spin texture
of the surface states along different crystallographic directions provide clear evidence for the formation of
collinear antiferromagnetic (2+/3 x +/3) domains, while the Sn reconstruction reveals a (v/3 x +/3) symmetry.
The Rashba splitting of the highest occupied Mott state was found to be Ak = 0.05 Afl, i.e., the «-Sn phase
should be termed a weakly spin-orbit coupled Mott system.

DOI: 10.1103/PhysRevB.98.165422

I. INTRODUCTION

The wealth of exotic phenomena, e.g., superconductivity,
charge density waves, and spin liquids [1-3], can be greatly
explored by two-dimensional (2D) electron gases realized
by adsorption of (sub)monolayer structures on semiconduct-
ing surfaces. Particularly, the group IV elements with their
electronic s”p? configuration display a wide spectrum of
correlated phases: For instance, Pb monolayer (ML) structures
show pronounced electron-phonon coupling and give rise to
charge ordering transitions on Ge(111) [3,4] or Cooper pairing
on Si(111) [1,5], while Sn on Si(111) is a prototype Mott
system. A coverage of 1/3 ML Sn forms a long-range ordered
(\/§ X ﬁ) reconstruction, the so-called «-Sn phase, with
the Sn atoms located at 7j sites [6,7]. This phase reveals an
isostructural metal-insulator transition (MIT) upon cooling
below 70 K [8]. Moreover, with ARPES a gap energy of
around 200 meV was found [9]. Scanning tunneling spec-
troscopy (STS) and conductivity measurements indicate that
the MIT is driven by strong electron correlations [10,11].

If spin-orbit coupling is effective, the electronic effects are
intimately related to magnetic phases [12]. In addition, the
frustration of spin-1/2 systems on 2D triangular lattices favors
complex spin textures [13,14] and leads to new quantum
phenomena, e.g., for densely packed Pb monolayers on vicinal
Si(111) surfaces a spin-orbit density wave was found with
Fermi nesting between helical states and antiferromagnetic
ordering [15]. In contrast, on flat Si(111) the 2D nesting
vectors are incommensurate, thus keeping this system rather
immune against charge density wave formation and possibly
enabling superconducting behavior [5,16].
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Compared to Pb, the electronic correlation effects for «-
Sn are much stronger due to the smaller orbital size. On
the other hand, because of the smaller Z of Sn, the role
of spin-orbit coupling just recently came into the focus of
research. Theoretical results show that the insulating ground
state of -Sn might be a ferrimagnetic Slater-type insulator via
itinerant magnetic order [17,18] or, on account of spin-orbit
coupling, a 120°-Néel structure with noncollinear ordering
[19]. Based on high resolution photoemission experiments
and density functional theory (DFT) [9], a description of the
(spin-integrated) spectral function is only possible if row-
wise collinear antiferromagnetic order with a (243 x +/3)
symmetry at low temperatures is assumed for the Mott state.
Indeed, the same symmetry was obtained by recent hybrid
DFT calculations but suggesting a Slater-type insulator via
band magnetism [17]. Surprisingly, spin-resolved measure-
ments on this system that can give a more detailed insight in
the spin ordering are missing up to now.

In this paper we want to elucidate the effect of SOC
in a correlated electronic system, and we measured di-
rectly the spin components of the surface states in the Mott
regime by means of spin- and angle-resolved photoemis-
sion (SARPES). The Rashba-type spin splitting is found to

be around 0.05 A~ Moreover, we measured spin-resolved
momentum distribution curves (MDC) along various high
symmetry directions giving clear evidence for the (24/3 x
V/3) row-wise collinear antiferromagnetically ordered spin
cell, while low energy electron diffraction (LEED) reveals a

(/3 x +/3) symmetry.

II. EXPERIMENTAL DETAILS

Long-range ordered Si(111) surfaces (phosphorous-doped,
0.01 Q2 cm) as templates for Sn adsorption were prepared by
degassing the samples at 500 °C for several hours and repeated
flash annealing to 1150 °C until a sharp (7 x 7) reconstruction

©2018 American Physical Society
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FIG. 1. (a) LEED image of «-Sn taken at an electron energy of
76 eV at a temperature of 40 K. Dashed lines connect the first order
diffraction spots of (1 x 1) (green) and (+/3 x /3) (red). The feature
next to the electron gun stems from a defect on the screen. (b) STM
(+1V,0.1 nA) image of the «-Sn phase with a vacancy taken at room
temperature. (c) Top view of the o-Sn reconstruction on Si(111).
Blue and violet circles represent Sn atoms on 7 adsorption sites with
different spin polarizations; Si atoms are gray. Red and blue lines
indicate the (+/3 x +/3) and (24/3 x +/3) unit cell, respectively. (d)
SBZs of the (1 x 1) (green), (+/3 x +/3) (red), and three rotational
(2+/3 x +/3) domains (blue). The domain labeled as ‘1 is referred
to as the horizontal domain, while domains ‘2’ and ‘3’ are termed
rotated domain structures.

was seen by LEED. Afterwards, 1/3 of a monolayer of Sn
was evaporated on the surface while the sample was held
at 600 °C. The quality of the w-Sn surface reconstruction
with (v/3 x +/3) symmetry was checked afterwards by LEED
as shown exemplarily in Fig. 1(a). The diffraction pattern
remains unchanged upon cooling down to 40 K with {He. The
rate of evaporation was calibrated independently by scanning
tunneling microscopy [STM, cf. Fig. 1(b)] experiments.

Spin-resolved and spin-integrated ARPES measurements
were performed at the COPHEE end station at the SIS
beamline of the Swiss Light Source [20]. Unless otherwise
indicated, right-handed circularly polarized light (C*) with
a photon energy of 90 eV was used. The photoemission
experiments were carried out at low temperatures (40 K), well
below the phase transition temperature of ~70 K. In order to
reveal a good signal to noise ratio the (spin-resolved) MDCs
were taken at a binding energy of Ep = 0.38 eV below the
Fermi energy Er. For spin-integrated ARPES, energy and
angular resolution are 25 meV and 0.3°, respectively. In the
spin-resolved mode, a resolution of 80 meV and 0.75° can be
reached. Details about the experimental setup and the analysis
of the spin data are described elsewhere [21].
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FIG. 2. (a) Extended CEM taken at Ez = 0.38 eV. Only the
phase space shown in the lower left was measured. The superim-
posed red and blue lines show the SBZs of the (ﬁ X ﬁ) and
of the three rotational domains of (2+/3 x +/3), respectively. Dots
symbolize high symmetry points of both structures; gray lines high-
light the directions of the (S)ARPES measurements. (b) Band map
along the k, direction (1). (c) Band map along the k, direction (2).
Dashed white curves show the positions of the Si valence band.
Details of the band maps within the blue boxes are shown in Fig. 3.

III. RESULTS AND DISCUSSION

A. Structure of the a-Sn phase

A top view of the «-Sn structure is sketched in Fig. 1(c).
The (v/3 x +/3) reconstruction of the Sn atoms, highlighted
with red lines, is seen with LEED and STM [cf. Figs. 1(a)
and 1(b)] both above and below the transition temperature [8].
If we associate a spin to the Sn atoms, they are ordered in a
row-wise collinear antiferromagnetic pattern, and a (24/3 x
V3) spin unit cell is formed. This unit cell generally exists in
three domains rotated by 120° with respect to each other [9].
The corresponding surface Brillouin zones (SBZs) for both
reconstructions and their high symmetry points are sketched
in Fig. 1(d).

B. Spin-integrated constant energy and band maps

The constant energy map (CEM) of the «-Sn phase, illus-
trated in Fig. 2(a), was taken at 0.38 eV below the Fermi
energy Ep. A surface state with high intensity is observed
around the M points of the (ﬁ X \/5) and two domains
of (2+/3 x +/3) unit cells. The local minimum of this dis-
persing state is located at K »3+- The SBZ boundaries and
symmetry points of both reconstructions are superimposed for
clarification.
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FIG. 3. (a),(b) MDCs along the k, and k, directions taken at
380 meV, respectively. (c),(d) Band maps along the k. and k,
directions. (e),(f) curvature maps of (c) and (d) to highlight details
of the band structure. Green lines show the position of the MDCs.
Solid and dashed blue curves indicate (spin-degenerate) calculated
surface bands from domain 1 and domains 2, 3 of the (2\/5 X \/g)
structure, respectively. The band structure was taken from Ref. [17].

Band maps along two high symmetry directions are shown
in Figs. 2(b) and 2(c). They clearly reveal the insulating nature
of the ground state at low temperature, showing an energy gap
of AE ~ (.1 eV with respect to E [9]. For better orientation,
we marked the valence band maximum of Si.

In order to characterize the surface states in more detail we
show in Fig. 3 an enlargement of the region marked by rect-
angles in Figs. 2(b) and 2(c). Clearly, the surface state along
the k. direction reveals a w shape with minima around 0.6 eV
binding energies located at the K 3 points [cf. Fig. 3(c)]. A
pronounced broadening of all surface states is obvious and
was also seen in other high resolution ARPES experiments
[9]. As we will show in the following, this apparent smearing
is rather an effect of the multidomain structure of the 24/3 x
/3 reconstruction and the Rashba-type spin splitting of the
surface states.

Figure 3 shows a comparison between our measured MDCs
and the band structure based on previous calculations [9,17].
Starting with the k, direction, there is some intensity in the
vicinity of the T point, which can be seen more clearly in
the curvature fit of the band map shown in panel (e). This
faint feature was observed before, and its position at around
0.4 eV binding energy is indicative for the broken (+/3 x +/3)
symmetry [9]. Moreover, the MDC curve shown in Fig. 3(a)
reveals a multipeak structure which is visible also in the
curvature plot of the data [Fig. 3(e)].

Quantitative agreement for the positions of the multipeak
MDC structure with calculations is obtained if contributions

of the surface state from different domains are taken into
account. The solid and dashed blue curves display (spin-
degenerate) surface bands for the horizontal (domain 1) and
the rotated domains, respectively. The band structures for
the (24/3 x +/3) reconstruction were taken from Lee et al.
[17]. Thereby, the dashed curve is the projection of the band
structure from two rotated domains and thus should comprise
twice as much intensity compared to the band belonging to
domain 1. Indeed, this trend is seen in the MDC curve, at
least for the first sequence of peaks. The gradual damping of
the signal along the k, direction comes either from a slight
azimuthal misalignment of the scan direction, changes in the
dipole selection rules with changing incidence angle of light,
and/or the physisorption of UHV rest gas. As we will show
in the next section, the Rashba-type spin splitting along the
k, direction is approximately five times smaller than the band
splitting seen in the MDC, thus already the analysis of the
spin-integrated data provides clear evidence for the collinear
antiferromagnetic ordering with (2+/3 x +/3) symmetry.

Along the k, direction the band structure, displayed in
Figs. 3(d) and 3(f), consists of two bands as well. In contrast
to the k, direction, the bands disperse less [17]. While the
band originating from domain 1 disperses at binding ener-
gies between 0.2-0.3 eV, the other band is located between
0.3-0.45 eV. Thus, the MDC taken at Eg = 0.38 eV does
not comprise any bands from domain 1 but four peaks from
domains 2 and 3. Contrary to the k, direction, the splitting
along the k, direction is mainly due to spin-orbit interaction
as we will show in the following. Again, the interpretation
of the spin-integrated ARPES data indicates the (2+/3 x +/3)
symmetry.

C. Spin-resolved band structure

In order to further investigate the spin-orbit coupling in
these surface bands, (spin-integrated) MDCs were taken again
at Ep = 0.38 eV along k, [part of the direction is marked by
(3) in Fig. 2(a)], but with right (C™) and left (C™) circularly
polarized light at a photon energy of hv = 44 eV. Figure 4(a)
shows the corresponding band map along the k, direction.
Notably, the Si valence bands are seen here as replica struc-
tures around the T’ 3 points, which indicates the long-range
ordering of the «-Sn reconstruction.

Both MDCs have roughly the same shape but they show
deviations in intensity on the side of the peaks originating
from the surface bands. This means that those states show
circular dichroism which indicates that spin-orbit interaction
plays an important role and the states have to be described
by different quantum numbers. A more detailed analysis was
done by plotting the difference and fitting the sum of C* and
C~ spectra in panels (c) and (d), respectively. The helicity de-
pendent photoemission intensity is ascribed to two spin-orbit
split states symmetrically shifted around the time-reversal
invariant M /3 points. Within the errors of the measurement,
the splitting is identical to the splitting discussed in the context
of Fig. 3(b). We will show below that the circular dichroism is
most likely a result of Rashba-type spin splitting of the surface
states.

In order to quantify further the spin texture of the surface
states and to rule out that the dichroitic signal is entirely
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FIG. 4. (a) Band map along the direction denoted by (3) in Fig. 2,
where the MDCs were taken. The dashed curves show the +/3 x +/3-
replica states of the Si valence bands. (b) MDC curves taken along
the k, direction with C* and C~ polarization. (c) and (d) show the
difference and sum of the two MDC spectra, respectively.

governed by matrix element effects, we performed SARPES
measurements, again at a binding energy of Ep = 0.38 eV.
Figure 5(a) shows the spin-resolved MDC along the k., di-
rection. A comparison with the spin-integrated signal shown
in Fig. 3(a) yields qualitatively the same shape. The mea-
surement was started this time from the high momentum
side, i.e., the gradual drop in intensity is most likely induced
by physisorption of residual gas. The three measured spin
components, shown in Fig. 5(b), clearly reveal a pronounced
in-plane spin polarization of the surface states (nonvanishing
Ses Sy).

A simultaneous description of all four data sets (S, .
and total intensity) is achieved only if a peak substructure as
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FIG. 5. (a) Spin-resolved MDC along the k, direction taken at
0.38 eV below Eg. The upper axis shows the high symmetry points
[cf. Fig. 1(d)]. (b) Corresponding spin-polarization vectors Sy, S,
and S,. The shaded areas represent the uncertainty by simultaneously
fitting all four data sets. (c) S, and S, spin components of the peaks
shown in (a). The 0° and 90° denote the positive x and y directions,
respectively.

shown in Fig. 5(a) is considered: First of all, each intensity
feature comprises a doublet structure which accounts for the
Rashba spitting. The presence of a doublet with reversed spin
ordering is partly visible also in the raw data, e.g., from
the rapid change of amplitude of the S, component around

1527 Secondly, the most intense MDC peaks discussed
in the context of Fig. 3(a) (dashed lines, rotated domains)
are considered by the three intense double peak structures
(marked by green and orange lines). Furthermore, the less
intense peaks seen in Fig. 3(a) (solid lines, domain 1) were
detectable and taken into account by a corresponding se-
quence of double peaks (red and blue curves). It should be
emphasized that a better agreement is obtained if instead of
six peaks eight peaks are considered for the rotated domains
in Fig. 5(a). Any modeling with less peaks was not able
to describe the variations in magnitude of the three spin
polarizations satisfyingly. We already pointed out that at the
constant energy of 0.38 eV we barely touch the surface bands
originating from these domains [cf. dashed lines in Fig. 3(c)].
For the measurements with the Mott detectors, the energy
resolution is lower and the larger integration area is most
likely the reason for this observation. Based on this initial
guess, a satisfying modeling of the experimental spin-resolved
data succeeded.

A polar plot of the resulting in-plane spin components S,
and S, is shown in Fig. 5(c): Indeed, each of the doublet
structures reveals de-facto an opposite spin orientation, as
expected for conventional Rashba-split states. The splitting is

around Ak, ~ 0.05 Afl, which means that the «-Sn phase
can be described by a correlated quantum state with weak
spin-orbit coupling [12]. Furthermore, the less intense peaks
belong to domain 1, in agreement with the assignments
done in Figs. 3(a) and 3(c). Consequently, due to the mirror
plane of this domain, only S, spin components are observed
for the k, direction. Contrary, the spin vectors originating
from the rotated domains show both S, and S, compo-
nents. The spin texture from these states originates from
both domains. Therefore, any imbalance between these two
domains will cause a finite S, component [16]. Nevertheless,
the analysis is fully consistent with our conclusions from
the previous section and supports the formation of (2+/3 x
V/3) domains. The finding of in-plane spin components sug-
gests an in-plane anti-ferromagnetic ordering between the
Sn sites. Similar magnetization patterns were reported for
Mn/W(110) [22].

Besides the k, direction, we also measured the spin com-
ponents of the surface state along the k, direction (cf. Fig. 6).
According to the discussion in the context of Fig. 3(d) the
surface state at around 0.38 eV binding energy is formed
by states of the rotated domains. A four-peak structure is
mandatory for the momentum range in order to describe
satisfyingly the MDC intensity and three spin-component data
sets. Clearly, the adjacent peaks show an alternating spin
structure. However, the apparent larger Rashba splitting of

Aky 2 0.2 A" is aresult of the intersection of the Mott states
from adjacent zones and not an indication of an anisotropic
spin texture, as we will show below. If both domains were
equally distributed, only the S, component should show up.
The finite value of S, component reflects the asymmetry
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FIG. 6. (a) Spin-resolved MDC along the k, direction taken at
0.38 eV below Eg. The upper axis shows the high symmetry points
of the three domains [cf. direction (3) in Fig. 2(a)]. (b) Corresponding
spin-polarization vectors Sy, Sy, and S,. The shaded areas represent
the uncertainty by simultaneously fitting all four data sets. (c) S, and
S, spin components of the peaks shown in (a).

between these two domains, in accordance with the conclu-
sions drawn above.

D. Model for the spin texture of «-Sn phase

For the spin-ordered (2\/§ x /3 ) structure, Lee et al. [17]
calculated a band structure for one domain containing one
only slightly dispersing surface band with a binding energy
between approximately 0.1 and 0.5 eV. In accordance with
the results in this work concerning the spin-orbit interaction,
a Rashba-type spin splitting of Ak =~ 0.05 A s superim-
posed in Fig. 7(b) while maintaining spin degeneracy at time-
reversal invariant momenta. Consequently, the rectangular
SBZ comprises two almost circularly shaped bands around
the Y point with opposite spin directions as seen in Fig. 7(a).
Along the mirror plane xz in the &, direction, crossing through
T and Y, the spin components S, and S, are zero and only S,
has a finite value in agreement with our finding.

In Fig. 7(c) all three rotational domains are depicted in
an extended zone scheme. The surface bands of different
domains overlap each other resulting in a complex electronic
structure model. Looking along the k, direction, i.e., TY of
the horizontal domain, one finds an alternating spin structure
originating either only from domain 1 or an overlap of the sur-
face bands of the two other domains 2 and 3 [numbering refers
to Fig. 1(d)]. Along the k, direction, TX of domain 1, only
bands of domain 2 and 3 appear. The domains are spatially
separated and no interaction between the bands of different
domains can be expected. However, in measurements, the
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=
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FIG. 7. (a) Electronic structure and spin texture in the SBZ of the
(2+/3 x /3) structure at a binding energy of 0.4 eV with a Rashba
splitting of Ak = 0.05 Afl, (b) Band structure reproduced after Lee
etal. [17]. The Mott state was complemented by Rashba splitting. (c)
SBZs consisting of three rotational (24/3 x +/3) domains. Red and
blue spin vectors belong to the horizontal domain as seen in (a). Spin
components of the other two domains are shown in gray, the resulting
spins of those domains along the k, and k, direction in orange and
green. The broad gray lines indicate the positions of measurements
along the k, and k, direction shown in Fig. 3 and coincide with the
lines denoted by (1) and (3) in Fig. 2(c).

spin polarization at these points with overlapping bands will
depend on the distribution and size of the three domains.

IV. SUMMARY AND CONCLUSION

In summary, we investigated the spin-orbit interaction of
the correlated «-Sn structure on Si(111) directly with spin-
and angle-resolved photoemission. We were able to identify
spin-resolved band structures which originate from a (2+/3 x
V/3) symmetry, in agreement with previous theoretical stud-
ies [9,17]. This symmetry is mandatory for the formation
of a row-wise collinear antiferromagnetically ordered spin
arrangement of the Sn atoms adsorbed on 7 positions with
a (/3 x +/3) order. As it turns out, the Rashba splitting is
comparably small and the spin-orbit interaction is weak in
this structure. According to the spin orientation in our ARPES
experiments, we propose an in-plane ordering of the spins in
the antiferromagnetic phase.

There is currently a debate whether the insulating state is
driven by electronic correlation effects or by spin ordering
[9,17]. In the latter case, where the ground state is charac-
terized as a Slater-type insulator via band magnetism, the
antiferromagnetic ordering should come along with a nesting
in between helical states. However, a doubling of the unit
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cell, as seen recently for Pb/Si(557) [15], was not observed.
Moreover, we have not seen indications of hybridization
between the Sn states and the Si valence bands (3p, states),
which enables the superexchange. Therefore, we rather like
to describe the «-Sn/Si(111) phase as a weakly spin-orbit
coupled Mott system [12].
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