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Floquet topological matter has emerged as one exciting platform to explore rich physics and game-changing
applications of topological phases. As one remarkable and recently discovered feature of Floquet symmetry
protected topological (SPT) phases, in principle, a simple periodically driven system can host an arbitrary number
of topological protected zero edge modes and π edge modes, with Majorana zero modes and Majorana π modes
as examples protected by the particle-hole symmetry. This work advocates a new route to holonomic quantum
computation by exploiting the co-existence of many Floquet SPT edge modes, all of which have trivial dynamical
phases during a computation protocol. As compelling evidence supporting this ambitious goal, three pairs of
Majorana edge modes, hosted by a periodically driven one-dimensional (1D) superconducting superlattice, are
shown to suffice to encode two logical qubits, realize quantum gate operations, and execute two simple quantum
algorithms through adiabatic lattice deformation. When compared with early studies on quantum computation
based on Majorana zero modes of topological quantum wires, significant resource saving is now made possible
by use of Floquet SPT phases.
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I. INTRODUCTION

Fault-tolerant quantum computation has been sought as a
long term goal towards the development of quantum com-
puters. Potential candidates for this purpose are Majorana
zero modes (MZMs) emerging at the vortices or edges of
topological superconductors [1–3], which possess topological
protection at the hardware level. In such systems, a qubit is
encoded nonlocally from a pair of MZMs separated far apart
from each other, and quantum gate operations are achieved by
braiding them around each other [4]. Due to the constraints
put in place by fermionic parity conservation and the number
of MZMs that can be generated in a given system, Majorana-
based quantum computation usually requires intricate geom-
etry [5–8] to initialize qubits and facilitate braiding between
a pair of MZMs, posing some difficulties in scaling it up to
solve heavy computational tasks.

It is therefore of fundamental interest to seek innovative
and alternative quantum computation schemes with consid-
erable error tolerance on the hardware level. In this work, we
advocate to exploit an unusual feature of the so-called Floquet
topological matter to realize holonomic quantum computa-
tion. In recent years, Floquet topological matter has emerged
as one exciting platform to explore rich physics and poten-
tially game-changing applications of topological phases. In
periodically driven systems, energy is no longer a conserved
quantity and is replaced by the so-called quasienergy, which is
only defined modulo 2π/T , with T the driving period. As one
recently discovered feature of Floquet symmetry protected
topological (SPT) phases, in principle, a simple periodically
driven system can host an arbitrary number of topological
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zero edge modes and π edge modes (with quasienergy 0
and π/T , respectively) [9–11], with MZMs and Majorana
π modes as examples in the presence of the particle-hole
symmetry [12–16]. Given that both MZMs and Majorana π

modes yield a zero dynamical phase at even multiples of T ,
their coexistence presents a motivating case in reconsidering
holonomic quantum computation. As to other parts of a sys-
tem not directly hosting the edge modes, they can be deemed
as auxiliary components, necessary to ensure topology-based
fault tolerance inherent in the edge modes and also serving as
temporary information storage.

To advocate such a promising marriage between Floquet
topological matter and quantum computation, one naturally
starts with a one-dimensional (1D) prototype system capable
of hosting multiple Floquet Majorana modes. One also hopes
that these Floquet Majorana modes are manipulable in order to
accomplish braiding between them and consequently quantum
gate operations without the need of introducing branched
geometries of a quantum wire can be achieved. To this end,
our previous study [16] has made the first encouraging step by
considering a periodically driven topological superconducting
wire.

In particular, though a 1D static topological supercon-
ductor typically hosts only a single MZM at each end, the
application of periodic driving can add another pair of Ma-
jorana π edge modes, thus yielding the minimal number of
Majorana modes required to encode a single qubit [16]. Braid-
ing between the Floquet MZM and Floquet π mode therein
and hence single-qubit gate operations were indeed shown
to be feasible by using adiabatic lattice deformation alone.
It thus becomes necessary and significant to explore the full
potential of the coexistence of multiple or even many Floquet
topological edge modes hosted by one single quantum wire.

Models with the particle-hole symmetry such as the Kitaev
model [1] naturally host MZMs and a periodically driven
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version may add the Majorana π modes. SPT edge modes
due to other symmetries are also of great interest [17], but
are not directly useful for topologically protected quantum
computation. Take, for example, the edge modes in the 1D Su-
Schrieffer-Heeger (SSH) [18] model. Despite that SSH edge
modes are also pinned at zero energy, they are protected by the
chiral instead of particle-hole symmetry. Because each SSH
edge mode is already fermionic (rather than half-fermionic)
in nature, one cannot combine two such edge modes to
form a qubit sharing the same feature of Majorana qubits.
Nevertheless, the other side of the story is stimulating. That
is, a single SSH-like edge mode can be broken down into two
Majorana fermions, each of which carries zero energy and
is thus an MZM. The same philosophy applies to SSH-like
π edge modes. This being the case, a single SSH-like edge
mode afforded by the chiral symmetry can be used to encode
a (local) qubit. Two such edge modes localized at two opposite
ends of a 1D wire are, however, far apart and their MZM
constituents cannot be braided.

Given our general insights above, we construct a working
model here with a periodically driven superconducting su-
perlattice with both chiral and particle-hole symmetries. In
the absence of periodic driving, such type of quantum wires
can host either SSH- or Kitaev-like edge modes [19,20] (that
is, SSH- or Kitaev-like edge modes cannot coexist for any
given set of system parameters). In the presence of periodic
driving, it becomes possible for the SSH- and Kitaev-like
edge modes to coexist, one of which is pinned at quasienergy
zero, whereas the other is pinned at quasienergy π/T . In-
triguing quantum gate operations can then be anticipated.
Indeed, one pair of SSH-like edge modes, viewed as two
pairs of constituent Majorana modes, can now be exploited
for information encoding and gate operations because of the
possibility of braiding one of the Majorana constituents of an
SSH-like edge mode with the other isolated Kitaev-like edge
mode at quasienergy π/T .

To demonstrate the feasibility of the quantum computation
scheme outlined above, we restrict ourselves to the situa-
tion where in total three pairs of Majorana edge modes are
hosted by a driven quantum wire. After taking into account
the fermionic parity conservation, two logical qubits can be
constructed. This work can thus be considered as an extension
of Ref. [16], where only a single qubit was obtained with
Kitaev-like edge states. In addition to the explicit construction
of the logical qubits based on Floquet topological edge modes,
the protocols to accomplish the braiding between different
pairs of Majorana modes are one main focus of this paper.
We outline a proposal to readout the qubits by breaking
the system’s chiral symmetry. We also demonstrate how our
quantum computation scheme can be applied to implement
two simple quantum algorithms with one single quantum wire.
At the end of this work, we also discuss how to scale up
our quantum computation scheme by explicitly showing how
controlled-not (CNOT) gates can be realized with the use of
two quantum wires.

This paper is structured as follows. We start in Sec. II A
with a short review of Floquet theory to describe time-periodic
(Floquet) systems and discuss the emergence of symmetry
protected topological edge modes at quasienergy zero and
π/T . In Sec. II B, we adapt the theory of adiabatic processes

and holonomy to Floquet systems. We present our model
in Sec. III, along with its symmetry properties and Z × Z

topological invariants characterizing the emergence of zero
and π edge modes. In Sec. IV, we show how the two different
species of zero and π edge modes can be written in terms
of Majorana operators, which can in turn be used to encode
two qubits. In Sec. V, we present the application of such edge
modes in holonomic quantum computation. In particular, we
explicitly develop protocols to realize various single-gate op-
erations by adiabatically deforming the system’s Hamiltonian
in various closed cycles, propose a means to readout qubits,
demonstrate the implementation of two simple quantum algo-
rithms with our system, and discuss the possibility to scale
up our system to generate more logical qubits and construct
entangling gates. Section VI discusses possible experimental
realization, the feasibility of our proposal with respect to some
experimental parameters, and a subtle comparison between
our computation protocols with topological quantum comput-
ing (TQC). Finally, we conclude our work in Sec. VII.

II. BACKGROUND

A. Floquet formalism and edge modes

Consider a time-periodic (Floquet) Hamiltonian with pe-
riod T , such that H (t + T ) = H (t ). Since energy is no longer
conserved, the spectral properties of the system are instead
captured by an analogue quantity called quasienergy [21,22],
defined from the eigenphase of the one-period propagator
(Floquet operator) U ≡ T exp (

∫ T

0 − iH (t )
h̄

dt ), i.e.,

U |ε〉 = exp(−iεT )|ε〉, (1)

where T is the time-ordering operator, ε is the quasienergy,
and |ε〉 is the associated Floquet eigenstate. Since εT is
only defined up to a modulus of 2π , i.e., ε/T and ε +
2πn/T , where n ∈ Z represent the same solution. As a result,
quasienergy is usually defined in (−π/T , π/T ] and forms
the so-called Floquet Brillouin zone, which is analogous to
quasimomentum Brillouin zone in spatially periodic systems.
The periodicity of the quasienergy Brillouin zone is mainly
responsible for the existence of edge modes at quasienergy
π/T [12,14–16,23–25] and anomalous edge states [26–28].
The former is especially relevant to this work, and will thus
be elaborated further.

There are two types of edge modes, namely, fermionic
and Majorana (half-fermionic) edge modes. In the second
quantization language, we define �ε as a fermionic mode
associated with quasienergy ε/T . Namely, given a reference
state |R〉 satisfying U |R〉 = |R〉, a Floquet eigenstate with
quasienergy ε/T can be constructed as |ε〉 = �†

ε |R〉.
In systems possessing chiral symmetry [9,29,30] with

�U�† = U† for some unitary chiral operator �, quasienergies
are guaranteed to come in pairs. That is, associated with a
fermionic mode �ε at quasienergy ε/T , there exists another
fermionic mode �−ε = �ε� at quasienergy −ε/T . In partic-
ular, when ε = 0 (π/T ), chiral symmetry dictates that the
quasienergy becomes degenerate, i.e., there must exist two
fermionic zero (π ) modes �A

0 and �B
0 (�A

π and �B
π ) related

to each other by �A
0 = �B

0 � (�A
π = �B

π �).
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FIG. 1. Illustration of fermionic zero and π modes [colored el-
lipses in (a) and (b)] and Majorana zero and π modes [colored circles
in (c) and (d)]. Red and blue ellipses represent fermions at sublattice
A and B, respectively, which can be further broken down into two
Majorana fermions (Majoranas), as depicted in circles. Purple dotted
lines and black solid lines denote two different strengths of coupling
between two fermions or Majoranas. Zero modes in (a) and (c) arise
due to uncoupled fermions or Majoranas, while π modes in (b)
and (d) arise due to the magnitude difference between the purple
and black colored coupling on the fermions or Majoranas near the
boundaries. (e) illustrates the Hamiltonian (3) and its associated
Majorana zero and π modes in the ideal case. Purple dotted lines
and black solid lines denote terms originating from H1 and H2,
respectively, filled circles mark the Majorana modes, and half-filled
circles denote superposition of Majorana modes [see Eq. (14) for
expressions of edge modes involving superpositions of Majorana
fermions at different sublattice sites].

On the other hand, superconducting systems usually also
possess an inherent particle-hole symmetry. This associates a
fermionic mode �ε at quasienergy ε/T with the conjugate
of another fermionic mode �−ε at quasienergy −ε/T , i.e.,
�ε = �

†
−ε. As a direct consequence, γ0 ≡ �0 and γπ ≡ �π

become Hermitian, and are thus termed Majorana zero and
π modes, respectively. Since the Floquet operator U (when
expanded) can only contain terms of the form �†�, where �

is a complex fermion, Majorana zero (π ) modes should come
in pairs as γ

(1)
0 and γ

(2)
0 (γ (1)

π and γ (2)
π ) so as to be able to

form a complex fermion �
(c)
0 = γ

(1)
0 + iγ (2)

0 (� (c)
π = γ (1)

π +
iγ (2)

π ). In this sense, Majorana zero and π modes are clearly
half-fermions and fundamentally different from the fermionic
zero and π modes induced by the less subtle chiral symmetry
alone.

Figure 1 depicts zero and π edge modes when a gapped
system is subject to open boundaries. In particular, the
fermionic and Majorana modes highlighted above are local-
ized near the systems’ left or right boundaries. By definition,
fermionic or Majorana zero modes commute with the Floquet
operator U , whereas fermionic or Majorana π modes anticom-
mute with the Floquet operator U . Though not pursued in this
work, we note that the π edge modes being anticommuting
with U offers a dynamical-decoupling scenario from within
the system dynamics itself and they are thus expected to be
even more robust than zero edge modes against certain noise.
It should be also noted that while fermionic and Majorana zero

modes can also emerge in static systems by the same mech-
anism elucidated above, fermionic and Majorana π modes
can only exist in Floquet systems due to the periodicity of
quasienergy.

B. Floquet adiabatic process and holonomy

Let H (t, λ) be time-periodic with period T and depending
also on a tunable parameter λ. If Floquet eigenstates are not
degenerate, then a Floquet adiabatic process is accomplished
by slowly tuning λ from a certain initial value λ0 at time zero
to a final value λτ at time τ = MT , such that a state initially
prepared in a Floquet eigenstate with quasienergy εn(λ0) will
evolve with λ as an instantaneous Floquet eigenstate with
quasienergy εn(λ) [31]. It is convenient to assume that λ is
only tuned stroboscopically at the beginning of each new driv-
ing period, such that λ ≡ λ(s) when sT � t < (s + 1)T . Adi-
abaticity then requires τ/T = M � 1 as well as other condi-
tions involving the gap of the Floquet states versus h̄/T [31].

Floquet adiabatic holonomy arises from a Floquet adia-
batic process in which H (t, λτ ) = H (t, λ0) and its associated
Floquet operator U (λ) always possesses degenerate Floquet
states throughout the adiabatic cycle. For each quasienergy εn,
we can thus define a column vector containing all of its de-
generate Floquet eigenstates as |εn〉 ≡ (|εn,1〉, · · · , |εn,kn

〉)T ,
where kn is the number of degeneracy associated with εn. As
detailed in Appendix A, the evolution of a Floquet eigenstate
|εn〉 of U (λ0) after one adiabatic cycle is given by

|εn(λτ )〉 = P exp

(
−i

∮
[An + �n + εnT ]dλ

)
|εn(λ0)〉,

(2)
where P is the path ordering operator, An and �n are defined
in Appendix A, and the closed integration is used since the
Hamiltonian returns to itself after one adiabatic cycle.

The first term in the exponential of Eq. (2) is the non-
Abelian Berry matrix, while the second term represents the
explicit monodromy [32,33], i.e., permutation/braiding in the
degenerate subspace, induced by the holonomy. The summa-
tion of the first two terms gives rise to the total non-Abelian
geometric phase of the system, whereas the last term denotes
the dynamical phase contribution. In particular, since the
geometric phase appears as a matrix, Eq. (2) may in general
induce a nontrivial rotation of |εn(λ0)〉 within the degenerate
subspace, so that |εn(λ0)〉 and |εn(λτ )〉 are not simply related
by an overall phase as in the nondegenerate (Abelian) case.
This is the basic idea behind holonomic and topological
quantum computation (HQC and TQC), which we have now
extended to Floquet systems. Equation (2) also makes it clear
why holonomic quantum computation with topologically zero
modes and π modes are of special interest: the dynamical
phase contribution can be clearly separated out if the zero or
π modes persist throughout the adiabatic process. That is, the
dynamical phase − ∫ λτ

λ0
εnT dλ = MεnT is equivalent to zero

given that εn = 0 or π/T and that M is even (that is, if the
adiabatic process takes even multiples of driving periods).

III. DESCRIPTION OF THE MODEL

The general model we will be using throughout this
work describes a 1D time-periodic p-wave superconducting
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superlattice with alternating real and imaginary hopping as
well as pairing at every half period, i.e.,

H (t ) =
{
H1 for (m − 1)T < t � (m − 1/2)T

H2 for (m − 1/2)T < t � mT
, (3)

H1 =
∑

i

(−Jintra,ic
†
B,icA,i − Jinter,ic

†
A,i+1cB,i

+�intra,ic
†
B,ic

†
A,i + �inter,ic

†
A,i+1c

†
B,i + H.c.),

(4)
H2 =

∑
i

(−ijintra,ic
†
B,icA,i − ijinter,ic

†
A,i+1cB,i

+ iδintra,ic
†
B,ic

†
A,i + iδinter,ic

†
A,i+1c

†
B,i + H.c.),

where cA,i (cB,i) and c
†
A,i (c†B,i) denote the fermion creation

and annihilation operators at sublattice A (B) of lattice site
i, respectively, Jintra,i , Jinter,i , jintra,i , and jinter,i denote intra-
and interlattice hopping strength at site i at different halves
of the period, �intra,i , �inter,i , δintra,i , and δinter,i are the intra-
and interlattice pairing strength at site i at different halves
of the period. The total number of lattice sites is denoted
as N , which is finite in our actual calculations under open
boundary conditions. By construction, T is the time period
of the above periodically quenched Hamiltonian. Unless oth-
erwise specified, we take Jintra,i = J1, Jinter,i = J2, jintra,i =
j1, jinter,i = j2, �intra,i = �1, �inter,i = �2, δintra,i = δ1, and
δinter,i = δ2 for all i = 1, · · · , N . Each of H1 or H2 itself
depicted in Eq. (4) represents a static dimerized Kitaev chain.
In the absence of sublattice degree of freedom, i.e., by taking
J1 = J2, �1 = �2, j1 = j2, and δ1 = δ2, Eq. (3) reduces to
a time-periodic Kitaev Hamiltonian, which is known to pos-
sess Majorana zero edge modes [1] under suitable parameter
values. Due to the sublattice degree of freedom, the SSH-like
zero (quasi) energy edge modes [18] are also expected.

In general, Kitaev- and SSH-like zero edge modes will
compete with each other, and only one of them can exist for
a given set of system parameters. This competition can be
well understood in terms of an integer topological invariant
[15,19,20]. On the other hand, since our system is periodically
quenched, Kitaev- or SSH-like edge modes at quasienergy
π/T may also exist, which are governed by a separate integer
topological invariant [34]. As a result, while only one type
of edge modes can emerge at quasi-energy zero or π/T , it
is possible to find certain parameter windows for which two
different types of edge modes coexist, one at quasienergy zero,
while the other at quasienergy π/T [14,15].

A. Symmetry analysis

To gain more insights into our working model, we first
rewrite Eq. (4) in the Nambu-momentum representation as
follows:

Hl =
∑
k>0

�
†
khl,k�k,

h1,k = −τzJ (k) · σ + τy�(k) · σ, (5)

h2,k = −j (k) · σ + τxδ(k) · σ.

where �
†
k = (c†A,k, c

†
B,k, cA,−k, cB,−k ), l ∈ {1, 2}, σi and τi are

Pauli matrices in the sublattice and particle-hole degrees of

freedom, respectively. Other terms used above are given by

J (k) · σ = (J1 + J2 cos k)σx − J2 sin kσy,

j (k) · σ = (j1 − j2 cos k)σy − j2 sin kσx,
(6)

�(k) · σ = (�1 − �2 cos k)σy − �2 sin kσx,

δ(k) · σ = (δ1 − δ2 cos k)σy − δ2 sin kσx.

To analyze the symmetry, it is convenient to consider the
momentum space Floquet operator in a symmetric time frame
[9,29,30,35] as

Uk = F̂kĜk, (7)

F̂k = exp(−ih1,kT /4) × exp(−ih2,kT /4),
(8)

Ĝk = exp(−ih2,kT /4) × exp(−ih1,kT /4).

It can be checked that Eq. (7) possesses sublattice chiral
symmetry since �F̂k�

† = Ĝ
†
k with � = σz [9,29]. As ex-

pected for a typical superconducting system, Eq. (7) also
possesses particle-hole symmetry given by PUkP−1 = U−k ,
where P = τxK and K is the complex conjugation operator
[15,34]. The presence of both chiral and particle-hole sym-
metries also implies the existence of time reversal symmetry
dictated by the operator T = σzτxK, which is easily verified
in the symmetric time frame according to T h(k, t )T −1 =
h(−k, T − t ), where h(k, t ) is the full time-dependent Hamil-
tonian depicted by Eq. (3) in the momentum space [15,34].
Our working system thus belongs to the BDI class according
to the Altland-Zirnbauer classification scheme [36], which is
characterized by a Z × Z topological invariant [34].

B. Z × Z topological invariant

As a result of the chiral symmetry, we can identify the Z ×
Z topological invariants by combining some techniques from
Refs. [19,29,30]. First, we change Eq. (5) to a canonical basis
[19] by applying a unitary transformation with

U = (1 + σx ) + τz(1 − σx )

2

(1 + τx ) + σz(1 − τx )

2
, (9)

so that U †�U = τz. Next, we follow Ref. [30] and write F̂k in
this basis as a block matrix, i.e.,

F̂kˆ =
(

a(k) b(k)

c(k) d(k)

)
, (10)

where each block is a 2 × 2 matrix.
The number of edge states at quasienergy zero and π can

then, respectively, be found by calculating the topological
invariants [30]

ν0 = 1

2π i

∫ π

−π

dkTr

(
b−1 d

dk
b

)
,

(11)

νπ = 1

2π i

∫ π

−π

dkTr

(
d−1 d

dk
d

)
.

The topological invariants ν0 and νπ under some represen-
tative parameter values are depicted in Fig. 2, along with
their associated Floquet eigen-spectrum under open boundary
conditions (OBC) [37]. There, ν0 = 1 (νπ = 1) is associated
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FIG. 2. [(a) and (b)] Topological invariants ν0 (blue) and νπ (red)
vs the system parameters, predicting totally three pairs of Majorana
edge states, with two of them forming a pair of SSH-like edge modes.
[(c) and (d)] The associated Floquet spectrum under OBC, where the
left and right localized edge states are marked with green crosses
and red circles, respectively. The system parameters are chosen as
j1 = δ1 = δ2 = 0, J1 = �1 = J2 = �2 = π/4 [(a) and (c)], j2 = π

[(b) and (d)].

with the presence of Kitaev-like edge states at quasienergy
zero (π/T ), which predicts only one Majorana zero (π ) edge
mode at each edge. On the other hand, SSH-like edge states,
being complex-fermionic in nature, can be broken down into
two Majorana zero (π ) modes and thus emerge whenever
ν0 = 2 (νπ = 2). The parameter window for which ν0 = 2 and
νπ = 1 will be used in this work, because the coexistence of
Kitaev- and SSH-like edge states will prove to be essential for
our encoding and manipulation of the logical qubits we obtain.

IV. EDGE-MODES BASED QUBIT ENCODING

A. Edge modes in the Majorana representation

In Sec. III B, we have shown that for certain parameter
windows, two different species of edge modes, originating
from sublattice and particle-hole symmetry-protected topol-
ogy, respectively, may coexist on one single quantum wire. To
elucidate on the application of these edge modes for quantum
computation, it is convenient to first define (Hermitian) Majo-
rana operators as follows:

γ α
s,i = cs,i + c

†
s,i , γ

β

s,i = i(cs,i − c
†
s,i ), (12)

where s ∈ {A,B} and i = 1, · · · , N . Moreover, to simplify
our analysis, we will take the following parameter val-
ues: j1 = δ1 = δ2 = 0, J1T = J2T = �1T = �2T = π/2,
and j2T = 2π , which from here onwards shall be referred to
as the ideal case. It should be stressed, however, that such
fine tuning is not necessary in the actual implementation, and
the results we present in the following still hold under small
deviations from the ideal case.

In the ideal case, Eq. (4) can be written in terms of
Majorana operators as

H1T =
∑

i

i
π

2

(
γ α

B,iγ
β

A,i + γ α
A,i+1γ

β

B,i

)
,

(13)
H2T = −

∑
i

iπ
(
γ α

A,i+1γ
α
B,i + γ

β

A,i+1γ
β

B,i

)
,

which is graphically represented in Fig. 1(e). We can then find
exact expressions for a pair of Majorana π modes and two
pairs of Majorana zero modes given by

γ L
π = 1√

2

(
γ

β

A,1 + γ α
B,1

)
, γ R

π = 1√
2

(
γ

β

A,N − γ α
B,N

)
,

γ L
0,1 = γ α

A,1, γ R
0,1 = 1√

2

(
γ

β

A,N + γ α
B,N

)
, (14)

γ L
0,2 = 1√

2

(
γ

β

A,1 − γ α
B,1

)
, γ R

0,2 = γ
β

B,N ,

which satisfy

U†γ s
πU = −γ s

π , U†γ s
0,lU = γ s

0,l , (15)

where s ∈ {L,R}, l ∈ {1, 2}, and U = exp(−iH2T/2) ×
exp(−iH1T/2) is the Floquet operator. Take the edge modes
localized at the left end as examples. The π mode γ L

π is a
superposition of two Majorana operators involving both A

and B sublattices and is exclusively localized at the very first
lattice. The two zero modes γ L

0,1 and γ L
0,2 are also localized

at the first site, one involving the real part of cA,1 only and
the other as a different superposition of the two Majorana
operators involving both A and B sublattices.

The pair of Majorana π modes at opposite ends can be
fused to form a nonlocal fermion fπ = γ L

π + iγ R
π . On the

other hand, at each end of the wire, there are two Majorana
zero modes as shown above. They can locally form a fermion
(hence the SSH-like zero edge modes), which can be denoted
by f L

0 = γ L
0,1 + iγ L

0,2 at the left edge (or f R
0 = γ R

0,1 + iγ R
0,2

at the right edge) [38]. Our encoding scheme elaborated
below shall use both the nonlocal fermion and the two local
fermions.

B. Qubit encoding

Given that the system should preserve the total fermion
parity, the three edge fermions defined above can be ex-
ploited to encode up to two logical qubits. Let |nL

0 nπnR
0 〉 be

a simultaneous eigenstate of three fermion parity operators
Pπ = iγ L

π γ R
π , PL

0 = iγ L
0,1γ

L
0,2, and PR

0 = iγ R
0,1γ

R
0,2. Then, by

definition we have

Pπ

∣∣nL
0 nπnR

0

〉 = (−1)nπ
∣∣nL

0 nπnR
0

〉
,

PL
0

∣∣nL
0 nπnR

0

〉 = (−1)n
L
0
∣∣nL

0 nπnR
0

〉
, (16)

PR
0

∣∣nL
0 nπnR

0

〉 = (−1)n
R
0
∣∣nL

0 nπnR
0

〉
,

where nπ, nL
0 , nR

0 ∈ {0, 1}. There are now eight simulta-
neous eigenstates of Pπ , PL

0 , and PR
0 . The total parity

conservation divides this eight-dimensional Hilbert space
into two four-dimensional parity preserving subspaces. The
odd and even parity subspace are, respectively, spanned by
{|001〉, |010〉, |100〉, |111〉} and {|000〉, |011〉, |110〉, |101〉}.
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Without loss of generality, in this work we assume that
the system is initialized in the even parity subspace. This
allows us to define the four qubit basis states with |00〉 ≡
|000〉, |01〉 ≡ |011〉, |10〉 ≡ |110〉, and |11〉 ≡ |101〉. These
four qubit states, which represent the basis states of two
logical qubits, are related to each other by

|01〉 = γ L
π γ R

0,1|00〉, |10〉 = γ L
0,2γ

L
π |00〉,

|11〉 = γ L
0,2γ

R
0,1|00〉. (17)

V. HOLONOMIC QUANTUM COMPUTATION
WITH EDGE MODES

Having shown how logical qubits can be encoded in our
system, we now investigate which logical gate operations can
be implemented. For Majorana-based qubits, topologically
protected gate operations can be carried out through braiding
between a pair of Majorana modes [4]. Assuming that all
pairs of Majorana modes in a given system can be braided,
all Clifford, i.e., Hadamard, CNOT, and phase, gates can in
principle be implemented [4,39,40]. However, in many pro-
posed systems hosting Majorana modes, especially those in
1D setups, braiding some pairs of Majorana modes may be
challenging, especially if they are separated too far apart. For
example, in 1D systems such as those studied in Refs. [16,41],
a single qubit requires two pairs of Majorana modes located
at two opposite edges. As such, braiding one Majorana mode
from one edge with that from the other edge may be quite
difficult to carry out in practice, which in turn hinders the
realization of universal quantum computation.

Recognizing that relying exclusively on nonlocal Majorana
qubits is still a big challenge for quantum computation pur-
poses, our qubit encoding scheme outlined in the previous
subsection represents a hybrid scenario with both local and
nonlocal fermions. The advantage of involving local fermions
in our encoding is that it allows more pairs of Majorana modes
to be easily braided. As seen below, this feature leads to the
implementation of a larger set of gate operations, at least in
principle. In the following, we explicitly present the protocols
to implement some gate operations by braiding between dif-
ferent pairs of Majorana modes. This is done by adiabatically
deforming the system’s Hamiltonian in closed cycles, in the
spirit of holonomic quantum computation [42,43].

A. Phase gate and Pauli Z gate

With the two-qubit encoding introduced in Sec. IV B,
single phase gate and Pauli Z gate (up to a global phase factor)
on the first or second qubit individually can be obtained by
braiding γ L

0,1 and γ L
0,2 or braiding γ R

0,1 and γ R
0,2 once and twice,

respectively. In terms of braiding unitaries Us , the phase and
Pauli Z gate are, respectively, Ps ≡ Us = exp [(π/4)γ s

0,2γ
s
0,1]

and Zs ≡ U 2
s = exp [(π/2)γ s

0,2γ
s
0,1], where s = L (s = R).

This can be verified by applying Ps and Zs directly to Eq. (17),
with the obvious identity

exp
(
θγ s

0,1γ
s
0,2

) = cos θ + sin θγ s
0,1γ

s
0,2. (18)

Indeed, identity (18) can also be employed to see that Us

satisfies the usual relation U
†
s γ

s
0,1Us = −γ s

0,2 and U
†
s γ

s
0,2Us =

γ s
0,1.

We now present below the details of our protocol to realize
the braiding unitary Us . Starting with the Hamiltonian of
Eq. (3), each step below amounts to varying the coupling
between pairs of lattice sites, whose effect in Majorana rep-
resentation is illustrated in Fig. 3. In order to simplify our
discussion, we focus on the ideal case, which allows us to keep
track of the analytical solutions at the end of each step. As
will be shown in our numerics later on, however, the result of
our protocol still holds even if we tune the system parameters
away from the ideal case. Furthermore, we will only present
the protocol to braid γ L

0,1 and γ L
0,2 (to find UL). Braiding

γ R
0,1 and γ R

0,2 can be accomplished in the same fashion, by
applying our considerations to the right edge instead. For each
step elaborated below, the adiabatic parameter φ is slowly
increased at the beginning of each driving period, starting
from 0 and ending at π/2 after a total of even number of
driving periods. We only briefly elucidate the output of each
step, thus leaving more technical details in Appendix B.

Step 1. With H1 untouched, we start the procedure by
varying jinter,1T = π (1 + cos φ), δinter,1 = −π (1 − cos φ),
jintra,1T = δintra,1T = π sin φ, where φ is the adiabatic pa-
rameter (also in all other steps below). By writing down the
resulting Hamiltonian in terms of Majorana operators, as pre-
sented in Appendix B, this step is shown to adiabatically move
γ L

0,2 and γ L
π to the second lattice site, i.e., 1√

2
(γ β

A,1 ± γ α
B,1) to

1√
2
(γ β

A,2 ± γ α
B,2).

Step 2. Next, we vary (via φ) jinter,1T = −δinter,1T =
π cos φ, jintra,1T = π (1 + sin φ), δintra,1T = π (1 − sin φ),
Jintra,1T = π

2 (1 − sin φ), �intra,1T = π
2 (1 + sin φ), and

Jinter,1T = �inter,1T = π
2 cos φ. This step results in moving

γ L
0,1 to the second lattice site, i.e., changing γ L

A,1 to γ L
A,2.

Step 3. We continue by varying jintra,1T = π (1 + cos φ),
δintra,1T = π (1 − cos φ), jinter,1T = −δinter,1T = −iπ sin φ.
At the end of this step, γ L

π = 1√
2
(γ α

A,1 + γ
β

B,1) and γ L
0,2 =

1√
2
(γ α

A,1 − γ
β

B,1). That is, γ L
π and γ L

0,2 return to the first lattice
site, but they have transformed to different superpositions of
Majorana operators.

Step 4. This step amounts to separating γ L
0,2 from γ L

π ,
which is accomplished by tuning Jintra,1T = π

2 (1 − cos φ)

and �intra,1T = π
2 (1 + cos φ), such that γ L

π = γ
β

B,1 and γ L
0,2 =

γ α
A,1 at the end of this step.

Step 5. In this step, γ L
0,1 and γ L

π are turned into superpo-
sitions of two Majorana operators. This is done by tuning
jinter,1T = −δinter,1T = −π exp [i(π/2 + φ)] and Jinter,1T =
�inter,1T = π

2 sin φ, which leads to γ L
π = 1√

2
(γ β

A,2 + γ α
B,2)

and γ L
0,1 = − 1√

2
(γ β

A,2 − γ α
B,2) at the end of the step.

Step 6. Finally, H1 and H2 are returned to their orig-
inal forms. This is done by tuning jintra,1T = δintra,1T =
π cos φ, jinter,1T = π (1 + sin φ), and δinter,1T = −π (1 −
sin φ), which results in γ L

π = 1√
2
(γ β

A,1 + γ α
B,1) and γ L

0,1 =
− 1√

2
(γ β

A,1 − γ α
B,1) at the end of the step.

In the Majorana representation, the above six steps, as
depicted in Fig. 3, result in the braiding transformation γ L

0,1 →
−γ L

0,2 and γ L
0,2 → γ L

0,1, while leaving the other Majorana
modes invariant. We have thus achieved the braiding unitary
UL necessary to construct PL and ZL gates as claimed above.
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FIG. 3. Schematic of the holonomic protocol to braid γ L
0,1 and γ L

0,2. Only the first two lattice sites are shown. Red and blue ellipses represent
sublattice A and B, respectively, with two circles at each ellipse being the associated Majorana operators. Colored circles denote the Majorana
modes as described in the inset. Some Majorana modes are superposition of two Majorana operators, which are represented by half-colored
circles. Black solid and gray dashed lines denote the coupling between two Majorana operators due to H2 and H1, respectively.

Figures 4(a) and 4(b) depict computational examples via
the evolution of Majorana correlation functions between the
three involved Majorana modes in the protocol. There, the
initial state is chosen to be |+〉 = 1/

√
2(|01〉 + |10〉), so that

〈iγ L
0,1γ

R
0,1〉 = 〈iγ L

0,2γ
R
0,2〉 = 〈iγ R

π γ L
π 〉 = 1, with any other cross

correlation functions being zero. The success of the protocol is
signified by the change in the cross correlations 〈iγ L

0,1γ
R
0,2〉 and

〈iγ L
0,2γ

R
0,1〉, which become 1 or −1 at the end of the protocol.

The shown correlation functions in the computational exam-
ple confirm the successful implementation of the braiding
unitaries UL and UR . It should be emphasized that the system
parameters used in the computational example have been
tuned away from the ideal case, so fine tuning of the system
parameters is indeed unnecessary.

In Fig. 4(c), we plot the eigenphase spectrum of the two-
period Floquet operator U2, where the eigenphase ε2 satis-
fies U2|ε2〉 = exp (−iε2T )|ε2〉 for a given eigenstate |ε2〉. In
particular, it can be observed that a large quasienergy gap
exists between the bulk and the zero edge states throughout
the computation protocol. This spectral feature is necessary
to ensure that adiabaticity condition may hold during the
holonomic process. Indeed, we have checked that under the
timescale used in our numerics, the diabatic error, which
is obtained by projecting the final states onto the subspace
spanned by the initial Majorana modes, is of order 10−4 or
smaller.

Apart from diabatic error, another source of error that may
arise in the physical implementation of the aforementioned
protocol is caused by the imperfection in tuning each adiabatic
parameter φ perfectly from 0 to π/2 at each step of the
protocol. However, by realizing that the result of our protocol
is determined by the solid angle formed by the holonomic
path in the parameter space [8,61], a sufficiently small error
in the end points of the adiabatic parameter at each step

of the protocol will only result in a small deformation of
the holonomic path, which on average tends to preserve its
resulting solid angle. As a result, our protocol at least enjoys
the expected robustness characteristic of a holomonic compu-
tation protocol.

B. Hadamard gate and Pauli X gate

Upon implementation of phase gate and Pauli Z gate, we
will now present the implementation of Hadamard gate (H)
and Pauli X gate with another set of braiding operations, i.e.,
the braiding between γ L

π and γ L
0,2 or between γ R

π and γ R
0,1.

It is again straightforward to verify, by using the encoding
relations in Eq. (17), that VL = exp[(π/4)γ L

π γ L
0,2] ≡HLZL,

XL = V 2
LZL = exp[(π/2)γ L

π γ L
0,1], VR = exp[(π/4)γ R

π γ R
0,1] ≡

HRZR , and XR = V 2
RZR = exp[(π/2)γ R

0,2γ
R
π ]. That is, the

braiding unitary Vs realizes the product of the Hadamard gate
and the Z gate, which can be further used to realize the X gate
by combining it with the Pauli Z gate described in Sec. V A.

In the following, we propose that braiding between γ L
π and

γ L
0,2 (and similarly between γ R

π and γ R
0,1) can be accomplished

in seven steps. Similar to the braiding procedure described
earlier in Sec. V A, each step amounts to adiabatically de-
forming the system Hamiltonian so as to move the Majorana
modes around different lattice sites (as depicted in Fig. 5).
Except for steps 3 and 6 below, such adiabatic deformation is
characterized by the adiabatic parameter φ, which is slowly
varied at the beginning of each new period, such that it starts
at φ = 0 and ends at φ = π/2 at each step. In steps 3 and
6, we adopt a different adiabatic procedure, which follows
a technique introduced earlier by us in Ref. [16]. In these
steps, we introduce a different adiabatic parameter s, which is
tuned every other period. This procedure amounts to creating a
non-Abelian rotation in the subspace spanned by γ L

0,2 and γ L
π ,
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FIG. 4. Evolution of the Majorana correlation functions under the implementation of the protocol described in Secs. V A and V B to
braid (a) γ L

0,1 and γ L
0,2, (b) γ R

0,1 and γ R
0,2, (c) γ L

0,2 and γ L
π , or (d) γ R

0,1 and γ R
π . (c) and (f) show the evolution of the instantaneous eigenphase

spectrum associated with two-period Floquet operator U2 under the adiabatic parameter tuning described in Secs. V A and V B. For the
shown computational example, we have set system parameters with significant deviations from the ideal case, with J2T = π/2 + 0.18, J1T =
π/2 + 0.14, j1T = 0.06, j2T = 2π + 0.19, �2T = π/2 − 0.24, �1T = π/2 + 0.1, δ1T = −0.04, and δ2T = 0.12. The lattice size is chosen
to be N = 100.

which is possible due to the fact that these Majorana modes
will now adiabatically follow the two-period Floquet operator
U 2, which commutes with both γ L

0,2 and γ L
π . For simplicity, we

will again present the steps of our protocol by focusing on the
ideal case and leaving more technical details in Appendix C.

Step 1. In this step, γ L
0,2 and γ L

π are moved to the n + 1th
lattice site. In order to reduce unwanted non-Abelian rotation
between the two degenerate modes γ L

0,1 and γ L
0,2, it is better to

take large n > 2. Certainly the value of n is also limited by
the actual lattice size in order to avoid potential overlap with
Majorana modes at the right edge. As detailed in Appendix C,

we find that this step can be easily carried out by adiabat-
ically tuning (jinter,k + δinter,k )T = 2π cos φ and jintra,kT =
δintra,kT = π sin φ, with (jinter,k − δinter,k )T = 2π , where k =
1, 2, . . . , n. This results in γ L

π = 1√
2
(γ β

A,n+1 + γ α
B,n+1) and

γ L
0,2 = 1√

2
(γ β

A,n+1 − γ α
B,n+1) at the end of this step, both can

be sufficiently away from the other zero mode γ L
0,1 on the left

edge.
Step 2. In this step, we move γ L

0,2 and γ L
π to the nth

lattice site, while at the same time exchanging their su-
perposition structure, i.e., γ L

0,2 and γ L
π , respectively become

FIG. 5. Schematic of the holonomic protocol to braid γ L
π and γ L

0,2. Only the first three lattice sites are shown. Blue colored circles denote
the two-period Majorana modes due to the superposition of Majorana zero and π modes. The meaning of the other symbols is the same as
those in Fig. 3.
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symmetric and antisymmetric superpositions of two Majorana
operators. This is accomplished by adding a potential bias
at sublattice A in the (n + 1)th lattice site with strength
V T = 2π sin φ, such that H1 = · · · + V c

†
A,n+1cA,n+1, and

further tuning jinter,nT = −δinter,nT = π cos φ, so that γ L
π =

1√
2
(γ α

B,n − γ
β

A,n) and γ L
0,2 = 1√

2
(γ β

A,n + γ α
B,n) at the end of the

step.
Step 3. As outlined before, this step amounts to introducing

a non-Abelian rotation in the subspace spanned by zero and
π edge modes, both regarded as zero modes of U2. This
is accomplished by varying V T = π (1 − f (s)), jintra,nT =
δintra,nT = π

2 (1 − f (s)), and jinter,nT = π (1 + f (s)), where
V T is the potential bias introduced in step 2, and f (s)
is a rather arbitrary function which increases from −1 to
1 as the adiabatic parameter s is adiabatically tuned every
other period. While difficult to solve analytically, we have
numerically verified that at the end of the step, γ L

π = γ
β

A,n and
γ L

0,2 = −γ α
B,n. It should be noted that while we keep the same

notations as before, γ L
π and γ L

0,2 are no longer Majorana π and
zero modes with respect to U , but they are still Majorana zero
modes of U2 [16].

Step 4. We further tune the system according to
(jinter,n + δinter,n)T = 2π cos φ, (jinter,n − δinter,n)T = 2π ,
and jintra,nT = δintra,nT = π sin φ. This results in moving γ L

π

and γ L
0,2 to γ

β

A,n+1 and −γ α
B,n+1, respectively.

Step 5. This step is identical to step 2 in terms of Hamilto-
nian manipulation, and it now moves γ L

π and γ L
0,2 to γ α

B,n and

γ
β

A,n, respectively.
Step 6. This step is identical to step 3. Namely, the system

parameters are parameterized by the adiabatic parameter s as
described in step 3, which is only tuned every other period.
Because γ L

π and γ L
0,2 are already superposition Majorana zero

and π modes, our numeric shows that they transform as γ L
π =

1√
2
(γ β

A,n − γ α
B,n) and γ L

0,2 = − 1√
2
(γ α

B,n + γ
β

A,n) at the end of

the step. That is, γ L
π and γ L

0,2 are now, respectively, Majorana
zero and π modes of U .

Step 7. As the final step, we need to return the
Hamiltonian to its original form. This is done by tuning
(jinter,k + δinter,k )T = 2π sin φ, (jinter,k − δinter,k )T = 2π , and
jintra,kT = δintra,kT = π cos φ, where k = 1, 2, . . . , n. This
step also moves γ L

π and γ L
0,2 back to the first site. At the

end of the step, we find that γ L
π → 1√

2
(γ β

A,1 − γ α
B,1) (which

is the initial γ L
0,2) and γ L

0,2 → − 1√
2
(γ β

A,1 + γ α
B,1) (which is the

initial γ L
π multiplied by −1), which completes the braiding

operation.
The seven steps above are schematically depicted in Fig. 5,

with the net outcome γ L
0,2 → −γ L

π and γ L
π → γ L

0,2. Even with
system parameters slightly deviating from the ideal values,
our numerical results show that the aforementioned protocol
still yields the desired braiding operation with a very good
fidelity, as summarized in Figs. 4(d) and 4(e). There, we
take the same initial state and parameter values as those in
Sec. V A, n = 4 in step 1, and f (s) = cos (sπ ) in step 3 and
step 6, where s decreases slowly every other period from 1
to 0. The success of the protocol is signified by the change
in cross correlations 〈iγ R

π γ L
0,2〉 and 〈iγ L

π γ R
0,2〉 (〈iγ R

0,1γ
L
π 〉 and

〈iγ L
0,1γ

R
π 〉) to 1 or −1 for braiding between γ L

0,2 and γ L
π (γ R

0,1

and γ R
π ).

In Fig. 4(f), we have plotted the eigenphase spectrum of
U2 throughout the whole process. In particular, it confirms
that zero and π edge modes maintain a large quasienergy gap
from the instantaneous bulk states throughout the seven steps
of adiabatic manipulation, which is necessary to ensure that
adiabaticity condition remains valid in our protocol. Indeed,
under the timescale used in our numerics, the diabatic error
is found to be very small, i.e., <10−4. Apart from the large
bulk gap, it is also necessary for the eigenphase spectrum to
maintain very small quasienergy splitting between the Majo-
rana modes, so as to ensure that all Majorana modes remain
degenerate with one another and there is no accidental qubit
readout throughout the protocol. The former is also especially
important in steps 3 and 6 of our protocol to ensure that the
non-Abelian rotation between Majorana zero and π modes
arises solely due to geometrical and not dynamical effect.
For these reasons, we have also checked numerically that the
quasienergy splitting of the Majorana modes throughout all
the steps in the whole protocol is of order 10−7 or smaller.

Finally, since Majorana zero and π modes become effec-
tively degenerate during steps 3 and 6 of our protocol due to
the nature of our adiabatic manipulation, one may wonder if
our system becomes more susceptible to errors due to steps
3 and 6. Put another way, will the two Majorana modes
hybridize easily during our adiabatic protocol? To address this
important question, we first note that perturbations capable of
hybridizing zero and π modes must have 2T periodicity. This
requirement is incompatible with the periodicity of the Hamil-
tonian in the absence of the adiabatic manipulation. In steps 3
and 6 of our protocol, our adiabatic manipulation amounts to
only tuning the system parameters that are always modulated
at a period of T . As a consequence, our manipulation itself is
not a dangerous 2T periodic perturbation to hybridize the two
Majorana modes. Thus the main source of errors still comes
from the imperfection of Hamiltonian manipulation.

C. Qubit readout

The last step in a typical quantum computation task is to
readout qubits, which allows one to confirm that a sequence
of gate operations applied on an input qubit indeed gives
the intended outcome. Our system uses three physical qubits
to encode two logical qubits. As elucidated in Sec. IV B,
two of these three physical qubits originate from the chiral
symmetry protected edge states at both ends of the lattice. By
systematically introducing a chiral symmetry breaking term in
the Hamiltonian, the degeneracy of these two edge states can
then be lifted, which thus allows one to distinguish between
the four logical-qubit states according to their quasienergy
values.

To be more explicit, we may add the following symmetry-
breaking terms to the Hamiltonian in Eq. (3):

Hbreak =
∑

i

[(μ1 + μ2)c†A,icA,i + (μ1 − μ2)c†B,icB,i]. (19)

It can be easily verified that Hbreak violates the chiral
symmetry defined in Sec. III A. In particular, μ1 shifts the
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FIG. 6. The four qubit states can be uniquely distinguished by
introducing a chiral symmetry breaking term in the Hamiltonian,
which lifts all degeneracy in their quasienergy values.

quasienergy of both edge states by an equal amount. As
a result, qubit states associated with occupied edge states,
such as |01〉, |10〉, and |11〉, will have different quasienergies
(modulo π/T ) as compared with |00〉, which has neither
fermionic nor Majorana excitations. Moreover, |11〉 will have
different quasienergies (modulo π/T ) as compared with |01〉
and |10〉 since the former has both edge states occupied.
Finally, μ2 introduces a quasienergy difference between the
two edge states, which results in |01〉 and |10〉 having different
quasienergy values. Thus, in the presence of Hbreak, all four
qubit states now have different quasienergy values (modulo
π/T ), as illustrated in Fig. 6. In practice, the difference in
quasienergy can be indirectly probed by, for example, irradi-
ating the system with electromagnetic waves, which results in
qubit-state dependent resonant frequency [44–46].

D. Implementation of simple quantum algorithms

To demonstrate the application of our results presented in
Secs. V A to V C, we now illustrate two simple quantum algo-
rithms realized by the gate operations developed in Secs. V A
and V B. The first one is a simple inversion algorithm, which
can be viewed as a simplified version of the Grover’s search
algorithm [47]. As compared with the latter, our algorithm as-
sumes a special structure of a database which maps a number
z ∈ {1, 2, . . . , 2n} to z̄ = 2n − z. In other words, one needs
to obtain z, given z̄, quantum mechanically. By employing
the quantum circuit in Fig. 7(a), where the oracle operator
is to be defined below, this can be accomplished in just
a single step, similar to its classical counterpart. While it
does not demonstrate the advantage of quantum over classical
computation, this simple example illustrates how quantum
computation works.

To be more explicit, let 	z = (z1, · · · , zn) be a column vec-
tor representing the binary expansion of z, i.e., z = z1 × 20 +
· · · + zn × 2n−1, and define |	z〉 = |z1 · · · zn〉. Next, define the
oracle operator as O = ∏n

i=1 Z
z̄i

i , where Zi is the Pauli Z gate
acting on qubit i, z̄i = zi ⊕ 1, and ⊕ is the addition operation
modulo two. It is now straightforward to show that Fig. 7(a)
indeed maps an input |	0〉 to the desired output |	z〉,

|	0〉 (HZ)
⊗

n

−−−−→
∑

	x
|	x〉 O−−−−→

∑
	x

(−1)	x·	̄z|	x〉

(HZ)
⊗

n

−−−−→
∑
	x,	y

(−1)	x·(	z−	y )|	y〉 =
∑

	y
δ	z,	y |	y〉 = |	z〉, (20)

where we have suppressed any normalization constant for
brevity, 	x · 	y = x1y1 ⊕ · · · ⊕ xnyn, and we have used the fact
that

∑
	x (−1)	x·	y = δ	0,	y .

FIG. 7. (a) Description of our quantum search algorithm with n qubits. (b) Implementation of the algorithm in our system with two logical
qubits. (c) The four different choices for the associated oracle operators in (b).
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To implement the above algorithm in our system, we first
note that a single superlattice is already capable of hosting
two logical qubits, and the two gate operations above, i.e.,
the Z and HZ gates, can be implemented by braiding Ma-
jorana modes according to the protocols outlined in Sec. V A
and V B, respectively. In the two-qubit case, our algorithm is
capable of finding an object from a database of size 22 = 4.
In terms of braiding operations, our circuit and its associated
oracle operator are depicted in Figs. 7(b) and 7(c). Assuming
that all Majorana modes are initialized in |00〉 state, protocol
described in Sec. V B is first carried out to implement HLZL

and HRZR gate operations, which brings our qubit state to
an equal-weight superposition of all qubit basis states. Next,
depending on the input we supply to the black box, the oracle
operator will execute one of the four sets of Pauli ZL and
ZR gates as illustrated in Fig. 7, all of which are achievable
through the protocol developed in Sec. V A. This flips the sign
of the weight of some qubit basis states. Lastly, another HLZL

and HRZR gates are applied to bring our qubit state to the
desired output. This output is then measured by implementing
the readout process described in Sec. 6.

It can be seen that the same oracle can be used to imple-
ment the Deutsch-Jozsa algorithm [48], capable of identifying
whether a particular function is constant, i.e., g(x) = 0 (or
g(x) = 1) for any input x ∈ {1, . . . , 2n}, or balanced, i.e.,
g(x) = 0 for half the inputs and g(x) = 0 for the other half.
To proceed, note that any balanced or constant function can
be expressed as g(x) = 	x · 	z ⊕ k for a fixed but unknown
z ∈ {1, . . . , 2n} and k = 0, 1. Indeed, it can be checked that
g(x) is constant if and only if 	z = 	0, otherwise it is balanced.
Therefore Deutsch-Jozsa algorithm proceeds in the same way
as above, i.e., as depicted in Figs. 7(a)–7(c), with 	x · 	̄z being
now identified as the function g(x). The latter being constant
is thus identified when |1 · · · 1〉 appears as output; any other
output implies g(x) being balanced. In fact, similar braiding-
based oracle has also been used in Ref. [41] for exactly
this purpose, although a minimum of three wires is required
to construct an oracle of size N = 22 = 4 in the setup of
Ref. [41]. By contrast, here we only require a single wire after
exploiting the coexistence of two pairs of MZMs and one pair
of Majorana π modes.

E. Scalability and implementation of entangling gates

Given that two logical qubits are encoded and manipulated
in a 1D setup, it is important to examine the possibility of
scaling up our proposal. There are two routes to scale up. The
first route is to consider many zero modes and π modes in
one single quantum wire. In principle, their coexistence can be
used to encode multiqubit quantum information and it is not
hard to imagine that certain quantum information processing
becomes possible. This is an exciting target but we yet need
to investigate how to braid two particular edge modes out of
many without affecting the rest. The other route for scaling
up is to add more wires arranged in parallel with each other,
as shown in Fig. 8. Edge modes belonging to different wires
can also be braided by turning on hopping and/or pairing
between the wires. The actual braiding protocols between two
such Majorana modes from different wires can be designed
by slightly modifying the protocols introduced in Secs. V A
and V B. For example, braiding Majorana modes marked by
blue and red circles in Fig. 8 can be obtained by directly
applying the protocol of Sec. V A on wire labeled (l), with
step 2 and step 6 being slightly modified by introducing
interwire hopping and pairing in order to move two Ma-
jorana modes from wire (l + 1) to wire (l), as shown in
Fig. 8.

As a promising side finding, in the following we show that
by considering only the two wires (l) and (l + 1) illustrated
in Fig. 8, entangling gates such as CNOT and other controlled-
Pauli gates can be implemented through a series of braiding
and measurement operations only. For brevity, we will only
present the construction of a CNOT gate with the first and
second qubits being the target and control qubits, respectively,
encoded in wire (l), with its Majorana modes denoted as γ

(l),s
0,1 ,

γ
(l),s

0,2 , and γ (l),s
π , where s = L,R. The additional six Majorana

modes in wire (l + 1) give rise to additional three logical
qubits, but for the purpose of implementing controlled-Pauli
gates, only a single qubit encoded by γ

(l+1),L
0,1 and γ

(l+1),L
0,2 will

be used as ancilla, whereas the other two qubits can be used
as additional stabilizer operators. It is further assumed that the
ancilla is prepared in |1〉a , which can be done by following the
protocol of Sec. V C.

FIG. 8. Generalization of our single-wire braiding scheme to an array of wires. Majorana modes can be moved to another site belonging
to the same (blue circle) or different wires (red-magenta circle) by appropriately tuning intra- and interwire hopping and pairing strengths.
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We start by writing the CNOT unitary as U (XL) =
exp [iπ/4(1 − ZR )(1 − XL)], which can be written in terms
of Majorana modes as

U (XL) = exp[iπ/4] × exp
[
iπ/4

(
γ

(l),R
0,1 γ

(l),R
0,2 γ

(l),L
0,1 γ (l),L

π

)]
× exp

[
π/4γ

(l),R
0,1 γ

(l),R
0,2

] × exp
[
π/4γ (l),L

π γ
(l),L

0,1

]
.

(21)

The third and fourth exponentials of U (XL) are simply
the braiding unitaries discussed in Sec. V A and Sec. V B.
On the other hand, the second exponential can be imple-
mented by performing projective measurements on �1 =
γ

(l),R
0,1 γ

(l),R
0,2 γ (l),L

π γ
(l+1),L

0,1 and �2 = iγ (l+1),L
0,1 γ

(l),L
0,1 , followed

by measurement dependent corrections, which are realizable
through braiding [49,50].

To be more explicit, we can write �1 =
1
2 (1 + p1γ

(l),R
0,1 γ

(l),R
0,2 γ (l),L

π γ
(l+1),L

0,1 ) and �2 = 1
2 (1 +

p2iγ (l+1),L
0,1 γ

(l),L
0,1 ), where p1, p2 = ±1 are the measurement

results of �1 and �2, respectively. The effect of the two
measurements can then be written as

�2�1 = 1
4

(
1 − ip1γ

(l),R
0,1 γ

(l),R
0,2 γ (l),L

π γ
(l+1),L

0,2 + p2γ
(l+1),L

0,2 γ
(l),L

0,1

+p1p2iγ (l),R
0,1 γ

(l),R
0,2 γ

(l),L
0,1 γ (l),L

π

)
,

= 1
4

(
1 − ip1γ

(l),R
0,1 γ

(l),R
0,2 γ (l),L

π γ
(l+1),L

0,2

)
× (

1 + p2γ
(l+1),L

0,2 γ
(l),L

0,1

)
, (22)

where we have used iγ (l+1),L
0,1 γ

(l+1),L
0,2 |1〉a = −|1〉a . By fur-

ther applying U1(p2) = exp [−π
4 p2γ

(l+1),L
0,2 γ

(l),L
0,1 ], Eq. (22)

becomes

U1(p2)�2�1 = 1

2
√

2

(
1 + ip1p2γ

(l),R
0,1 γ

(l),R
0,2 γ

(l),L
0,1 γ (l),L

π

)
.

(23)

Note that Eq. (23) is equal to the second exponential of
U (XL), up to a constant, provided p1p2 = 1. If p1p2 = −1,
further unitary U2 = exp [π

2 γ
(l),R

0,1 γ
(l),R

0,2 ] × exp [π
2 γ

(l),L
0,1 γ (l),L

π ]
is applied to Eq. (23), which leads also to the desired result.

In our system, �1 can be carried out by first braiding γ (l),L
π

and γ
(l+1),L

0,2 , measuring �′
1 = γ

(l),R
0,1 γ

(l),R
0,2 γ

(l+1),L
0,2 γ

(l+1),L
0,1 via

the introduction of chiral symmetry breaking terms on the left
half of wires (l) and (l + 1), then finally undoing the braiding
between γ (l),L

π and γ
(l+1),L

0,2 . Likewise, �2 is carried out by first

braiding γ
(l),L

0,1 and γ
(l+1),L

0,2 , measuring �′
2 = iγ (l+1),L

0,1 γ
(l+1),L

0,2
by introducing chiral symmetry breaking terms on wire (l +
1), then undoing the braiding between γ

(l),L
0,1 and γ

(l+1),L
0,2 .

After some algebra, U (XL) can finally be expressed as

U (XL) = 2 exp[iπ/4(2 − p1p2)]

× exp
[
π/4(2 − p1p2)γ (l),R

0,1 γ
(l),R

0,2

]
× exp

[
π/4p1p2γ

(l),L
π γ

(l),L
0,1

]
× exp

[
π/4(p2 − 1)γ (l),L

0,1 γ
(l+1),L

0,2

]
×�′

2 × exp
[
π/4γ

(l),L
0,1 γ

(l+1),L
0,2

]
× exp

[
π/4γ

(l+1),L
0,2 γ (l),L

π

]
×�′

1 × exp
[
π/4γ (l),L

π γ
(l+1),L

0,2

]
, (24)

where p1, p2 = ±1 are now the measurement results of �′
1

and �′
2, respectively. Other controlled-Pauli gates U (PL) =

exp [iπ/4(1 − ZR )(1 − PL)] can be implemented similarly,
as PL can be expressed as a product of two Majorana modes.

VI. DISCUSSION

A. Experimental consideration

Similar to other topological superconducting wires, it is
expected that our model Eq. (3) can be potentially engi-
neered in either cold-atom [12] or proximitized semiconduc-
tor [51,52] platforms, although such implementations may not
be straightforward. In a cold-atom setup, such a 1D model
is formed by embedding optically trapped fermions inside
a three dimensional Bose-Einstein condensate (BEC). The
hopping and pairing terms are provided, respectively, by the
two Raman lasers forming the optical lattice and the radio
frequency (rf) field coupling the fermions with the surround-
ing BEC reservoir [12]. In this context, the pairing and the
hopping are in principle highly controllable. Sublattice degree
of freedom can then be realized by using spatially periodic
Raman lasers and rf field, which then allow two adjacent
fermions to experience different hopping and pairing strength.
Manipulation of the hopping and pairing strength to carry
out the protocols described in Secs. V A and V B should be
feasible by tuning the Rabi frequencies of the Raman lasers
and rf field, respectively. In particular, switching between real
and imaginary hopping and pairing parameters, i.e., between
H1 and H2, can be done through switching between real
and imaginary Rabi frequencies, which can be realized by
appropriately setting the electric field profiles of the Raman
lasers and rf field. Alternatively, by fixing the electric field
profiles of the Raman lasers and rf field, one could also
switch the phase of the hopping and pairing parameters by
rapidly shaking the optical lattice at every integer multiple of
T/2 [53].

Following the discussion of Ref. [12], the coherence time-
scale of Majorana modes in such cold atom setup can be
extendable to the order of seconds. Meanwhile, given that the
system parameters can be of the order of tens of kilohertz
(kHz) [12], a single period of the system is typically of the
order of 0.1 ms so as to achieve the parameter regime in
which SSH- and Kitaev-like edge states coexist. As shown in
Fig. 4, our braiding protocols are typically completed within
1000–2000 periods to ensure adiabaticity. As a result, the
quantum algorithms described in Sec. V D may take up to 0.8 s
to complete, provided that each gate operation on the first and
second qubits are applied simultaneously, which is possible
since two such gate operations require braiding between two
left Majorana modes or two right Majorana modes only.

In proximitized semiconductor setup, topological super-
conductors are constructed by proximitizing 1D semiconduct-
ing wires with conventional s-wave superconductors [51,52].
In addition, the wire is assumed to have a sufficiently large
spin-orbit coupling and external magnetic field so as to open a
gap in the vicinity of the crossing between the two spin-orbit
bands. The proximitized s-wave superconductivity will then
induce an effective p-wave pairing necessary for the creation
of topological superconductors. In such a setup, however, our
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model might be more difficult to realize due to the necessity
to switch between real and imaginary couplings. Indeed, even
realizing imaginary hopping alone is already challenging in
this setup. A plausible way to simulate our model in this
setup might be to follow the proposal of Refs. [6,49] through
the use of Cooper pair box. In particular, the latter enables
coupling between a pair of Majorana operators to be addressed
directly, thus circumventing the need to realize imaginary
hopping. In Appendix D, we elucidate in detail the possibility
of such Cooper pair boxes to realize Eq. (3). However, since
designing an array of Cooper pair boxes to realize our model
may take up some space and a number of wires to simulate
all the Majorana operators in Eq. (4), it hinders the main
purpose of our proposal to realize qubits in a minimal one
dimensional setup. Therefore, while the use of Cooper pair
boxes might be a good way to verify how our proposal
works in experiment, it might not be a good platform to
scale up our model for possible real life quantum computation
applications. An alternative realization of our model, or at
least a similar model which captures the main features of our
model (coexistence of zero and π edge modes belonging to
different SPT phases) in semiconductor setup thus remains an
interesting open question and is left for future studies.

Assuming that our model can eventually be implemented
in such a semiconductor-superconductor setup, we will now
compare the time-scale required to complete our braiding op-
erations with the typical coherence lifetime of the system. In
particular, the coherence lifetime of Majorana modes in such
a setup has been extensively studied [54–57], with estimates
ranging between the order of tens of nanoseconds [54] at
worst to >1 min at best [55]. On the other hand, typical energy
scale in such a setup is of the order of 0.1 meV (tens of GHz).
As such, a single period of our system should be of the order
of 0.1 ns, and the time needed to complete the above quantum
algorithms via our braiding protocols may be of the order
of hundreds of nanoseconds, which in some cases may not
exceed the coherence lifetime.

B. Comparison with TQC

At first sight, our holonomic braiding-based protocols to
realize quantum gate operations are very similar to typical
approach in TQC. Though TQC is also usually implemented
through adiabatic holonomy, there are two main differences
between TQC and our HQC, which are elucidated in detail
below.

In TQC, the qubits are encoded nonlocally, such as by
using a pair of Majorana modes that are spatially separated,
and are thus protected by any local perturbations. In our
approach, the qubits are encoded both locally (through the
occupation of the SSH edge states) and nonlocally (through
the occupation of the nonlocal Kitaev fermion edge states).
On the one hand, due to the local encoding of our qubits, our
system loses the full topological protection typically offered
in TQC due to the existence of certain local perturbations
that may induce logical errors. On the other hand, since our
qubits also require nonlocal encoding formed by the Majorana
π modes, together with the fact that Majorana π modes and
the SSH zero modes share some space together in the lattice,

most dangerous local perturbations are forbidden by the total
fermion parity symmetry of the system.

An example of such a perturbation would be an onsite
noise acting on one end of the system, which is capable of
hybridizing two local Majorana zero modes and thus causing
a logical Z gate error. However, due to the existence of
Majorana π mode at each end of the lattice, the presence
of such a perturbation would then also cause a parity flip
of the associated nonlocal Kitaev fermion, which is thus
incompatible with the conservation of total fermion parity.
Hybridizing local zero modes in our system without flipping
the parity of the nonlocal fermion thus requires either a very
special local perturbation that will be very unlikely to take
place or a nonlocal perturbation which involves adding onsite
potential at both ends of the lattice simultaneously in the same
spirit as the readout procedure described in Sec. V C.

In terms of how gate operations are carried out, TQC
usually requires that the non-Abelian Berry phase contribution
in Eq. (2) is zero during the holonomic cycle, so that the total
geometric phase arises solely from the explicit monodromy
[32,33]. By writing

γ s
0,a =

∑
D∈{A,B},j∈{1,2,···N},ν∈{α,β}

Cs
a,γ ν

D,j
γ ν

D,j ,

(25)
γ s

π =
∑

D∈{A,B},j∈{1,2,···N},ν∈{α,β}
Cs

π,γ ν
D,j

γ ν
D,j ,

where a ∈ {1, 2} and s ∈ {L,R}, it can be verified that for
all steps involved in Sec. V A (at least in the ideal case),∑

D,j,ν Cs
a,γ ν

D,j+1

d
dφ

Cs
b,γ ν

D,j+1
= 0, where a, b ∈ {π, 1, 2}. This

implies that the protocol presented in Sec. V A indeed con-
tains no Berry phase contribution, and thus shares the same
topological robustness as TQC in this aspect. Indeed, it can
also be verified that replacing cos φ (sin φ) with any function
decreasing from 1 to 0 (increasing from 0 to 1) at each step
in the protocol outlined in Sec. V A does not change the net
result.

On the other hand, the protocol elucidated in Sec. V B
would have also shared this topological robustness if not
for its step 3 and step 6 processes. In these two processes,
non-Abelian Berry phase is necessarily introduced between
γ L

π and γ L
0,2 or between γ R

π and γ R
0,1 to induce rotation between

Majorana zero and π modes. However, we do not view this
feature as a genuine weakness of our quantum computation
protocols, because in actual physical implementation of the
braiding of Majorana modes in any platform so far, certain
degree of control of the system is always needed, and this
allows the implementation of the adiabatic paths to a certain
precision. As the other side of the story, the nontopological
nature of our quantum computation protocols can also be
exploited to realize a T gate required for universal quan-
tum computation [50,58–61], which is otherwise impossible
to construct via topologically protected braiding operations
alone. To appreciate this point we can skip steps 4-6 in the pro-
tocol described in Sec. V B, leading to the net outcome γ L

π →
γ L

π + γ L
0,2 and γ L

0,2 → γ L
0,2 − γ L

π . This outcome is equivalent
to the unitary TL = exp [(π/8)γ L

π γ L
0,2], i.e., the T gate acting

on the first qubit. Similar approach can also be applied to
realize TR , the T gate acting on the second qubit. Finally, it is

165421-13



RADITYA WEDA BOMANTARA AND JIANGBIN GONG PHYSICAL REVIEW B 98, 165421 (2018)

noted that unlike other nontopological proposals for realizing
T gate [50,59,60], which are based on dynamical effect, our
proposal is geometrical in nature and is thus expected to be
more robust.

Aside from examining the robustness of our scheme versus
TQC, it is also important to point out that the novelty of our
quantum computation scheme lies in the use of edge modes.
Because our qubits are made of edge states, they do possess
topological protection against some variations in the system
parameters. This important advantage renders perfect fine
tuning unnecessary and thus in principle provides advantages
over other holonomic quantum computation proposals that do
not rely on topological phases at all [62–68].

VII. CONCLUSION

This work aims to advocate an alternative avenue of quan-
tum computation by use of symmetry-protected edge modes
of topological matter. A periodically driven quantum wire
may host many zero and π edge modes [9–11,13] being either
as Majorana or fermionic excitations. Their dynamical phase
contributions are trivial and hence adiabatic manipulations of
these multiple edge modes associated with Floquet topologi-
cal matter can be used for quantum information processing.
As the first step along this avenue, we exploit the coexis-
tence of three pairs of Majorana edge modes in one single
periodically driven quantum wire, equivalent to obtaining two
local fermions and one nonlocal fermions as topologically
protected edge modes. The three pairs of Majorana edge
modes can be used to encode two logical qubits, protected by
both particle-hole and chiral symmetries. Adiabatic protocols
are designed to simulate the braiding between various pairs of
Majorana modes, which then realizes several gate operations.
A means to readout these qubits is also proposed through
introducing chiral-symmetry breaking terms into the system.
As an encouraging side result, we have also shown that our
system can be scaled up, at least by adding more parallel quan-
tum wires. This then allows the implementation of entangling
quantum gates. To demonstrate the application of our quan-
tum computation schemes, we have also constructed a quan-
tum circuit to implement two simple quantum algorithms,
which requires much less hardware resources as compared
with previous work. We have also briefly discussed potential
realizations of our proposal in experiments. Understanding
that there can be experimental challenges ahead but not yet
identified, we do not claim that any experimental realizations
of this theoretical work would be straightforward at this point.
However, the general features of our proposal, namely, the
coexistence of different SPT phases and qubit encoding and
manipulations, are hoped to motivate future studies on simpler
systems that are easier to experimentally implement. Finally,
a comparison between our approach with that of TQC is also
made.

This paper indicates a possible new paradigm for realiz-
ing many logical qubits with minimal amount of physical

resources on the hardware level. Such kind of possibility, even
still on the theoretical level, is always stimulating towards
the realization of a scalable quantum computer. As another
consideration to scale up our quantum computation protocols,
we call for future studies to explore the feasibility of using
one single quantum wire to host and individually address more
than two logical qubits. A good starting point to achieve this
is to consider systems capable of hosting many Majorana
zero and π modes, such as that considered in Ref. [13].
More follow-up studies to that end will certainly enhance the
marriage of two timely research topics as of today, namely,
quantum computation and Floquet topological matter. Indeed,
this work should also serve as the first step to extend the
idea of TQC to periodically driven systems. Following our
discussion in Sec. VI B, a possible future study is to devise
computation protocols that can braid Majorana zero and π

modes purely through explicit monodromy, so as to unleash
the full topological protection offered by braiding operations.
It is expected that the combination of scalability of our pro-
posal and the fault-tolerance nature of TQC approach may
eventually lead to a full-fledged quantum computer based on
topological edge modes.
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APPENDIX A: DERIVATION OF FLOQUET
NON-ABELIAN BERRY PHASE

Following the notation in Sec. II B, we consider the appli-
cation of U [λ(s)] on |εn[λ(s − 1)]〉 as

U [λ(s)]|εn[λ(s − 1)]〉 = Vn(λ)|εn[λ(s)]〉, (A1)

where we have used the fact that U [λ(s)] serves as a one-
period propagator, combined with the adiabaticity condition
that the state remains in a Floquet eigenstate associated with
quasienergy εn[λ(s)]. Vn(λ) ≡ exp (i�n(λ)) is a kn × kn path
dependent unitary matrix which potentially rotates |εn[λ(s)]〉
in the degenerate subspace, thus generalizing the appearance
of a global phase in the nondegenerate (Abelian) case.

Next, we expand

|εn[λ(s)]〉 =
∑
m

exp (−iεm(λ)T )V †
m(λ)Cm(λ)|εn[λ(s − 1)]〉,

(A2)

where Cm(λ) is another kn × kn matrix that generalizes the
spectral coefficients in the nondegenerate case. The left hand
side of Eq. (A1) can be rewritten as

U [λ(s)]|εn[λ(s − 1)]〉 = U [λ(s)]U [λ(s − 1)]†U [λ(s − 1)]|εn[λ(s − 1)]〉
= exp (−iεn[λ(s − 1)]T )U [λ(s)]U [λ(s − 1)]†|εn[λ(s − 1)]〉
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≈ exp (−iεn[λ(s − 1)]T )

(
I + dU

dλ
U†dλ

)
|εn[λ(s − 1)]〉

≈ exp (−iεn[λ(s − 1)]T ) exp

(
dU
dλ

U†dλ

)
|εn[λ(s − 1)]〉, (A3)

We can then combine Eqs. (A2) and (A3) with Eq. (A1), and apply both sides with 〈εn[λ(s − 1)]| from the left to obtain

〈εn[λ(s − 1)]| exp

(
dU
dλ

U†dλ

)
|εn[λ(s − 1)]〉 = Cn, (A4)

where we have used the fact that matrix Cn is only nondiagonal within a degenerate subspace, so that 〈εn[λ(s − 1)]|Cm|εm[λ(s −
1)]〉 = 0 if m = n. By spectral decomposing dU

dλ
U† and explicitly expanding the column vector defined in Sec. II B, we can derive

the matrix coefficient of Cn as

Cn,αβ = exp

(
〈εn,α| d

dλ
|εn,β〉dλ

)
. (A5)

Finally, by recursively combining Eqs. (A2) and (A5), we arrive at

|εn(λτ )〉 = P exp

(
−i

∫ λτ

λ0

[An + �n + εnT ]dλ

)
|εn(λ0)〉, (A6)

where P is the path ordering operator, and An,α,β = i〈εn,α| d
dλ

|εn,β〉 is the non-Abelian Berry connection.

APPENDIX B: EVOLUTION OF MAJORANA MODES DURING γ L
0,1 AND γ L

0,2 BRAIDING PROTOCOL

For all the steps presented in Sec. V A, we are able to analytically keep track the evolution of all Majorana modes by
recursively solving [U (S)(φ), γ0] = 0 and {U (S), γπ } = 0 for Majorana zero and π modes, respectively, where U (S)(φ) is the
Floquet operator at step S = 1, . . . , 6, which can be written as

U (S)(φ) = U (S)
H2

(φ) × U (S)
H1

(φ), (B1)

where U (S)
H2

(φ) = exp (−iH (S)
2 (φ)T/2), U (S)

H1
(φ) = exp (−iH (S)

1 (φ)T/2), H
(S)
1 (φ) and H

(S)
2 (φ) are the deformation of the two

Hamiltonian in Eq. (4) when subjected to the adiabatic modulation in hopping and pairing strength as prescribed in Sec. V A. It
is convenient to express H

(S)
1 and H

(S)
2 in Majorana basis as (keeping only terms in the first two lattice sites for brevity)

H
(1)
1 T = i

π

2

[
γ

α;β
B,1;A,1 + γ

α;β
A,2;B,1 + �1

]
, H

(2)
1 T = i

π

2

[
c(φ)γ α;β

A,2;B,1 + s(φ)γ β;α
B,1;A,1 + γ

α;β
B,1;A,1 + �1

]
,

H
(3)
1 T = H

(2)
1 T , H

(4)
1 T = i

π

2

[
c(φ)γ β;α

B,1;A,1 + γ
α;β
B,1;A,1 + �1

]
, (B2)

H
(5)
1 T = i

π

2

[
s(φ)γ α;β

A,2;B,1 + γ
α;β
B,1;A,1 + �1

]
, H

(6)
1 T = i

π

2

[
γ

α;β
A,2;B,1 + γ

α;β
B,1;A,1 + �1

]
,

H
(1)
2 T = iπ

[
c(φ)γ β;β

B,1;A,2 + s(φ)γ β;β
A,1;B,1 + γ

α;α
B,1;A,2 + �2

]
, H

(2)
2 T = iπ

[
s(φ)γ α;α

A,1;B,1 + c(φ)γ α;α
B,1;A,2 + γ

β;β
A,1;B,1 + �2

]
,

H
(3)
2 T = iπ

[
c(φ)γ α;α

A,1;B,1 + s(φ)γ α;β
B,1;A,2 + γ

β;β
A,1;B,1 + �2

]
H

(4)
2 T = iπ

[
γ

β;β
A,1;B,1 + γ

α;β
B,1;A,2 + �2

]
, (B3)

H
(5)
2 T = iπ

[
s(φ)γ α;α

B,1;A,2 + c(φ)γ α;β
B,1;A,2 + γ

β;β
A,1;B,1 + �2

]
, H

(6)
2 T = iπ

[
s(φ)γ β;β

B,1;A,2 + c(φ)γ β;β
A,1;B,1 + γ

α;α
B,1;A,2 + �2

]
,

where �1 = γ
α;β
B,2;A,2 + γ

α;β
A,3;B,2, �2 = γ

α;α
B,2;A,3 + γ

β;β
B,2;A,3, γ

μ;ν
C,j ;D,k stands for γ

μ

C,j γ
ν
D,k , C,D ∈ {A,B}, μ, ν ∈ {α, β}, j, k ∈

{1, 2, 3} denote the lattice site, s(φ) and c(φ) stand for sin(φ) and cos(φ), respectively.
Rather than showing the full derivation of the Majorana modes from the recurrence relation, we will instead show the form

of the Majorana modes affected by the deformation at each step, and briefly verify them by commuting with U (S)(φ). The latter
can be done analytically by using the following two facts.

(1) Most of the terms in H
(S)
1 and H

(S)
2 commute with one another. This allows us to write Eq. (B1) as products of many

exponentials. For example, given a Hamiltonian of the form H = i[γ1γ2 + γ3γ4], the associated Floquet operator can be written
as

U = exp (−iT γ1γ2) × exp (−iT γ3γ4).

(2) The application of each exponential on a given Majorana operator γ1 satisfies

exp(θγ1γ2)γ1 exp(−θγ1γ2) = cos(2θ )γ1 − sin(2θ )γ2, exp(θγ2γ3)γ1 exp(−θγ2γ3) = γ1,

which can be proven using the identity Eq. (18).
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Step 1.

γ L
π (φ) = [

c(φ)γ β

A,1 + s(φ)γ β

A,2

] + [
c(φ)γ α

B,1 + s(φ)γ α
B,2

]
, γ L

0,2(φ) = [
c(φ)γ β

A,1 + s(φ)γ β

A,2

] − [
c(φ)γ α

B,1 + s(φ)γ α
B,2

]
, (B4)

where we have suppressed the normalization factor for brevity here and for the rest of the steps. In particular, two Majorana
operators are involved in this step, which are γ1 = c(φ)γ β

A,1 + s(φ)γ β

A,2 and γ2 = c(φ)γ α
B,1 + s(φ)γ α

B,2. The application of
U (1)(φ) to these Majorana operators can be written as (using the two facts above)

U (1)(φ)†γ1U (1)(φ) = U (1)
H1

(φ)†U (1)
H2

(φ)†γ1U (1)
H2

(φ)U (1)
H1

(φ) = U (1)
H1

(φ)†γ1U (1)
H1

(φ)

= c(φ) exp
(−π/4γ

α;β
B,1;A,1

)
γ

β

A,1 exp
(
π/4γ

α;β
B,1;A,1

) + s(φ) exp
(−π/4γ

α;β
B,2;A,2

)
γ

β

A,2 exp
(
π/4γ

α;β
B,2;A,2

)
= −c(φ)γ α

B,1 − s(φ)γ α
B,2 = −γ2,

U (1)(φ)†γ2U (1)(φ) = U (1)
H1

(φ)†U (1)
H2

(φ)†γ2U (1)
H2

(φ)U (1)
H1

(φ)

= U (1)
H1

(φ)†
[
c(φ) exp

(−π/2γ
α;α
B,1;A,2

)
γ α

B,1 exp
(
π/2γ

α;α
B,1;A,2

)
+ s(φ) exp

(−π/2γ
α;α
B,2;A,3

)
γ α

B,2 exp
(
π/2γ

α;α
B,2;A,3

)]
U (1)

H1
(φ)

= −U (1)
H1

(φ)†
[
c(φ)γ α

B,1 + s(φ)γ α
B,2

]
U (1)

H1
(φ)†

= −c(φ) exp
(−π/4γ

α;β
B,1;A,1

)
γ α

B,1 exp
(
π/4γ

α;β
B,1;A,1

) − s(φ) exp
(−π/4γ

α;β
B,2;A,2

)
γ α

B,2 exp
(
π/4γ

α;β
B,2;A,2

)
= −γ1.

Symmetric and antisymmetric superpositions of γ1 and γ2 thus anticommute and commute with U (1)(φ) and correspond to
Majorana π and zero modes, respectively, as claimed above.

Step 2. γ L
0,1(φ) = s(φ)γ α

A,2 + c(φ)γ α
A,1. This is easily verified by noting that it commutes with both H

(2)
1 and H

(2)
2 , thereby

with U (2)(φ) too.
Step 3.

γ L
π (φ) = [

c(φ)γ β

A,2 + s(φ)γ α
A,1

] + [
c(φ)γ α

B,2 + s(φ)γ β

B,1

]
,

(B5)
γ L

0,2(φ) = [
c(φ)γ β

A,2 + s(φ)γ α
A,1

] − [
c(φ)γ α

B,2 + s(φ)γ β

B,1

]
.

This can be verified in the same way as in step 1. That is, we first denote γ1 = c(φ)γ β

A,2 + s(φ)γ α
A,1 and γ2 = c(φ)γ α

B,2 +
s(φ)γ β

B,1, respectively. We can then verify the application of U (3)(φ) on γ1 and γ2 as

U (3)(φ)†γ1U (3)(φ) = c(φ) exp
(−π/4γ

α;β
B,2;A,2

)
γ

β

A,2 exp
(
π/4γ

α;β
B,2;A,2

) + s(φ) exp
(−π/4γ

β;α
B,1;A,1

)
γ α

A,1 exp
(
π/4γ

β;α
B,1;A,1

)
= −c(φ)γ α

B,2 − s(φ)γ β

B,1 = −γ2,

U (3)(φ)†γ2U (3)(φ) = U (3)
H1

(φ)†
[
c(φ) exp

(−π/2γ
α;α
B,2;A,3

)
γ α

B,2 exp
(
π/2γ

α;α
B,2;A,3

)
+ s(φ) exp

(−π/2γ
β;β
A,1;B,1

)
γ

β

B,1 exp
(
π/2γ

β;β
A,1;B,1

)]
U (3)

H1
(φ)

= −U (3)
H1

(φ)†
[
c(φ)γ α

B,2 + s(φ)γ β

B,1

]
U (3)

H1
(φ)†

= −c(φ) exp
(−π/4γ

α;β
B,2;A,2

)
γ α

B,2 exp
(
π/4γ

α;β
B,2;A,2

) − s(φ) exp
(−π/4γ

β;α
B,1;A,1

)
γ

β

B,1 exp
(
π/4γ

β;α
B,1;A,1

)
= −γ1,

Similar to step 1, symmetric and antisymmetric superpositions of γ1 and γ2 [i.e., γ L
π (φ) and γ L

0,2(φ)] thus anticommute and
commute with U (3)(φ).

Step 4.

γ L
π (φ) = s

(
π

4
c(φ)

)
γ α

A,1 + c

(
π

4
c(φ)

)
γ

β

B,1, γ L
0,2(φ) = c

(
π

4
c(φ)

)
γ α

A,1 − s

(
π

4
c(φ)

)
γ

β

B,1. (B6)

These can be verified by applying U (4)(φ) directly to γ L
π (φ) and γ L

0,2,

U (4)(φ)†γ L
π U (4)(φ) = U (4)

H1
(φ)†

[
s

(
π

4
c(φ)

)
γ α

A,1 + c

(
π

4
c(φ)

)
exp

(−π/2γ
β;β
A,1;B,1

)
γ

β

B,1 exp
(
π/2γ

β;β
A,1;B,1

)]
U (4)

H1
(φ)

= U (4)
H1

(φ)†
[
s

(
π

4
c(φ)

)
γ α

A,1 − c

(
π

4
c(φ)

)
γ

β

B,1

]
U (4)

H1
(φ)
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= exp
(−π/4c(φ)γ β;α

B,1;A,1

)[
s

(
π

4
c(φ)

)
γ α

A,1 − c

(
π

4
c(φ)

)
γ

β

B,1

]
exp

(
π/4c(φ)γ β;α

B,1;A,1

)

= −s

(
π

4
c(φ)

)
γ α

A,1 − c

(
π

4
c(φ)

)
γ

β

B,1 = −γ L
π ,

U (4)(φ)†γ L
0,2U (4)(φ) = U (4)

H1
(φ)†

[
c

(
π

4
c(φ)

)
γ α

A,1 − s

(
π

4
c(φ)

)
exp

(−π/2γ
β;β
A,1;B,1

)
γ

β

B,1 exp
(
π/2γ

β;β
A,1;B,1

)]
U (4)

H1
(φ)

= U (4)
H1

(φ)†
[
c

(
π

4
c(φ)

)
γ α

A,1 + s

(
π

4
c(φ)

)
γ

β

B,1

]
U (4)

H1
(φ)

= exp
(−π/4c(φ)γ β;α

B,1;A,1

)[
c

(
π

4
c(φ)

)
γ α

A,1 + s

(
π

4
c(φ)

)
γ

β

B,1

]
exp

(
π/4c(φ)γ β;α

B,1;A,1

)

= c

(
π

4
c(φ)

)
γ α

A,1 + s

(
π

4
c(φ)

)
γ

β

B,1 = −γ L
0,2,

where we have used Eq. (18) to arrive at the second last line of each expansion above.
Step 5.

γ L
π (φ) = [

s(φ)
(
γ

β

A,2 + γ α
B,2

) − c(φ)γ α
A,2

]
s

(
π

4
s(φ)

)
+ c(φ)γ β

B,1c

(
π

4
s(φ)

)
,

(B7)

γ L
0,1(φ) = [

c(φ)γ α
A,2 − s(φ)

(
γ

β

A,2 − γ α
B,2

)]
c

(
π

4
s(φ)

)
+ c(φ)γ β

B,1s

(
π

4
s(φ)

)
.

By applying U (5)(φ) directly to γ L
π (φ) and γ L

0,1,

U (5)(φ)†γ L
π (φ)U (5)(φ) = U (5)

H1
(φ)†

{[
s(φ)

(
γ

β

A,2 + exp
(−π/2γ

α;α
B,2;A,3

)
γ α

B,2 exp
(
π/2γ

α;α
B,2;A,3

)) − c(φ)γ α
A,2

]
s

(
π

4
s(φ)

)

+ c(φ) exp
(−π/2γ

β;β
A,1;B,1

)
γ

β

B,1 exp
(
π/2γ

β;β
A,1;B,1

)
c

(
π

4
s(φ)

)}
U (5)

H1
(φ)

= U (5)
H1

(φ)†
{[

s(φ)
(
γ

β

A,2 − γ α
B,2

) − c(φ)γ α
A,2

]
s

(
π

4
s(φ)

)
− c(φ)γ β

B,1c

(
π

4
s(φ)

)}
U (5)

H1
(φ)

= s(φ)s

(
π

4
s(φ)

)
exp

(−π/4γ
α;β
B,2;A,2

)[
γ

β

A,2 − γ α
B,2

]
exp

(
π/4γ

α;β
B,2;A,2

)

− c(φ) exp
(−π/4s(φ)γ α;β

A,2;B,1

)[
c

(
π

4
s(φ)

)
γ

β

B,1 + s

(
π

4
s(φ)

)
γ α

A,2

]
exp

(
π/4s(φ)γ α;β

A,2;B,1

)

= −[
s(φ)

(
γ

β

A,2 + γ α
B,2

) − c(φ)γ α
A,2

]
s

(
π

4
s(φ)

)
− c(φ)γ β

B,1c

(
π

4
s(φ)

)
= −γ L

π ,

U (5)(φ)†γ L
0,1(φ)U (5)(φ) = U (5)

H1
(φ)†

{[
c(φ)γ α

A,2 − s(φ)
(
γ

β

A,2 − exp
(−π/2γ

α;α
B,2;A,3

)
γ α

B,2 exp
(
π/2γ

α;α
B,2;A,3

))]
c

(
π

4
s(φ)

)

+ c(φ) exp
(−π/2γ

β;β
A,1;B,1

)
γ

β

B,1 exp
(
π/2γ

β;β
A,1;B,1

)
s

(
π

4
s(φ)

)}
U (5)

H1
(φ)

= U (5)
H1

(φ)†
{[

c(φ)γ α
A,2 − s(φ)

(
γ

β

A,2 + γ α
B,2

)]
c

(
π

4
s(φ)

)
− c(φ)γ β

B,1s

(
π

4
s(φ)

)}
U (5)

H1
(φ)

= −s(φ)c

(
π

4
s(φ)

)
exp

(−π/4γ
α;β
B,2;A,2

)[
γ

β

A,2 + γ α
B,2

]
exp

(
π/4γ

α;β
B,2;A,2

)

− c(φ) exp
(−π/4s(φ)γ α;β

A,2;B,1

)[
s

(
π

4
s(φ)

)
γ

β

B,1 − c

(
π

4
s(φ)

)
γ α

A,2

]
exp

(
π/4s(φ)γ α;β

A,2;B,1

)
= γ L

0,1.

Step 6.

γ L
π (φ) = [

c(φ)γ β

A,2 + s(φ)γ β

A,1

] + [
c(φ)γ α

B,2 + s(φ)γ α
B,1

]
,

(B8)
γ L

0,1(φ) = [
c(φ)γ β

A,2 + s(φ)γ β

A,1

] − [
c(φ)γ α

B,2 + s(φ)γ α
B,1

]
.

165421-17



RADITYA WEDA BOMANTARA AND JIANGBIN GONG PHYSICAL REVIEW B 98, 165421 (2018)

Following steps 1 and 3, define γ1 = c(φ)γ β

A,2 + s(φ)γ β

A,1 and γ2 = c(φ)γ α
B,2 + s(φ)γ α

B,1. It follows that

U (6)(φ)†γ1U (6)(φ) = c(φ) exp
(−π/4γ

α;β
B,2;A,2

)
γ

β

A,2 exp
(
π/4γ

α;β
B,2;A,2

) + s(φ) exp
(−π/4γ

α;β
B,1;A,1

)
γ

β

A,1 exp
(
π/4γ

α;β
B,1;A,1

)
= −c(φ)γ α

B,2 − s(φ)γ α
B,1 = −γ2,

U (6)(φ)†γ2U (6)(φ) = U (6)
H1

(φ)†U (6)
H2

(φ)†γ2U (6)
H2

(φ)U (6)
H1

(φ)

= U (6)
H1

(φ)†
[
c(φ) exp

(−π/2γ
α;α
B,2;A,3

)
γ α

B,2 exp
(
π/2γ

α;α
B,2;A,3

)
+ s(φ) exp

(−π/2γ
α;α
B,1;A,2

)
γ α

B,1 exp
(
π/2γ

α;α
B,1;A,2

)]
U (1)

H1
(φ)

= −U (6)
H1

(φ)†
[
c(φ)γ α

B,2 + s(φ)γ α
B,1

]
U (1)

H1
(φ)†

= −c(φ) exp
(−π/4γ

α;β
B,2;A,2

)
γ α

B,2 exp
(
π/4γ

α;β
B,2;A,2

) − s(φ) exp
(−π/4γ

α;β
B,1;A,1

)
γ α

B,1 exp
(
π/4γ

α;β
B,1;A,1

)
= −γ1.

Similar to steps 1 and 3, symmetric and antisymmetric superpositions of γ1 and γ2 form Majorana π and zero modes, which
are, respectively, given as γ L

π (φ) and γ L
0,1(φ).

APPENDIX C: EVOLUTION OF MAJORANA MODES DURING γ L
0,2 AND γ L

π BRAIDING PROTOCOL

In the protocol described in Sec. V B, only H
(S)
2 is adiabatically deformed, whereas H

(S)
1 ≡ H1 is kept constant, so that the

Floquet operator can be written as

u(S)(φ) = u
(S)
H2

(φ) × uH1 (φ), (C1)

where u
(S)
H2

= exp (−iH (S)
2 T/2), uH1 = exp (−iH1T/2), and S = 1, 2, · · · 7. In Majorana basis, H

(S)
2 can be expressed as

(keeping only terms in the first n lattice sites for brevity)

H
(1)
2 T =

n∑
k=1

iπ
[
s(φ)γ β;β

A,k;B,k + c(φ)γ β;β
B,k;A,k+1 + γ

α;α
B,k;A,k+1

]
,

H
(2)
2 T = iπ

[
ξn + c(φ)γ α;α

B,n;A,n+1 + s(φ)γ α;β
A,n+1;A,n+1 + γ

β;β
A,n;B,n

]
,

H
(3)
2 T = iπ

[
ξn + C(s)γ α;β

A,n+1;A,n+1 + C(s)γ β;β
A,n;B,n + S (s)

(
γ

β;β
B,n;A,n+1 + γ

α;α
B,n;A,n+1

)]
, (C2)

H
(4)
2 T = iπ

[
ξn + s(φ)γ β;β

A,n;B,n + c(φ)γ β;β
B,n;A,n+1 + γ

α;α
B,n;A,n+1

]
,

H
(5)
2 T = H

(2)
2 T , H

(6)
2 T = H

(3)
2 T , H

(7)
2 T =

n∑
k=1

iπ
[
c(φ)γ β;β

A,k;B,k + s(φ)γ β;β
B,k;A,k+1 + γ

α;α
B,k;A,k+1

]
,

where ξn = ∑n−1
k=1 (γ β;β

A,k;B,k + γ
β;β
B,k;A,k+1 + γ

α;α
B,k;A,k+1), C = (1 − f (s))/2, S = (1 + f (s))/2, and f (s) is defined in Sec. V B.

Following the same discussion as Appendix B, we will now present the evolution of Majorana modes under the aforementioned
adiabatic deformation in steps 1, 2, 4, 5, and 7. As elucidated in Sec. V B, steps 3 and 6 involve a special two-period adiabatic
deformation which is difficult to keep track analytically. That the outcome of these two steps is as intended can be understood
from the similarity between the Hamiltonian H

(3)
2 and H

(6)
2 (in the Majorana representation) with that studied in our previous

work [16], as well as from our numerics in Sec. V B. Finally, note that throughout the steps in this protocol, only γ L
π and γ L

0,2 are
affected, while the other Majorana modes stay intact.

Step 1.

γ L
π (φ) =

n+1∑
k=1

(
γ

β

A,k + γ α
B,k

)
cosn+1−k φ sink−1 φ, γ L

0,2(φ) =
n+1∑
k=1

(
γ

β

A,k − γ α
B,k

)
cosn+1−k φ sink−1 φ, (C3)

The above can be verified by first expressing γ L
π (φ) and γ L

0,2(φ) as symmetric and antisymmetric superpositions of two Majorana

operators γ1 = ∑n+1
k=1 γ

β

A,k cosn+1−k φ sink−1 φ and γ2 = ∑n+1
k=1 γ α

B,k cosn+1−k φ sink−1 φ, then showing that u(1) transforms γ1 →
−γ2 and vice versa. Indeed,

u(1)†γ1u
(1) = u

†
H1

γ1uH1 =
n+1∑
k=1

exp
(−π/4γ

α,β

B,k;A,k

)
γ

β

A,k exp
(
π/4γ

α,β

B,k;A,k

)
cosn+1−k φ sink−1 φ

= −
n+1∑
k=1

γ α
B,k cosn+1−k φ sink−1 φ = −γ2,
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u(1)†γ2u
(1) = u

†
H1

{
n+1∑
k=1

exp
(−π/2γ

α,α
B,k;A,k+1

)
γ α

B,k exp
(
π/2γ

α,α
B,k;A,k+1

)
cosn+1−k φ sink−1 φ

}
uH1

= −
n+1∑
k=1

exp
(−π/4γ

α,β

B,k;A,k

)
γ α

B,k exp
(
π/4γ

α,β

B,k;A,k

)
cosn+1−k φ sink−1 φ = −γ1,

where we have used the fact that γ1 commutes with H
(1)
2 in the above.

Step 2.

γ L
π (φ) = [

c(φ)γ β

A,n+1 + s(φ)γ α
B,n

] + [
c(φ)γ α

B,n+1 − s(φ)γ β

A,n

]
,

(C4)
γ L

0,2(φ) = [
c(φ)γ β

A,n+1 + s(φ)γ α
B,n

] − [
c(φ)γ α

B,n+1 − s(φ)γ β

A,n

]
.

As before, let γ1 = [c(φ)γ β

A,n+1 + s(φ)γ α
B,n] and γ2 = [c(φ)γ α

B,n+1 − s(φ)γ β

A,n], our objective is to show that u(2) maps γ1 →
−γ2.

u(2)†γ1u
(2) = u

†
H1

γ1uH1

= c(φ) exp
(−π/4γ

α,β

B,n+1;A,n+1

)
γ

β

A,n+1 exp
(
π/4γ

α,β

B,n+1;A,n+1

) + s(φ) exp
(−π/4γ

α,β

B,n;A,n

)
γ α

B,n exp
(
π/4γ

α,β

B,n;A,n

)
= −γ2,

u(2)†γ2u
(2) = u

†
H1

{
c(φ) exp

(−π/2γ
α,α
B,n+1;A,n+2

)
γ α

B,n+1 exp
(
π/2γ

α,α
B,n+1;A,n+2

)
− s(φ) exp

(−π/2γ
β,β

A,n;B,n

)
γ

β

A,n exp
(
π/2γ

β,β

A,n;B,n

)}
uH1

= −c(φ) exp
(−π/4γ

α,β

B,n+1;A,n+1

)
γ α

B,n+1 exp
(
π/4γ

α,β

B,n+1;A,n+1

) + s(φ) exp
(−π/4γ

α,β

B,n;A,n

)
γ

β

A,n exp
(
π/4γ

α,β

B,n;A,n

)
= −γ1.

Step 4.

γ L
π (φ) = c(φ)γ β

A,n + s(φ)γ β

A,n+1, γ L
0,2(φ) = −c(φ)γ α

B,n − s(φ)γ α
B,n+1. (C5)

Following the end of step 3, γ L
π and γ L

0,2 above are no longer Majorana π and zero modes in this step, but they are still zero
modes of (u(4) )2. These can be directly verified as

u(4)†γ L
π u(4) = u

†
H1

γ L
π uH1

= c(φ) exp
(−π/4γ

α,β

B,n;A,n

)
γ

β

A,n exp
(
π/4γ

α,β

B,n;A,n

) + s(φ) exp
(−π/4γ

α,β

B,n+1;A,n+1

)
γ

β

A,n+1 exp
(
π/4γ

α,β

B,n+1;A,n+1

)
= −c(φ)γ α

B,n − s(φ)γ α
B,n+1 = γ L

0,2,

u(4)†γ L
0,2u

(4) = −u
†
H1

{
c(φ) exp

(−π/2γ
α,α
B,n;A,n+1

)
γ α

B,n exp
(
π/2γ

α,α
B,n;A,n+1

)
+ s(φ) exp

(−π/2γ
α,α
B,n+1;A,n+1

)
γ α

B,n+1 exp
(
π/2γ

α,α
B,n+1;A,n+1

)}
uH1

= c(φ) exp
(−π/4γ

α,β

B,n;A,n

)
γ α

B,n exp
(
π/4γ

α,β

B,n;A,n

) + s(φ) exp
(−π/4γ

α,β

B,n+1;A,n+1

)
γ α

B,n+1 exp
(
π/4γ

α,β

B,n+1;A,n+1

)
= γ L

π .

By combining the two results above, it follows that γ L
π and γ L

0,2 commute with (u(4) )2, but they neither commute nor
anticommute with u(4).

Step 5. The Hamiltonian in step 5 evolves in the same way as that in step 2, so the Majorana zero and π modes follow those
described in step 2. However, continuing step 4, γ L

π and γ L
0,2 are not Majorana π and zero modes at this step. Instead, they are

given as symmetric and antisymmetric superpositions of Majorana π and zero modes found in step 2, so that

γ L
π (φ) = c(φ)γ β

A,n+1 + s(φ)γ α
B,n, γ L

0,2(φ) = s(φ)γ β

A,n − c(φ)γ α
B,n+1. (C6)

In particular, these are precisely γ1 and γ2 defined in step 2, and as shown in that step, γ L
π (φ) and γ L

0,2(φ) indeed commute with
(u(5) )2.

Step 7.

γ L
π (φ) =

n+1∑
k=1

(
γ

β

A,k − γ α
B,k

)
sinn+1−k φ cosk−1 φ, γ L

0,2(φ) = −
n+1∑
k=1

(
γ

β

A,k + γ α
B,k

)
sinn+1−k φ cosk−1 φ, (C7)
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FIG. 9. (a) Schematic of a single MCB containing a superconducting island (blue), capacitively coupled to a bulk superconductor through
a split Josephson junction (black), enclosing a magnetic flux �, and a proximitized semiconductor wire (green) hosting a pair of Majorana zero
modes (yellow and purple circles). (b) Possible realization of Eq. (3) using an array of MCBs. Blue and brown islands host Majorana operators
belonging to sublattice A and B, respectively. Yellow and purple circles depict the two species of Majorana operators γ α

A(B ),j and γ
β

A(B ),j ,
respectively, in Eq. (3). Black wires and circles depict the ancillary wires with their associated Majorana zero modes to mediate coupling
between a pair of Majorana operators γ

α(β )
A(B ),j . Red dotted lines denote tunnel coupling between γ

α(β )
A(B ),j and ancillary Majorana operators.

Note that at this step, γ L
π and γ L

0,2 are Majorana zero
and π modes, respectively, which can be verified by
first defining γ1 = ∑n+1

k=1 γ
β

A,k sinn+1−k (φ) sink−1(φ) and γ2 =∑n+1
k=1 γ α

B,k sinn+1−k (φ) cosk−1(φ), then showing that u(7)

transforms γ1 → −γ2 and vice versa. Note that H
(7)
2 is the

same as H
(1)
2 upon taking c(φ) → s(φ) and s(φ) → c(φ). As

such, the fact that u(7)†γ1(2)u
(7) = −γ2(1) follows exactly the

same way as the expansion presented in step 1.

APPENDIX D: IMPLEMENTATION OF OUR SYSTEM
WITH COOPER PAIR BOX

As outlined in Sec. VI A, a possible implementation of our
protocol in the proximitized semiconductor setup is through
the use of Majorana cooper pair box (MCB) introduced in
Refs. [6,49]. The main component of a single MCB consists
of a superconducting island, proximitized semiconducting
wire accommodating a pair of Majorana modes, and a split
Josephson junction enclosing a magnetic flux �, as depicted
in Fig. 9(a). In such a setup, the coupling between the two
Majorana modes can be varied by tuning �.

The Hamiltonian H1 and H2 defined in Eq. (4) can in
principle be simulated by designing an array of such MCBs.
In particular, since the use of MCB addresses a pair of
Majorana modes directly, both real and imaginary hopping
or pairing can be realized on equal footing. Indeed, since

both H1 and H2 can be recast in terms of Majorana operator
bilinears as shown in Eq. (13), a possible design of MCB array
realizing both H1 and H2 is depicted in Fig. 9(b) for two
lattice sites. There, terms in H1 (H2) are realized by setting
�H2,j (�H1,j ) to a value near �0/2 = h

4e
(so as to hybridize

the respective ancillary Majorana modes) while appropriately
setting �H1,j (�H2,j ) to another value which depends on the
desired coupling strength [6,49]. Periodic quenching between
H1 and H2 can then be carried out by periodically quenching
the respective fluxes between �0/2 and another value. Such
control of magnetic field is expected to be plausible with
current technology [69]. Finally, �anc,j serve as ancillary
fluxes that can be used to accommodate the readout protocol
outlined in Sec. V C. During encoding and braiding processes,
these fluxes can simply be switched off.

Finally, we would like to point out that while the min-
imal design shown in Fig. 9(b) realizes our original time-
periodic Hamiltonian of Eq. (3), it is not sufficient to carry
out the braiding protocols described in Secs. V A and V B.
For the implementation of these protocols, it is necessary
to install additional MCBs into the design to enable cou-
pling between pairs of Majorana operators involved in the
steps of our protocols. Although incorporating these ad-
ditional MCBs may result in an even more complicated
design, adiabatic manipulation prescribed in our protocols
can be executed by simply tuning the appropriate magnetic
fluxes.
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