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Coulomb effects on the photoexcited quantum dynamics of electrons in a plasmonic nanosphere
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With recent experiments investigating the optical properties of progressively smaller plasmonic particles,
quantum effects become increasingly more relevant, requiring a microscopic description. Using the density
matrix formalism we analyze the photoexcited few-electron dynamics of a small plasmonic nanosphere.
Following the standard derivation of the bulk plasmon we particularly aim at elucidating the role of the Coulomb
interaction. Calculating the dielectric susceptibility spectrum in the linear optical response we find discrete
resonances resulting from a collective response mediated by the Coulomb interaction between the electrons.
In the nonlinear regime, the occupations of the system exhibit oscillations between the interacting eigenstates.
Our approach provides an ideal platform to study and explain nonlinear and quantum plasmonics, revealing that
the photoexcited dynamics of plasmonic nanospheres has similarities with and combines characteristics of both
the well-known two-level Rabi dynamics and the collective many-electron behavior typical of plasmons.

DOI: 10.1103/PhysRevB.98.165411

I. INTRODUCTION

Quantum plasmonics is a rapidly growing field studying
the interaction of light with extremely small metallic systems
where quantum effects come into play [1–3]. Besides investi-
gating promising applications in chemistry [4], photovoltaics
[5], or photodetection devices [6], an increasing amount of
studies are dedicated to more fundamental topics such as the
emergence of plasmons in nanosystems [2] or the quantization
of these plasmonic excitations [1,7,8]. In the simplest picture
the plasmon is the optically induced collective oscillation of
the interacting electron gas against the positive background
charge. In the bulk or high density limit a derivation of the
plasmon on the microscopic level can be performed using
density matrix theory [9–14]. In this derivation the plasmon
emerges due to Coulomb interaction between the electrons,
treated in Hartree-Fock and random phase approximation
(RPA). When the system size reaches the nanoscale the energy
becomes quantized, which suggests the question: What is the
impact of a discrete energy structure on the formation of the
plasmon?

To gain insight into this fundamental question, we study
the dynamics of a few-electron system obtained via optical
excitation of a small metal nanosphere. Experimentally, gold
nanospheres can nowadays be fabricated with sizes less than
a few nm [15,16] and give rise to interesting nonlinear op-
tical properties [17–19]. Current state-of-the-art techniques
discussing the emergence of plasmons in nanosystems involve
ab initio methods, where the optical response of the system
is calculated using time-dependent density functional theory
(TDDFT). Most of the calculations deal with few-atom sys-
tems such as one-dimensional sodium chains [20–22] or small
metal clusters [23–25]. To distinguish collective, plasmonic
excitations from single particle electronic contributions in
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discrete systems is a challenge and there are several studies
trying to address the distinction between the two [23,26–28].
Other studies are trying to bridge the gap between macro-
and microscopic scales by adapting classical models including
electromagnetic calculations [29] and a hydrodynamic model
[30,31] with the help of correction terms to take into account
quantum effects such as electron spillout.

In this work, we follow a different approach to access
the optical response of a few-electron system. Similar to
what has been done for the bulk case, we use the density
matrix formalism and include the Coulomb interaction in
Hartree-Fock approximation. In the linear regime, we study
the change in the spectral response of the system. In the
nonlinear regime, we analyze the dynamics of electrons ex-
cited at the resonances, which gives rise to an oscillatory
behavior strongly influenced by the Coulomb interaction. In
a diagonalized basis of the mixed states we find an oscillatory
dynamics, which we compare to Rabi oscillations found in
a two-level system. It turns out that the Coulomb interaction
leads to strong deviations from two-level system behavior. By
explicitly treating the Coulomb terms our paper gives valuable
insight into the role of Coulomb interaction which is mostly
veiled in other approaches.

The paper is organized as follows: The theoretical model
is summarized in Sec. II, introducing the model Hamiltonian,
the analytical wave functions, and the derivation of the density
matrix equations of motion for a nanosphere; Sec. III presents
results for a nine-electron model system for two different
excitation regimes. The spectral response in the linear regime
is discussed in Sec. III A, while the dynamics in the nonlinear
regime is explored in Sec. III B.

II. THEORY

The Hamiltonian describing the system has three compo-
nents

Ĥ = Ĥ0 + Ĥext + Ĥe−e, (1)

2469-9950/2018/98(16)/165411(9) 165411-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.165411&domain=pdf&date_stamp=2018-10-08
https://doi.org/10.1103/PhysRevB.98.165411


ALEXANDRA CRAI et al. PHYSICAL REVIEW B 98, 165411 (2018)

with the single-electron Hamiltonian Ĥ0, the interaction
Hamiltonian with an external field Ĥext , and the electron-
electron interaction Hamiltonian Ĥe−e. The single-electron
term depends on single-electron eigenenergies εi and is
given by

Ĥ0 =
∑

i

εi ĉ
†
i ĉi . (2)

ĉ
†
i and ĉi are the creation and annihilation operators of an

electron in a quantum state i. We assume that the electrons
are inside the sphere with radius a described by a hard wall
potential fulfilling the stationary Schrödinger equation. The
solutions are given by the analytic wave functions ψi with
i = (NLM ) in spherical coordinates �r = (r, θ, φ) with the
corresponding eigenenergies

ψNLM (r) =
√

2

a3

1

|jL+1(xNL)|jL

(
xNL

r

a

)
YM

L (θ, φ) (3a)

εNL = h̄2

2m

(xNL

a

)2
, (3b)

where xNL is the N th zero of the spherical Bessel function
jL of order L and YM

L are the spherical harmonics. The
generic set of quantum numbers i = (NLM ) is adopted from
atomic physics and the states are classified as s, p, d... shell,
accordingly. We do not consider spin in our model. Note that
the eigenenergies are (2L + 1)-fold degenerate.

For the interaction with the external light field, we consider
an electric field polarized in the z direction and we make the
dipole approximation (i.e., assuming the field is uniformly
distributed over the volume of the nanosphere)

Ĥext = −eE(t )
∑
ij

dij ĉ
†
i ĉj , (4)

where dij is the dipole matrix element between the states i and
j . Note that we do not apply the rotating wave approximation
(RWA).

The electron-electron interaction is mediated by the
Coulomb potential

Ĥe−e = 1

2

∑
ijkl

V ijkl ĉ
†
i ĉ

†
j ĉk ĉl , (5)

where V ijkl are the Coulomb matrix elements. For the elec-
tronic states in Eq. (3), we can calculate the Coulomb matrix
elements by expanding the potential 1

|r−r′ | using spherical
harmonics. For the interaction with the light field, we assume
the quasistatic limit. Assuming that the light field amplitude
is in the z direction, the dipole selection rules apply and only
states with �M = 0 and �L = ±1 can be excited, as shown
in Fig. 1 for the case of 20 states, i.e., states up to the 2p shell.

The dynamics is introduced via the Heisenberg equations
of motion

ih̄
dρ̂nm

dt
= [ρ̂nm, Ĥ ] ,

where ρnm = 〈ρ̂nm〉 = 〈ĉ†nĉm〉 are the density matrix elements.
The diagonal elements of the density matrix represent the oc-
cupation probability of states in Fig. 1, while the off-diagonal

occupied
states

FIG. 1. Schematic representation of the allowed dipole transi-
tions in a system with nine electrons in 20 possible interacting states.
The energy levels are drawn to scale with degenerate levels split
artificially for clarity.

elements represent the coherences between them. The density
matrix approach accounts for the time-dependent response of
the system.

Due to its many-body nature, the Coulomb interaction
leads to an infinite hierarchy of equations of motion. This is
truncated on the mean-field (Hartree-Fock) level [32]. Hence,
only the single particle correlations are taken into account in
the carrier-carrier interaction contribution. Within this approx-
imation, we obtain the following closed form of the density
matrix equations of motion

ih̄
dρnm

dt
= (εm − εn)ρnm +

∑
i

(Wmiρni − Winρim)

− eE(t )
∑

i

(dmiρni − dinρim), (6)

where W (ρ) is an effective additional potential induced by the
electron-electron interaction, defined as:

Wij =
∑
kl

(V iklj − V kilj )ρkl. (7)

The first term in Eq. (7) is the Hartree term, while the second
one is the Fock term which accounts for the particle exchange.
Note that this equation of motion is the starting point for the
derivation of the bulk plasmon, if we would take continuous
states using a → ∞, as found in standard textbooks [9].

The ground state density matrix of a noninteracting system
(i.e., there is no Coulomb interaction between electrons) is
diagonal. The electron-electron interaction, on the other hand,
couples the states and the interacting ground state density
matrix will include these coherences. To obtain the ground
state of the interacting system, we slowly turn on the electron-
electron interaction by multiplying the Coulomb term in the
equations of motion Eq. (6) by a switch function with val-
ues between 0 and 1. We use the following time-dependent
switching function:

f (t ) = erf (α(t − t0)) + 1

2
, (8)

where the parameter α controls the steepness of the erf func-
tion and t0 is the time when the value of f (t ) = 1/2. Using
a total simulation time of 2 ps restrains α � 5 ps−1 to assure
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convergence towards the ground state. This procedure is sim-
ilar to the adiabatic connection used in Kohn-Sham density
functional theory, where the noninteracting and interacting
electronic systems are explicitly connected by progressively
turning on the Coulomb interaction [33–36]. Nevertheless,
we should point out that the adiabatic connection connects
eigenstates of the noninteracting and interacting systems and,
even if the system is initially in the noninteracting ground
state, it may evolve towards an excited state of the interacting
Hamiltonian [33]. However, we checked that this eigenstate is
indeed the ground state by comparing it to the one obtained
by minimizing the Hartree-Fock ground state energy. Due to
the level of approximation applied to the electron-electron
interaction term, the two methods are equivalent.

When Coulomb interaction is included, the different states
of the density matrix become mixed. We therefore apply a
unitary transformation to achieve a ground state in which the
density matrix is initially diagonal. We call this the interacting
basis. The tilde is related to quantities in the interacting basis
hereafter, e.g., ρ̃ for the density matrix. The equations of
motion become

ih̄
dρ̃nm

dt
=

∑
i

(ε̃imρ̃ni − ε̃ni ρ̃im) +
∑

i

(W̃miρ̃ni − W̃inρ̃im)

− eE(t )
∑

i

(d̃mi ρ̃ni − d̃inρ̃im), (9)

where we defined a matrix ε̃ for the single-electron term as
follows

ε̃ij =
∑

k

Skj εkS
−1
ik . (10)

Sij are the elements of the transformation matrix. The other
two terms in the equations of motion in Eq. (9) are analogous
with the ones in the noninteracting basis [Eq. (6)], with new
dipole matrix elements

d̃ij =
∑
kl

SikdklS
−1
lj (11)

and new Coulomb matrix elements

Ṽ ijkl =
∑
mnop

SmiSnjV
mnopS−1

ok S−1
pl . (12)

III. RESULTS

A. Linear response of a nine-electron system

We consider a small sphere with radius a = 0.5 nm and we
calculate the optical response of a partially filled few-electron
system. Explicitly taking Coulomb interaction into account
leads to a rather high number of indices and a complex
problem. Hence, we here consider the case of 20 states,
i.e., we take into account states up to 2p shell (see Fig. 1).
Initially, the system is filled with nine electrons up to the
1d subshell (spin is not considered). The system is excited
at an onset time μ = 0.2 ps with a Gaussian pulse E(t ) =
E0 exp (− (t−μ)2

2τ 2
0

) sin(ωLt ) with ωL = 5 × 1015 s−1 (this is an
equivalent energy of h̄ω0 = 3.29 eV), width τ0 = 0.25 fs, and
amplitude E0 = 5.00 mV/m. The intensity is sufficiently low
such that we are in the linear regime. We then evaluate the

FIG. 2. (a) Total induced dielectric susceptibility χ (ω) as a func-
tion of frequency ω and energy ε in a system with nine electrons in 20
states with (green) and without (black) Coulomb interaction. (b)–(e)
The Fourier transform of the light-induced coherences (b) ρ7,14, (c)
ρ3,10, (d) ρ7,19, and (e) ρ1,19 with (blue) and without (dotted red)
Coulomb interaction. The values on the y axis are on a logarithmic
scale.

optical response by calculating the total induced macroscopic
polarization P (t ) from the microscopic polarizations in the
density matrix

P (t ) = e

v

∑
n,m,n<m

2R(ρnm)dnm, (13)

where v = 4πa3

3 denotes the volume of the nanosphere and dnm

is the dipole matrix element. Using Eq. (13), we can calculate
the linear response in the frequency domain [37]

P (ω) = ε0χ (ω)E(ω). (14)

The linear spectrum for the two cases, noninteracting,
i.e., when there is no Coulomb interaction, and interacting,
i.e., when Coulomb interaction is present between electrons,
is shown in Fig. 2(a). The values displayed on the y axis
are on a logarithmic scale. In the noninteracting case, the
spectrum (black curve) contains transitions between an empty
and a filled state. These occur at the frequencies ω1d,1f ,
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ω1p,2s , ω1d,2p, and ω1s,2p, as also indicated in Fig. 1. The
spectrum in Fig. 2 shows discrete resonances at exactly the
aforementioned frequencies. The resonances have been added
with dashed lines to Fig. 2(a). The strength of the peaks
corresponds to the magnitude of the dipole matrix element
dnm and the main peak is the transition between the highest
occupied level and lowest unoccupied one, i.e., ω1d,1f . This
is a transition involving multiple states, where the fivefold
degenerate 1d shell interacts with five out of the seven states
of 1f with m = ±2,±1, and 0, according to the dipole selec-
tion rules. Thus, the first resonance is composed of the transi-
tions 7 → 14 (corresponding to ωm=0

1d → ωm=0
1f ), 6 → 13 and

8 → 15 (ωm=±1
1d → ωm=±1

1f ), 5 → 12 and 9 → 16 (ωm=±2
1d →

ωm=±2
1f , respectively). Similarly for the third resonance, which

involves three states. For simplicity, we will only discuss the
states with m = 0 in our further analysis, but the behavior is
consistent for all degenerate states.

When the electron-electron interaction is included,
the spectrum is blueshifted [Fig. 2(a), green curve].
Again we find four resonances at ω1st = 4.84 × 1015 s−1,
ω2nd = 12.06 × 1015 s−1, ω3rd = 15.63 × 1015 s−1, and
ω4th = 20.46 × 1015 s−1. The discrete resonances cannot
be associated with transitions between eigenstates of the
interacting multilevel system, unlike in the noninteracting
case. This is shown by looking at the coherences induced
between states by the external light field in the frequency
domain. As an example, Fig. 2(b) shows the spectrum of
the polarization ρ7,14(ω). For the noninteracting case it
corresponds, as expected, to the peak at lowest energy,
confirming that here we, indeed, see the transition between
those two states. For the interacting case, we find four peaks
at the shifted energies. Now, two effects come into play: First,
the Coulomb interaction renormalizes the transition energies
between the states leading to a shift, and second and even
more interesting, it mixes the response of the individual states,
indicating the formation of a collective oscillation. Therefore,
we conclude that, in the interacting system, the components of
the response spectrum cannot be individually assigned to any
induced coherence. Each coherence contributes to the whole
spectrum. This is observed for the other three coherences as
well, as shown in Figs. 2(c), 2(d) and 2(e). We stress out that
also in the interacting basis all four coherences (ρ̃7,14, ρ̃3,10,
ρ̃7,19, and ρ̃1,19) contribute to each peak.

In order to further investigate the influence of the Coulomb
interaction, we introduce a scaling factor f ∈ [0, 1] multiplied
to the Coulomb coupling strength, i.e., for f = 0 we are in
the noninteracting case and for f = 1 in the fully interacting
case. Figure 3(a) shows the spectrum for different f . We can
see that the four peaks blueshift for increasing f , i.e., for
increasing Coulomb interaction strength. The shift is smooth
and derives from the noninteracting peaks. The peak position
as a function of scaling factor f is extracted in Fig. 3(b) (solid
lines). We make two observations: For each of the four peaks
the shift occurs with a different slope and the shift is not
strictly linear.

For a better understanding, we compare these findings to
the eigenvalues E of the interacting Hamiltonian HI = H0 +
W (ρ (0) ) with ρ (0) being the density matrix of the Coulomb
correlated ground state. Note that the eigenvalues E cannot

(a)

(b)

FIG. 3. (a) Shifting of the total induced macroscopic polarization
P (ω) as a function of the scaling factor f of the Coulomb interaction
in a system with nine electrons in 20 states. (b) Comparison of the
peak positions in the optical response (solid lines) and the eigenvalue
difference of the interacting Hamiltonian (dashed lines) as a function
of the scaling factor f of the Coulomb interaction.

be directly compared to the matrix elements of ε̃ obtained by
diagonalizing the interacting initial state defined in Sec. II. If
the Coulomb interaction only leads to energy renormalization
we would expect that the peak positions of the spectrum agree
with the energy difference of the eigenvalues h̄ωE

ij = Ej − Ei .
Seeing that the Coulomb correlated state can be traced back to
the noninteracting states, we consider the states corresponding
to the dipole transitions ωE

7,14, ωE
3,10, ωE

7,19, and ωE
1,19.

The comparison between the peak position (solid lines) and
the eigenvalue difference (dashed lines) is shown in Fig. 3(b).
Naturally for the noninteracting case of f = 0 the two curves
agree. But for f 	= 0 we find a strong disagreement between
the two curves, where the peak positions are always below
the eigenvalue difference. A noticeable feature occurs for a
scaling factor f ≈ 0.3, where the second and third peaks in
the polarization spectrum show an anticrossing in Fig. 3(a).
This is due to the fact that the Coulomb interaction changes
the order of the 2s and 1f orbitals as it can be verified by
checking the order of the eigenvalues E of the interacting
Hamiltonian HI . Indeed, around f = 0.3, the blue dashed
curve ωE

3,10 in Fig. 3(b) bends, indicating where the swap
occurs. This mismatch between the eigenenergies and the
polarization spectra is reminiscent of excitons in semiconduc-
tors whose spectral response always lies below the band gap.
Excitons are a many-particle phenomena, where the Coulomb
interaction correlates the individual electron energies to form
a collective, bound state. This indicates the importance of the
nonlinear effects induced by the Coulomb interaction as well
as the state mixing. It is also a hint for collectivity in the
system, because all states contribute to the formation of the
peaks.
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FIG. 4. Population dynamics in (a) the noninteracting and (b) the
interacting basis excited by a pulse with amplitude E0 = 109 V/m
and frequency ωL = ω1st with (c) the corresponding electric field.

B. Nonlinear response of a nine-electron system

In this section, we analyze the optical response of the
system beyond the linear regime. We calculate the density
matrix time evolution for a strong excitation at each of the four
resonances in the interacting polarization spectrum [Fig. 2(a)]
under a continuous wave excitation that is switched on instan-
taneously. Accordingly we are interested in the response to ex-
citations at ω1st = 4.84 × 1015 s−1, ω2nd = 12.06 × 1015 s−1,
ω3rd = 15.63 × 1015 s−1, and ω4th = 20.46 × 1015 s−1. The
corresponding electric field reads E(t ) = E0 sin(ωLt )�(t )
with E0 being the amplitude, ωL the frequency of the field,
and �(t ) the Heaviside function.

We start by analyzing an excitation with frequency close to
the first peak in the absorption spectrum ω1st . In the noninter-
acting basis due to the adiabatic switch-on into the Coulomb
correlated basis, not only the lowest nine states are occupied,
but most states have a finite initial occupation. When the
electric field sets in, an oscillatory dynamics is initiated, as can
be seen in Fig. 4(a), induced by a light field with a frequency
at ωL = ω1st and an amplitude E0 = 109 V/m displayed
in Fig. 4(c). The strongest oscillation occurs between the
states in 1d and 1f and, similarly with the noninteracting
case, it is the main contributor to the first peak in the linear
response spectrum. The superimposed fast oscillation can be
traced back to the fact that we do not perform the RWA.
Additionally all the other states start to oscillate showing that
they contribute to the dynamics in a nontrivial way. In the
noninteracting basis, we can still attribute the oscillation of
all states to the state mixing in the initial state. This is in

(a)

(b)

FIG. 5. (a) Single oscillation of the occupations ρ̃7,7 and ρ̃14,14

for an excitation frequency ωL = 5.07 × 1015 s−1 and E0 = 3.4 ×
108 V/m (�7,14/ω1st = 0.0178). (b) Comparison with the Fourier
expansion of the occupation ρ̃14,14 up to order n with the cosine
coefficients an as inset.

agreement with our finding in the linear regime, where we
also found that several states contribute to a single peak.

Now we switch to the interacting basis, where the initial
state is diagonal. This allows us to study the question whether
we can describe the system by an excitation between only two
Coulomb-correlated states. Figure 4(b) shows the population
dynamics of the density matrix in the interacting basis ρ̃(t ).
We find that the population exchange occurs mainly between
the 1d and 1f interacting states, ρ̃

m=±2,±1,0
1d and ρ̃

m=±2,±1,0
1f

[red and blue curves in Fig. 4(b)], again because ρ̃1d,1f is
the strongest dipole-allowed transition in the system. We also
observe oscillations with a much lower amplitude of other
states like ρ̃1p, ρ̃1s , and ρ̃2p, which also have a dipole matrix
element between them.

An oscillation amplitude of ≈1 between the states ρ̃7,7

and ρ̃14,14 can be achieved by slightly changing the excitation
frequency to ωL = 5.07 × 1015 s−1 > ω1st , which is slightly
higher than the resonance frequency found in the linear
regime. Nevertheless, even for this excitation condition, there
is no perfect inversion of the system between 0 and 1 for the
occupation of ρ̃14,14. This is because of the many-body char-
acter of the electronic system where the population transfer
occurs between multiple states, mediated by either a dipole
or a Coulomb matrix element. The occupation approximately
follows a pure sine (or cosine) behavior. We confirm these
findings by a Fourier analysis of the oscillation. We consider
the Fourier expansion ρ̃(t ) = a0 + ∑

n an cos (n�0t ) of the
oscillation. Only a0 = 0.5 and a1 = 0.5 are different from 0,
resulting in the Fourier function = 0.5 + 0.5 cos (n�0t ) with
�0 = 1.26 × 1014 s−1. This is displayed in Fig. 5, where we
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(a) (b)

(c) (d)

FIG. 6. (a), (b) Frequency � and (c), (d) amplitude � for
excitations close to the first peak ω1st for an excitation with
�7,14/ω1st = 0.0035 (left, blue curves) and �7,14/ω1st = 0.0178
(right, red curves). The solid lines are the extracted values from the
dynamics �7,14 and �7,14 and the dotted lines are from the TLS �T LS

and �T LS .

show the Fourier expansion up to order n = 4 and compare
it to a single oscillation of the dynamics. In order to get rid
of the small oscillations which are present because we have
not performed the RWA and because of the degeneracy of the
states involved in the interaction, we extract the envelope of
one of the cycles of the time dynamics.

To analyze the oscillations in a more systematic way, we
sweep the excitation frequency of the light field through
the resonance. From the time series of ρ̃14,14 (note that ρ̃7,7

behaves analogous, as well as all the other states in 1d and
1f ) we extract the frequency �7,14 = 2π

τ 7,14 with τ 7,14 being
the period as well as the amplitude �7,14 = max(ρ̃14,14) of the
oscillation for two different excitation strengths �7,14/ω1st =
0.0035 (corresponding to a light-field amplitude E0 = 6.8 ×
107 V/m) shown in Fig. 6 (left column) and �7,14/ω1st =
0.0178 (E0 = 3.4 × 108 V/m) shown in Fig. 6 (right col-
umn). The ratio between the Rabi frequency and the light
frequency gives a relative measure of how excited the system
is at a certain light frequency and intensity, beyond the abso-
lute value of the field strength and the dipole moment of the
transition. In this way, we can compare different resonances
in the light-induced polarization at approximately the same
excitation conditions. For the stronger excitation regime (right
column in Fig. 6) we see a resonant behavior with a minimal
frequency �7,14 and an amplitude of �7,14 = 0.9 occurring
at ω1st = 5.07 × 1015, which is slightly higher than the reso-
nance frequency found in the linear regime. Similarly for the
weaker excitation (left column in Fig. 6), where the resonance
shifts to ω1st = 4.94 × 1015. Nevertheless, the state is only
partially occupied �7,14 = 0.25.

The oscillations in Fig. 4(b) indicate that the population
dynamics of the interacting states behaves similarly to a
two-level system (TLS) showing Rabi oscillations. For a

resonant excitation, the Rabi frequency in a TLS is defined
as �0 = e|d̃ij |E0/h̄ with d̃ij the dipole matrix element in
the interacting basis [cf. Eq. (11)]. The generalized Rabi
frequency is then

�T LS =
√(

�T LS
0

)2 + �2, (15)

where � = ω − ω0 is the detuning from the resonant fre-
quency ω0. Remember, that only for � = 0 the oscillation
amplitude in a TLS is �T LS = 1. For off-resonant excitation
the amplitude �T LS is given by

�T LS = �2
0

�2
0 + �2

. (16)

We now compare our findings of the frequency sweep to
the Rabi oscillations in a TLS. For the TLS we take the
peak position at ω0 = ω1st = 4.84 × 1015 s−1 as resonance
frequency. We start with the right column in Fig. 6. For this
large excitation strength the oscillations of the occupations
become faster. This leads to an effective higher occupation
of the previously unoccupied states and in return modifies the
Coulomb interaction resulting in a shifted curve and the ob-
served differences. As opposed to a simple two-level system,
there is an unstable excitation window where the occupation
is large and the Rabi frequency is fluctuating, followed by
a discontinuous drop in amplitude (increase in frequency).
Thus, the Coulomb interaction influences the dynamics of the
system in a complex way.

The weaker excitation �7,14/ω1st = 0.0035 [see Figs. 6(a)
and 6(c)] behaves less pronounced. For a large range of values
of excitation frequency ω away from resonance we find an
excellent agreement between the extracted values and the
prediction via the TLS. However, close to resonance these two
pictures deviate strongly. The minimal oscillation frequency
� and the maximal amplitude � is again shifted to higher
excitation frequencies compared to the predictions of the TLS
�T LS and �T LS . Remarkably, the amplitude always stays far
below 1 with the highest �7,14 = 0.25. We attribute this to
the change in occupations leading to a change in the Coulomb
interaction which dynamically shifts the resonance frequency.
Note also that the slope of the two curves are different:
While the TLS exhibits a symmetric behavior with respect to
the resonance, the extracted values show a kink. This again
hints towards nonlinear and collective effects induced by the
Coulomb interaction that is not simply a shift in resonance
frequency.

Next, we want to consider what happens if we excite the
system with frequencies close to the third peak at ω3rd =
15.63 × 1015 s−1. We remark that the findings are similar to
what happens at the second and fourth peak which we there-
fore do not show. Again, we find an oscillatory behavior in the
occupation of the states, this time the main oscillation in the
interacting basis happens between ρ̃3,3 and ρ̃10,10 in agreement
with the dipole moment d̃1p,2s corresponding to this transition.
Although this transition contributes to the second peak in the
χ (ω) spectrum in the case without Coulomb interaction, it
becomes the main contributor to the third peak in the case with
Coulomb interaction. This is due to the change in the order of
the 2s and 1f orbitals, as explained at the end of Sec. III A.
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(a) (b)

(c) (d)

FIG. 7. Same as Fig. 6, but for excitations close to the third peaks
ω3rd . We consider �3,10 and �3,10.

Therefore we do a systematic analysis of the frequency
�3,10 and amplitude �3,10 corresponding to the dynamics
of the population of ρ̃10,10. The corresponding results are
shown in Fig. 7 for two different pulse strengths such that the
ratios �3,10/ω3rd are the same as for the first peak. We again
compare our findings to the behavior of a TLS, here taken with
a resonance frequency of ω0 = ω3rd .

In Fig. 7 (right column) we consider an excitation with a
light field E0 = 5 × 109 V/m inducing a ratio �3,10/ω3rd =
0.0178. Again, there is a strong discrepancy between our
system and the theoretical two-level system. There is almost
total population inversion for an extended excitation window,
with an asymmetric and discontinuous excursion amplitude.
This time, the kink is towards lower frequencies.

For the weaker regime, �3,10/ω3rd = 0.0035 and the cor-
responding absolute field strength E0 = 109 V/m, far off the
resonance the extracted values and the TLS prediction agree
well, while close to the resonance we see a kink in the
frequency behavior of �3,10. The amplitude always stays far
below 1 with the highest �3,10 = 0.45.

Finally, let us have a closer look at the population dynamics
of the contributing states ρ̃3,3 and ρ̃10,10 in the interacting ba-
sis. Two periods of the oscillation are shown in Fig. 8 induced
by a field at the maximal amplitude using ωL = 15.45 ×
1015 s−1 and �3,10/ω3rd = 0.0035. The dynamics is similar
for ρ̃7,7 and ρ̃14,14 at maximum amplitude and same excitation
regime. Already here, we clearly see that the dynamical
behavior deviates in an interesting way from the sine behavior
found in a TLS. It is more bell shaped. Similar bell-shaped os-
cillations have been found in the Rabi oscillations in semicon-
ductor quantum dots under local fields, which likewise result
from the nonlinear term in the Bloch equations [38]. When
we do a Fourier analysis of this curve, we find that higher har-
monics contribute strongly to the formation of the dynamics,
in this case up to sixth order. This can again be traced back to
the Coulomb interaction, which has more influence when the
pulse strength is weaker. Hence, the influence of the Coulomb
interaction leads to nonlinear effects like the instantaneous

(a)

(b)

FIG. 8. (a) Population dynamics of ρ̃3,3 and ρ̃10,10 for an exci-
tation at ωL = 15.45 × 1015 s−1 and E0 = 109 V/m (�3,10/ω3rd =
0.0035). (b) Fourier series ρ̃10,10, where each curve an implies that
cosine coefficients up to order n have been added to the Fourier series
with the values of the cosine coefficients an as inset.

formation of higher harmonics for the light-induced changes
in the occupation. Although pumping the system harder re-
duces the order of the Rabi frequency harmonics induced
(cf. Fig. 5), the nonlinear effects are still manifesting via the
asymmetric occupations as a function of the excitation fre-
quency and the complex time dynamics around the resonance.

We emphasize that we distinguish two types of nonlin-
ear effects in our system: Higher harmonics of the Rabi
oscillations’ frequency and dynamical shift of the resonance
frequency. The two effects are competing with each other
since both the Coulomb interaction and the light field are
driving the dynamics via the Hamiltonian. Hence, for weaker
excitation, the Coulomb interaction dominates, resulting in
the bell-shaped dynamics, while a stronger one drives the
oscillations closer to an optical two-level system excitation.

To conclude this section, we comment on our method
in relation to DFT methods. We remark that our formula-
tion takes into account a bare Coulomb potential calculated
explicitly from the analytical single-electron states within
the Hartree-Fock (exchange) approximation. In contrast, in
DFT going beyond Hartree approximation involves consid-
ering an exchange-correlation functional such as the local
density approximation (LDA). Within this approximation, a
DFT ground state is calculated, from which a linear response
can be obtained. Because the ground state from our method
and the DFT ground state can differ quite significantly, we
expect also quite different results comparing the two methods.
To calculate the dynamics, it is possible to use (real-time)
time-dependent (RT-TDDFT) codes. In these calculations, the
exchange-correlation functional is again a crucial ingredient,
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which due to its dynamical shift has to be treated with great
care [39–41], while our approach is well suited to study
dynamics. We would also like to remark that in DFT studies
the coherences between the states might be lost due to the
reduction to the electronic density, while in our dynamics we
naturally keep all the coherences between the states.

While the TDDFT methods are widely used in the study
of quantum plasmonic systems, the density matrix approach
is a well-established method in the field of optically excited
semiconductors, particularly to describe Coulomb effects like
excitons and band gap renormalization [32,42]. Due to the
discrete energy levels in our system and the finite gap between
the highest occupied and lowest unoccupied state, the system
is somewhere in between a metal and a semiconductor.

IV. CONCLUSIONS

In summary, we have used a microscopic density matrix
formalism to describe the electrons dynamics in a quantized
nanoparticle. The methodology is similar to the one used for
the derivation of bulk plasmons. We considered a system of
nine electrons with an explicit description of the Coulomb
interaction on the mean field level and studied the effects of
the Coulomb interaction on the optically induced dynamics.
In the linear regime, the Coulomb interaction leads to a shift
of the resonances and a state mixing, indicating a collec-
tive response. In the nonlinear regime, the optically induced

oscillations of the occupation were strongly modified due to
the Coulomb interaction.

Our study lies in between two limiting cases: In one limit,
one considers one or two electrons which then results in
the description of Rabi oscillations and a formulation using
a two-level system. Such a description is used successfully,
for example, to describe semiconductor quantum dots. In the
other limit, one considers many-electron systems where plas-
mons are described within the RPA and a classical treatment
of the material polarizability is usually sufficient. Neither of
the aforementioned descriptions is sufficient to describe the
Coulomb effects in a few-electron system, underlined by the
fact that our findings deviate from both limiting cases. Instead,
we find similarities with both cases. For certain excitation
conditions the system behaves like the two-level system ex-
hibiting Rabi oscillations. On the other hand, we find hints for
collective behavior, like energy shifts and the modification of
the oscillations, which are typical for plasmons.
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