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Manifestation of vibronic dynamics in infrared spectra of Mott insulating fullerides
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The fine structure and temperature evolution of infrared spectra have been intensively used to probe the nature
of Jahn-Teller dynamics in correlated materials. At the same time, a theoretical framework to adequately extract
the information on the complicated vibronic dynamics from infrared spectra is still lacking. In this work, the
first-principles theory of the infrared spectra of dynamical Jahn-Teller system is developed and applied to the
Mott-insulating Cs3C60. With the calculated coupling parameters for Jahn-Teller and infrared active vibrational
modes, the manifestation of the dynamical Jahn-Teller effect in infrared spectra is elucidated. In particular, the
temperature evolution of the infrared line shape is explained. The transformation of the latter into Fano resonance
type in metallic fulleride is discussed on the basis of obtained results.
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I. INTRODUCTION

The role of dynamical Jahn-Teller (JT) effect [1–3] in
electronic property of correlated materials attracts significant
attention. Such materials of current interest include, e.g.,
various transition-metal compounds [4–8], rare earth [9], and
actinide dioxides [10]. An increasing precision of the investi-
gation of such materials demands detailed knowledge of the
nature of JT dynamics and the mechanisms of its manifes-
tation in observed properties. Rich fine structures in infrared
(IR) spectra are expected to encode the information on the
local JT dynamics. Despite the fact that IR spectroscopy has
been applied to various systems [11–20], the relation between
the JT dynamics and the structure of IR spectra has not
been established. One family of materials where the JT effect
has been much investigated are the alkali-doped fullerides
[15,16,18,21–29].

Recently, the understanding of the dynamical JT effect on
the C3−

60 sites of alkali-doped fullerides A3C60 (A = K, Rb, Cs)
has significantly advanced. The accurate calculation of the or-
bital vibronic coupling parameters for C60 anions [30] enables
us to access realistic low-energy vibronic spectra of Cn−

60 (n =
1−5) [31,32]. Since the dynamical JT (vibronic) state can
be thought of as a quantum superposition of statically JT de-
formed molecular wave functions [33,34], it is simultaneously
characterized by the presence of the JT split adiabatic orbitals
and the equal contributions of the degenerate electronic states
to it. Therefore, the presence of the unquenched JT dynamics
in the Mott-insulating phase due to a large dynamical JT
stabilization energy naturally explains the absence of orbital
ordering and the isotropic character of the antiferromagnetic
exchange interaction [26,31]. The dynamical JT effect was
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found not to be quenched by band effects in the metallic phase
[35], a fact confirmed indirectly by experiment [18]. Since
each C3−

60 site has three nondegenerate adiabatic orbitals, the
conduction band of A3C60 is also split into three inequivalent
subbands. As a consequence, the electron correlation basically
develops only in one JT split half filled adiabatic subband [see
Fig. 2(d) in Ref. [36]], and hence the critical intrafullerene
electron repulsion for the JT-induced orbital-selective Mott
transition is small [35,37] which is consistent with the recent
estimate of Coulomb repulsion by electrical conductivity
measurements [38]. Based on the derived vibronic structure
of fullerene anions, it was also shown that the spin gap from
NMR data [39,40] is well reproducible [32].

The IR measurements of A3C60 have been performed
across the Mott transition. In the Mott insulating phase, the
temperature dependence of the IR spectra was attributed to
the evolution of the JT dynamics due to the variation of the
structure of the adiabatic potential-energy surface by thermal
expansion of the crystal [15,16]. The spectral shape in the
metallic phase close to the Mott transition remains similar
to that in the Mott insulating phase, whereas it gradually
changes to Fano resonance type as departing from it [18].
The unchanged shape of the IR spectrum in the vicinity of
Mott transition was interpreted as the evidence of the JT
effect on C3−

60 , following the theoretical prediction [35]. On
the other hand, the evolution of the Lorenzian shape into
Fano resonance deep in the metallic phase was interpreted in
Ref. [18] as a quenching of the JT effect, which contradicts
the theoretical calculations [35,41] and NMR [39,42] and
electrical conductivity [38] measurements: The NMR mea-
surements show the spin gap induced by the JT dynamics
in metallic Rb3C60 [39] and the same magnetic properties
in both the Mott insulating phase and the high-temperature
paramagnetic insulating phase above the metallic one [42]
and the electrical conductivity measurements show no drastic
change of resistivity in the whole metallic domain [38]. In
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order to correctly assess the nature of JT dynamics from
the fine structure of IR spectra, it is decisive to develop a
theoretical framework for their adequate treatment.

In this work, a fully quantum-mechanical theory for IR
spectra of dynamical JT systems is developed. Combining
the developed theory and first-principles calculations, the IR
active vibronic states of the Cs3C60 cluster are derived and, on
this basis, IR spectra are simulated. In terms of the obtained
vibronic states, the relation between the JT dynamics and the
temperature evolution of IR spectra is revealed. The developed
theoretical scheme will be indispensable for the understanding
of the phenomena related to the photoexcitation processes in
fullerides and other dynamical JT materials.

II. MODEL VIBRONIC HAMILTONIAN OF C3−
60

The minimal model describing the manifestation of the
JT dynamics in IR spectra is derived. Below, the irreducible
representations (irrep) of Ih group are used, the components
of the irreps are always real in the main text, and the lower
(upper) case is used for the irrep of the one electron orbital
state and the mass-weighted normal mode (electronic term
and vibronic states). Three orthogonal C2 axes are chosen
as the Cartesian axes (see Fig. S1 in the Supplemental
Material [43]).

In the low-energy states of the C3−
60 site in A3C60, triply de-

generate t1u lowest unoccupied molecular orbitals (LUMOs)
are half filled because of the deep LUMO levels and large
separation from the other levels. The bielectronic interac-
tion between electrons occupying the LUMOs, Ĥbi, induces
the term splitting as 4Au ⊕ 2T1u ⊕ 2Hu. Ĥbi raises the 2T1u

term by 2JH with respect to the 2Hu term, where JH is
the Hund’s rule coupling parameter (≈40 meV [31,32,44]).
The t1u orbitals couple to the totally symmetric ag and the
fivefold degenerate hg vibrations of the C60 cage, and the
linear vibronic coupling to the hg modes, Ĥ

(1)
vibro, gives rise to

the JT effect [1,3,23,25].
Within the simplest model for C3−

60 consisting of Ĥbi, the
Hamiltonian of harmonic oscillations, Ĥ0, and Ĥ

(1)
vibro,

Ĥ (0) = Ĥbi + Ĥ0 + Ĥ
(1)
vibro, (1)

the IR active t1u vibrational degrees of freedom are uncou-
pled from the JT dynamics. Therefore, neither fine structure
nor temperature evolution in IR spectra can be expected.
In order to reveal the role of the JT dynamics in the IR
spectra, the interplay of the vibronic and the IR vibrational
degrees of freedom has to be considered. The interplay arises
from nonlinear vibronic couplings admixing the IR modes.
Although the t1u LUMOs do not linearly couple to the IR
active t1u modes, they do to the products of the coordinates
when the latter include the hg representation (see Table S2
in the Supplemental Material [43]). Thus, the minimal model
should contain the quadratic vibronic term to the IR active
modes allowing us to indirectly relate the IR and JT modes
via electronic orbitals,

Ĥ = Ĥ (0) + Ĥ
(2)
vibro, (2)

where

Ĥ
(2)
vibro =

∑
μi�i

∑
νγ

∑
λλ′

V �1�2
νμ1μ2

{q̂�1(μ1 ) ⊗ q̂�2(μ2 )}νhgγ

×
√

15

2
〈t1uλ|huλ

′, hgγ 〉|T1uλ〉〈Huλ
′| + H.c. (3)

Here, |T1uλ〉 (λ = x, y, z) and |Huλ
′〉 (λ′ =

θ, ε, ξ, η, ζ which stand for (2z2 − x2 − y2)/
√

6, (x2 −
y2)/

√
2,

√
2yz,

√
2zx,

√
2xy, respectively) are electronic

term states, q̂�γ is the nuclear mass-weighted normal
coordinate operator [45], V �1�2

νμ1μ2
is the quadratic orbital

vibronic coupling parameter, {q̂�1(μ1 ) ⊗ q̂�2(μ2 )}νhgγ is the
symmetrized product of corresponding nuclear coordinates
[see Eq. (A1) and Ref. [1]], ν distinguishes multiple hg

representations since Ih is not a simply reducible group, and
〈t1uλ|huλ

′, hgγ 〉 is the Clebsch-Gordan coefficient (Sec. I in
the Supplemental Material [43]). The coefficient

√
15/2 in

Eq. (3) is introduced as in Refs. [3,23,25]. The absence of
the diagonal block in Ĥ

(2)
vibro is due to the seniority selection

rule [46]. In Ĥ
(2)
vibro, the quadratic JT coupling is not included

because it does not influence much the vibronic states of C3−
60

[47]. See Appendix A 1 for the derivation of Eq. (3).

III. NONLINEAR VIBRONIC COUPLING CONSTANTS

The frequencies ω�(μ) and orbital vibronic coupling param-
eters V �1�2

νμ1μ2
of Cs3C60 clusters were calculated using density

functional theory (DFT) with hybrid exchange-correlation
functional (Appendix B 1). Since the IR peak of the highest
frequency mode (ωt1u(4) ≈ 1360 cm−1) has the richest fine
structure [15,16,18], we will describe only this peak. The ob-
tained parameters for A15 and fcc lattices of Cs3C60 are
similar to each other, hence the parameters for A15 are used
below. The calculated frequencies for neutral C60 are in
line with experimental data (Table S3 in the Supplemental
Material [43]). Upon doping, the frequency of the t1u(4)
mode shows a relatively large redshift by about 60 cm−1

and approaches the frequencies of gu(5) and hu(6) modes,
ωt1u(4) = 1384, ωgu(5) = 1334, and ωhu(6) = 1351 cm−1. On
the other hand, the gu(6) mode, whose frequency is close
to that of t1u(4) in the neutral C60, implying a relevance to
the spectra [15], does not vary much, ωgu(6) = 1440 cm−1.
This result points to the importance of t1u(4), gu(5), and
hu(6) rather than gu(6) for the description of the IR spectrum
because these IR and JT inactive modes (gu, hu) may couple
nonlinearly to the t1u orbitals (see for the polarization vectors
Fig. S1 in the Supplemental Material [43]).

The quadratic orbital vibronic coupling parameters V �1�2
νμ1μ2

(a.u.) were derived by fitting the t1u LUMO levels with respect
to the t1uz, guz, huθ deformations (a.u.) to the model vibronic
Hamiltonian (see for the model Hamiltonian Appendix A 2,
for the fitting Fig. S2 in the Supplemental Material [43], and
for the coupling parameters Table I). One should note that
the magnitudes of V �1�2

νμ1μ2
, not only for the IR active t1u(4)

mode but also for the IR inactive gu(5) and hu(6) modes,
are similar to each other [48]. Indeed, the largest parameter
is obtained for the t1u and hu modes. On the other hand, the
intermode coupling involving the t1u(4) and gu(6) is found
to be weak. Given the relatively large difference in frequency
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TABLE I. Calculated quadratic vibronic coupling parameters
V �1�2

νμ1μ2
(×10−7 a.u.).

�1(μ1) �2(μ2) V �1�2
μ1μ2

�1(μ1) �2(μ2) ν V �1�2
νμ1μ2

t1u(4) t1u(4) −3.57 gu(5) hu(6) 1 1.19
gu(5) 3.19 2 1.60
gu(6) 0.38 gu(6) gu(6) 1.46
hu(6) 6.18 hu(6) hu(6) 1 2.16

gu(5) gu(5) −1.89 2 3.23

between them, the contribution from the gu(6) mode to the
vibronic states is negligible. Thus, hereafter, we consider only
the t1u(4), gu(5), and hu(6) modes, which we call IR modes
for simplicity [49], as well as the JT active hg modes.

IV. VIBRONIC STATES

Comparing the energy scales of the linear and quadratic
vibronic coupling, the latter is regarded as perturbation to the
former [48]. The eigenstates of the unperturbed Hamiltonian,
Eq. (1), are the direct products of the linear JT state [50],
|�(0)

κ 〉, and of the harmonic oscillations of the IR modes [49],
|n′〉. The JT states κ are characterized by the irrep � (or
vibronic angular momentum J ), its component γ , parity P

originating from the seniority, and principal quantum number
α distinguishing the energy levels, κ = (α�γP ) [31,32]. The
ground (� = T1u, P = +1) and the first excited (Hu,−1) JT
states are separated by about 8 meV and the other JT levels
appear at >30 meV.

The JT dynamics modifies the strengths of the nonlinear
vibronic terms,

Ĥ
(2)
vibro =

∑
μi�i

∑
νγ

∑
κκ ′

V �1�2
νμ1μ2

�(κ; κ ′){q̂�1(μ1 ) ⊗ q̂�2(μ2 )}νhgγ

×
√

15

2
〈�κγκ |�κ ′γκ ′ , hgγ 〉∣∣�(0)

κ

〉〈
�

(0)
κ ′

∣∣, (4)

where the electronic basis in Eq. (3) is replaced by the JT
states (see Appendix A 3). The form remains the same as
Eq. (3) except for the factor �(κ; κ ′) which is a vibronic
factor modifying the operators (see, e.g., Refs. [1–3]). For the
lowest two JT states, � = 0.63 [32], and thus, the quadratic
vibronic coupling is reduced (for other �’s, see Table S4 in
the Supplemental Material [43]). Besides the reduction factor,
the parity selection rule reduces the effect of the quadratic
coupling because the coupling is only operative between the
linear JT states with different parities (see Sec. IV B 3 in
Ref. [32]).

The eigenstates of the full Hamiltonian, Eq. (2), which we
call vibronic states [50], are expressed as

|�τ 〉 =
∑

κ

∑
n′

Cκn′;τ
∣∣�(0)

κ

〉 ⊗ |n′〉, (5)

where, Cκn′;τ are coefficients. The vibronic state τ is also
characterized by the principal quantum number, irrep, and its
component.

The vibronic states were numerically derived
(Appendix B 2). The obtained low-energy vibronic levels are
shown in Fig. 1 (see also Fig. S3 in the Supplemental Material

FIG. 1. Low-energy vibronic levels mainly originating from the
lowest JT states. Left column shows the lowest JT levels without
excitation of the IR modes. The right column shows the vibronic
levels with one vibrational excitation of the IR modes.

[43]). The lowest T1u and Hu JT levels are not affected by
Ĥ

(2)
vibro, and thus, they continue to be called JT states (left

column in Fig. 1). The excited vibronic states arising from
the T1u and Hu JT states (right column in Fig. 1) are in a
good approximation described by the symmetrized products
of T1u/Hu JT states and |n′〉 involving only one IR vibrational
excitation (see Appendix C and Table S5 of the Supplemental
Material [43]).

V. VIBRONIC EXCITATIONS IN INFRARED SPECTRA

The IR absorption corresponds to the transition from the JT
to the excited vibronic states (left and right columns of Fig. 1,
respectively). Introducing the coupling to the external electric
field E [1,2],

ĤIR =
∑

μ

∑
γ=x,y,z

Zμq̂t1u(μ)γ Eγ , (6)

where Zμ is effective nuclear charge, the IR absorbance is
given by [51]

I (ω, T ) ∝
∑
κτγ

ρκ (T )ω|〈�τ |q̂t1u(4)γ |�κ〉|2δ(ω − ωτκ ), (7)

where κ indicates the low-lying JT states, τ denotes the
vibronic states with one IR excitation, ρκ (T ) is the canonical
distribution at temperature T , and h̄ωτκ = Eτ − Eκ .

The simulated IR spectra of C3−
60 at (a) 28 K, (b) 60 K, and

(c) 150 K are shown in Fig. 2. At 28 K, all the peaks are mainly
composed of the excitations from the lowest T1u JT level.
The highest peak around 1370 cm−1 includes three major
components corresponding to the excitations from the T1u to
Hg (3), T1g (2), and Ag (1) vibronic levels (Fig. 1 and Table
S6 in the Supplemental Material [43]). In these IR-admixed
vibronic states, the products of the T1u JT state and one t1u(4)
vibrational excitation have large weight (Table S5 [43]). As
temperature rises, the first excited Hu JT state is also thermally
populated, and thus, the fraction of the transitions from the T1u

(Hu) JT state decreases (increases). The new peaks observed
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FIG. 2. (a)–(c) Theoretical and (d) experimental IR spectra of A15 Cs3C60. Calculated IR spectra of C3−
60 at (a) 28 K, (b) 60 K, and

(c) 150 K. All intensities (red vertical lines) are integrated with a Gauss function of full width of half maximum = 14 cm−1 (blue). In (d), the
upper two (green) and lower six (purple) spectra are taken from [15,16], respectively. The vertical dashed lines at 1350 and 1365 cm−1 show
the positions of the peaks of our interest.

at high temperature correspond to the transitions from the
Hu to the Gg (6), Hg (8), T2g (5), and T1g (5) vibronic levels
(Fig. 1 and Table S6 [43] ) which mainly originate from the
products of the Hu JT state and one t1u(4) excitation (Table S5
[43]). The contributions from the Hu are not negligible already
at 60 K and eventually become stronger at high temperature
[Figs. 2(b) and 2(c)] [52]. The evolution explains the basic
features of the experimental data: in the spectra, the peak
around 1350 cm−1 from the T1u JT level is the highest at
T = 28 K, while the peak at 1365 cm−1 from the Hu JT
level becomes higher as temperature increases [Fig. 2(d)]
[53]. Thus, the present theory proves that the temperature
dependence indeed originates from thermal population of
vibronic excitation from the T1u to the Hu JT states. Besides
the main peaks, some of the other fine structures can be
explained. For example, the gradual decrease of the peak at
1400 cm−1 [T1u → Hg (5)] with the increase of temperature
resembles the temperature dependence of the shoulder at 1380
cm−1 in the experimental data [Fig. 2(d)]. Note that such
small structures arise due to the quadratic vibronic coupling
involving IR inactive gu/hu modes besides IR active t1u.

VI. DISCUSSION

The interpretation of the IR spectra of JT systems is often
based on the modification of selection rules due to the sym-
metry lowering [54]. Thus, in the previous quantum chemistry
study of the Cs3C60 cluster, the IR spectra were calculated for
some electronic configurations at statically deformed structure
[55]. Considering the complicated orbital-lattice entangled
nature of vibronic states, such simplified treatment is not
sufficient to reveal the mechanisms of the implication of
dynamical JT effect in the observed properties. The theoretical
framework for a complete treatment of the JT dynamics and
IR spectra in high symmetric JT systems is established in
this work. On this basis, it is shown that the assumption
of a change of adiabatic potential-energy surface by thermal
expansion [15,16] is not necessary for the description of the
temperature evolution of IR spectra.

The obtained results can be applied to the analysis of
the IR spectra in fullerides close to Mott transition where
the IR spectra are practically unaffected by weak inter-
site interactions. In the metallic phase, the electron trans-
fer interaction Ĥt is not negligible. In the ground state, Ĥt

forms continuous vibronic states without quenching the JT
dynamics because of the large stabilization energy of the
latter [35]. As a consequence, the spin gap induced by the
JT dynamics is observed even in the fullerides with small
lattice constant [39]. The IR-admixed vibronic states (right
column of Fig. 1) are also mixed with many excited vibronic
states involving one IR vibrational excitation by Ĥt. At a
sufficiently strong interaction of the excited vibronic states
with a continuum of bulk states, a Fano resonance in IR
spectra will appear. We stress that the modification of the
shape of IR spectra into a Fano resonance [18] does not
necessarily mean the quench of the JT effect in the ground
state.

The present work can also contribute to the description
of the light-induced superconductivity in K3C60 [56,57]. The
model used in recent works [58,59] for the discussion of a
possible mechanism based on a simplified quadratic vibronic
coupling should be replaced with Eq. (2). In Ref. [56], the
importance of the cubic coupling was also proposed to relate
the vibration of the IR active t1u mode and JT distortion,
while it was shown here that these lattice degrees of freedom
are already entangled (5) within the quadratic vibronic model
via degenerate electronic terms.

VII. CONCLUSION

The quantum-mechanical framework for the description of
the IR spectra of the dynamical JT system is developed. Based
on the first-principles calculations, the nonlinear vibronic
Hamiltonian of the C3−

60 site was derived, and the vibronic
states involving both the JT and IR degrees of freedom were
calculated. On this basis, the relation between the tempera-
ture evolution of IR spectra in Mott insulating Cs3C60 and
JT dynamics was established. The first-principles calcula-
tions also showed non-negligible nonlinear vibronic couplings
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between the IR active t1u mode and non-IR active gu and hu

modes, giving rise to the fine structures of the IR spectra. It is
worthwhile to note that, contrary to the previous approaches,
static JT distortions are not assumed to be responsible for
the temperature evolution of IR spectra as well as their fine
structure. Because the fine structure of the IR spectra is
governed by the IR-admixed vibronic structure, the recon-
sideration on the relation between the IR spectra in metallic
fullerides and the nature of JT dynamics as a function of their
volume is required. The developed theoretical approach can
be applied to the study of the spectroscopic and light-induced
electronic properties of various correlated dynamical JT
materials.
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APPENDIX A: QUADRATIC VIBRONIC COUPLING

In this section, SO(3) symmetry and the spherical basis
for the t1u and hu/g irreps of the Ih group are used. The
Condon-Shortley’s phase convention is taken for the spherical
harmonics [60].

1. Derivation of Eq. (3)

The t1u LUMOs couple to the symmetrized hg polynomials
of the normal coordinates. The quadratic hg polynomials are
calculated as

{q̂�1(μ1 ) ⊗ q̂�2(μ2 )}νhgγ =
∑
γ1γ2

〈νhgγ |�1γ1�2γ2〉

× q̂�1(μ1 )γ1 q̂�2(μ2 )γ2 , (A1)

where the sum is over the components of the irreps �1 and �2.
See for the explicit form Sec. II in Ref. [43]. The quadratic

vibronic coupling is expressed as

Ĥ
(2)
vibro =

∑
μi�i

∑
νγ

∑
λλ′σ

V �1�2
νμ1μ2

{q̂�1(μ1 ) ⊗ q̂�2(μ2 )}νhgγ

×
√

5

2
〈t1uλ|t1uλ

′, hgγ 〉ĉ†t1uλσ ĉt1uλ′σ , (A2)

where σ indicates the projection of electron spin and ĉ
†
t1uλσ

and ĉt1uλσ are the electron creation and annihilation operators
in the spin orbital t1uλσ . Transforming the real components of
the irreps into the spherical ones, Eq. (A2) reduces to the same
form as Eq. (A1) in Ref. [32]. Thus, by the same procedure as
described in Appendix A in Ref. [32], we obtain the spherical
form of Eq. (3):

Ĥ
(2)
vibro =

∑
μi�i

∑
νm′′

∑
nn′

(−1)m
′′
V �1�2

νμ1μ2

×{q̂�1(μ1 ) ⊗ q̂�2(μ2 )}ν2,−m′′

√
15

2
〈1n|2n′, 2m′′〉

× [|1n〉〈2n′| − (−1)m
′′ |2,−n′〉〈1,−n|], (A3)

where |1n〉 and |2n′〉 express the spherical form of the T1u and
Hu multiplet states, respectively, and n, n′,m′′ are the projec-
tions of the angular momenta. By the inverse transformation
from the spherical into the Cartesian basis, we obtain Eq. (3).
The difference in the coefficients in Eqs. (3), (A3), and (A2)
by

√
3 comes from the reduced matrix element of Racah’s

Û (2) operator. Since the spin and orbital degrees of freedom
are independent from each other, Eqs. (3) and (A3) show only
the orbital part.

2. Model Hamiltonian for the IR modes

One-electron quadratic vibronic Hamiltonian for the IR
modes is given by

Ĥ ′
0 + Ĥ

(2)′
vibro = (|t1ux〉, |t1uy〉, |t1uz〉)

× (
H′

0 + H(2)′
vibro

)⎛⎜⎝
〈t1ux|
〈t1uy|
〈t1uz|

⎞
⎟⎠. (A4)

Here, the projection of the electron spin is omitted, H′
0

involves the orbital energy εt1u
and the harmonic oscillator

terms, and H(2)′
vibro is the quadratic vibronic coupling:

H′
0 =

⎛
⎝εt1u

+
∑

γ=x,y,z

kt1u(4)

2
q2

t1u(4)γ +
∑

γ=a,x,y,z

kgu(5)

2
q2

gu(5)γ +
∑

γ=θ,ε,ξ,η,ζ

khu(6)

2
q2

hu(6)γ

⎞
⎠I, (A5)

H(2)′
vibro =

∑
γ=θ,ε,ξ,η,ζ

(
V

t1ut1u

44 {q̂t1u(4) ⊗ q̂t1u(4)}hgγ + V
gugu

55 {q̂gu(5) ⊗ q̂gu(5)}hgγ +
∑
ν=1,2

V
huhu

ν66 {q̂hu(6) ⊗ q̂hu(6)}νhgγ

+ 2V
t1ugu

45 {q̂t1u(4) ⊗ q̂gu(5)}hgγ + 2V
t1uhu

46 {q̂t1u(4) ⊗ q̂hu(6)}hgγ +
∑
ν=1,2

2V
guhu

ν56 {q̂gu(5) ⊗ q̂hu(6)}νhgγ

)
Mγ , (A6)
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k�(μ) indicates the elastic parameter, I is the three-dimensional
unit matrix, and

Mθ =

⎛
⎜⎝

1
2 0 0

0 1
2 0

0 0 −1

⎞
⎟⎠, Mε =

⎛
⎜⎝

−
√

3
2 0 0

0
√

3
2 0

0 0 0

⎞
⎟⎠,

Mξ =

⎛
⎜⎝

0 0 0

0 0 −
√

3
2

0 −
√

3
2 0

⎞
⎟⎠, Mη =

⎛
⎜⎝

0 0 −
√

3
2

0 0 0

−
√

3
2 0 0

⎞
⎟⎠,

Mζ =

⎛
⎜⎝

0 −
√

3
2 0

−
√

3
2 0 0

0 0 0

⎞
⎟⎠. (A7)

In Eqs. (A5) and (A6), only the IR modes [49] are included.

3. Derivation of Eq. (4)

The transformation from Eq. (3) to Eq. (4) is described
here. In this subsection, to make use of the SO(3) symmetry of
the linear t3

1u ⊗ hg JT system, the vibronic angular momentum
J is used instead of real irrep � of the Ih group.

Using the identity operator for the JT states, Î (0) =∑
αJmP |�(0)

αJmP 〉〈�(0)
αJmP |,

Ĥ
(2)
vibro = Î (0)Ĥ

(2)
vibroÎ

(0)

=
∑

αJmP

∑
α′J ′m′P ′

〈
�

(0)
αJmP

∣∣Ĥ (2)
vibro

∣∣� (0)
α′J ′m′P ′

〉
× ∣∣� (0)

αJmP

〉〈
�

(0)
α′J ′m′P ′

∣∣, (A8)

where J is the vibronic angular momentum and m is its
projection. Substituting Eq. (A3) into the matrix element of
Eq. (A8), we obtain

Ĥ
(2)
vibro =

∑
αJmP

∑
α′J ′m′P ′

∑
μi�i

∑
νm′′

V �1�2
νμ1μ2

× (−1)m
′′ {q̂�1(μ1 ) ⊗ q̂�2(μ2 )}ν2,−m′′

√
15

2

× 〈
�

(0)
αJmP

∣∣M̂2m′′
∣∣� (0)

α′J ′m′P ′
〉∣∣� (0)

αJmP

〉〈
�

(0)
α′J ′m′P ′

∣∣,
(A9)

with rank-2 irreducible tensor operator

M̂2m′′ =
∑
nn′

〈1n|2n′, 2m′′〉

× [|1n〉〈2n′| − (−1)m
′′ |2,−n′〉〈1,−n|]. (A10)

Applying Wigner-Eckart theorem [60] to the matrix elements
of M̂2m′′ , 〈

�
(0)
αJm+

∣∣M̂2m′′
∣∣� (0)

α′J ′m′−
〉

=
〈
�

(0)
αJ+

∥∥M̂2

∥∥�
(0)
α′J ′−

〉
√

2J + 1
〈Jm|J ′m′, 2m′′〉

= �(αJ+; α′J ′−)〈Jm|J ′m′, 2m′′〉. (A11)

Here, the parities of the T1u and Hu terms are defined to
be +1 and −1, respectively [see Eq. (11) in Ref. [32]], and

�(αJP ; α′J ′P ′) is defined by

�(αJP ; α′J ′P ′) =
〈
�

(0)
αJP

∥∥M̂2

∥∥�
(0)
α′J ′P ′

〉
√

2J + 1
. (A12)

Therefore, by the substitution of Eq. (A11) into Eq. (A9), we
obtain

Ĥ
(2)
vibro =

∑
αJm

∑
α′J ′m′

∑
μi�i

∑
νm′′

V �1�2
νμ1μ2

�(αJ+; α′J ′−)

× (−1)m
′′ {q̂�1(μ1 ) ⊗ q̂�2(μ2 )}ν2,−m′′

√
15

2

×〈Jm|J ′m′, 2m′′〉∣∣� (0)
αJm+

〉〈
�

(0)
α′J ′m′−

∣∣ + H.c.

=
∑

αJmP

∑
α′J ′m′P ′

∑
μi�i

∑
νm′′

V �1�2
νμ1μ2

�(αJP ; α′J ′P ′)

× (−1)m
′′ {q̂�1(μ1 ) ⊗ q̂�2(μ2 )}ν2,−m′′

√
15

2

×〈Jm|J ′m′, 2m′′〉∣∣� (0)
αJmP

〉〈
�

(0)
α′J ′m′P ′

∣∣. (A13)

To obtain the second form,

[{q̂�1(μ1 ) ⊗ q̂�2(μ2 )}ν2,−m′′ ]†

= (−1)m
′′ {q̂�1(μ1 ) ⊗ q̂�2(μ2 )}ν2m′′ (A14)

and

�(αJ+; α′J ′−)〈Jm|J ′m′, 2m′′〉
= �(α′J ′−; αJ+)(−1)m

′′ 〈J ′m′|Jm, 2,−m′′〉 (A15)

are used. Nonzero �(αJ+; α′J ′−)’s for the low-energy JT
levels are shown in Table S4 in the Supplemental Material
[43]. Finally, using the relation between the irreps of SO(3)
and Ih in Eq. (A13), we obtain Eq. (4). For details of the
relation of these two representations, see Sec. I A in the
Supplemental Material of Ref. [47].

APPENDIX B: COMPUTATIONAL METHODS

1. DFT calculations

In order to determine the frequencies and the quadratic
vibronic coupling parameters, DFT calculations of Cs3C60

cluster were performed. The cluster consists of one C60, the
nearest 12 Cs atoms, and several thousands of point charges
for distant C3−

60 (−3) and Cs+ (+1). For the calculations, the
B3LYP hybrid exchange-correlation functional was used with
a triple-zeta polarization 6-311G(d) and double zeta 3-21G
basis sets for C and Cs, respectively [61]. In order to avoid
the artificial splitting of the t1u orbital levels, the 4Au elec-
tronic configuration was treated within the spin-unrestricted
approach. The quadratic vibronic coupling constants were
derived by fitting the t1u LUMO levels with respect to the
deformed structures to the model Hamiltonian, Eq. (A4). The
results of the fitting are shown in Fig. S2 of the Supplemental
Material [43].

2. Calculation of vibronic states

The vibronic Hamiltonian matrix was derived using the
JT states of Ref. [32], and then numerically diagonalized
[62]. The basis of |�τ 〉 (5) was truncated on the basis of the
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excitation energy of JT states and the number of vibrational
excitations for IR modes [49]: the former was <90 meV and
the latter was 3,

0 �
∑

�(μ)γ

n′
�(μ)γ � 3, (B1)

where the sum is over the IR modes, and n′
�(μ)γ � 0 is

the vibrational quantum number. The cutoff of the JT states
restricts the maximum temperature for the simulation of the
IR spectra as in the case of spin gap [32] because the JT levels
higher than the cutoff cannot be populated. The maximum
temperature treated in this work is 150 K.

APPENDIX C: ASSIGNMENT OF THE VIBRONIC STATES

The lowest vibronic states (left column of Fig. 1) are
expressed by the linear combinations of the products of the
JT states and the vibrational vacuum |n′ = 0〉 or two vibra-
tionally excited states of the IR modes [49]. The contribution
from the latter is negligible in the present case, and thus these
low-energy vibronic states are well defined by the JT states.

On the other hand, the excited vibronic states (right column
of Fig. 1) are described by the linear combination of the prod-
ucts of the JT states and the one- or three-vibrationally excited
IR states, and the main contributions come from the former.
Therefore, the excited vibronic states |�τ 〉 are assigned by
the symmetrized products of the JT and the one vibrationally
excited state. The symmetrized states are expressed as

|(�1�2)n�γ 〉 =
∑
γ1γ2

|�1γ1〉 ⊗ |�2γ2〉〈�1γ1,�2γ2|ν�γ 〉,

(C1)

where �1 and �2 indicate the irreps of the JT and IR states,
respectively. Thus, �2 is the irrep of the excited IR mode.
The product states of the T1u JT state and the t1u, gu, hu

vibrational states split into ten states,

T1u ⊗ t1u = Ag ⊕ T1g ⊕ Hg,

T1u ⊗ gu = T2g ⊕ Gg ⊕ Hg, (C2)

T1u ⊗ hu = T1g ⊕ T2g ⊕ Gg ⊕ Hg,

and those with the Hu JT state split into 16 states,

Hu ⊗ t1u = T1g ⊕ T2g ⊕ Gg ⊕ Hg,

Hu ⊗ gu = T1g ⊕ T2g ⊕ Gg ⊕ 2Hg, (C3)

Hu ⊗ hu = Ag ⊕ T1g ⊕ T2g ⊕ 2Gg ⊕ 2Hg,

respectively. The explicit forms of the symmetrized vibronic
states (C1) are given in Sec. IV A of the Supplemental Mate-
rial [43]. The contribution of each symmetrized state (C1) to
the vibronic states |�τ 〉, Eq. (5), is quantitatively evaluated by
calculating

w(�1�2ν�, τ ) = 〈�τ |Î(�1�2 )ν�|�τ 〉, (C4)

where, Î(�1�2 )ν� is the projector into the symmetrized states
(�1�2)ν�γ ,

Î(�1�2 )ν� =
∑

γ

|(�1�2)ν�γ 〉〈(�1�2)ν�γ |. (C5)

Equation (C4) also enables us to skip the analysis of the
structure of |�τ 〉 for the assignment. The list of w(�1�2ν�, τ )
is given in Table S5 of the Supplemental Material [43].

[1] I. B. Bersuker and V. Z. Polinger, Vibronic Interactions in
Molecules and Crystals (Springer-Verlag, Berlin, 1989).

[2] M. D. Kaplan and B. G. Vekhter, Cooperative Phenomena in
Jahn-Teller Crystals (Plenum, New York, 1995).

[3] C. C. Chancey and M. C. M. O’Brien, The Jahn-Teller Effect
in C60 and Other Icosahedral Complexes (Princeton University
Press, Princeton, 1997).

[4] A. Krimmel, M. Mücksch, V. Tsurkan, M. M. Koza, H. Mutka,
and A. Loidl, Vibronic and Magnetic Excitations in the Spin-
Orbital Liquid State of FeSc2S4, Phys. Rev. Lett. 94, 237402
(2005).

[5] M. A. de Vries, A. C. Mclaughlin, and J.-W. G. Bos, Valence
Bond Glass on an fcc Lattice in the Double Perovskite
Ba2YMoO6, Phys. Rev. Lett. 104, 177202 (2010).

[6] S. Nakatsuji, K. Kuga, K. Kimura, R. Satake, N. Katayama, E.
Nishibori, H. Sawa, R. Ishii, M. Hagiwara, F. Bridges, T. U.
Ito, W. Higemoto, Y. Karaki, M. Halim, A. A. Nugroho, J. A.
Rodriguez-Rivera, M. A. Green, and C. Broholm, Spin-orbital
short-range order on a honeycomb-based lattice, Science 336,
559 (2012).

[7] K. Kamazawa, M. Ishikado, S. Ohira-Kawamura, Y. Kawakita,
K. Kakurai, K. Nakajima, and M. Sato, Interaction of spin-
orbital-lattice degrees of freedom: Vibronic state of the corner-

sharing-tetrahedral frustrated spin system HoBaFe4O7 by dy-
namical Jahn-Teller effect, Phys. Rev. B 95, 104413 (2017).

[8] R. Nirmala, K.-H. Jang, H. Sim, H. Cho, J. Lee, N.-G. Yang, S.
Lee, R. M. Ibberson, K. Kakurai, M. Matsuda, S.-W. Cheong,
V. V. Gapontsev, S. V. Streltsov, and J.-G. Park, Spin glass
behavior in frustrated quantum spin system CuAl2O4 with a
possible orbital liquid state, J. Phys.: Condens. Matter 29,
13LT01 (2017).

[9] C. H. Webster, L. M. Helme, A. T. Boothroyd, D. F. McMor-
row, S. B. Wilkins, C. Detlefs, B. Detlefs, R. I. Bewley, and
M. J. McKelvy, Influence of static Jahn-Teller distortion on
the magnetic excitation spectrum of PrO2: A synchrotron x-ray
and neutron inelastic scattering study, Phys. Rev. B 76, 134419
(2007).

[10] P. Santini, S. Carretta, G. Amoretti, R. Caciuffo, N. Magnani,
and G. H. Lander, Multipolar interactions in f -electron sys-
tems: The paradigm of actinide dioxides, Rev. Mod. Phys. 81,
807 (2009).

[11] S. Yamaguchi, Y. Okimoto, and Y. Tokura, Local lattice distor-
tion during the spin-state transition in LaCoO3, Phys. Rev. B 55,
R8666 (1997).

[12] G. Klupp, K. Kamarás, N. M. Nemes, C. M. Brown, and J.
Leão, Static and dynamic Jahn-Teller effect in the alkali metal

165410-7

https://doi.org/10.1103/PhysRevLett.94.237402
https://doi.org/10.1103/PhysRevLett.94.237402
https://doi.org/10.1103/PhysRevLett.94.237402
https://doi.org/10.1103/PhysRevLett.94.237402
https://doi.org/10.1103/PhysRevLett.104.177202
https://doi.org/10.1103/PhysRevLett.104.177202
https://doi.org/10.1103/PhysRevLett.104.177202
https://doi.org/10.1103/PhysRevLett.104.177202
https://doi.org/10.1126/science.1212154
https://doi.org/10.1126/science.1212154
https://doi.org/10.1126/science.1212154
https://doi.org/10.1126/science.1212154
https://doi.org/10.1103/PhysRevB.95.104413
https://doi.org/10.1103/PhysRevB.95.104413
https://doi.org/10.1103/PhysRevB.95.104413
https://doi.org/10.1103/PhysRevB.95.104413
https://doi.org/10.1088/1361-648X/aa5c72
https://doi.org/10.1088/1361-648X/aa5c72
https://doi.org/10.1088/1361-648X/aa5c72
https://doi.org/10.1088/1361-648X/aa5c72
https://doi.org/10.1103/PhysRevB.76.134419
https://doi.org/10.1103/PhysRevB.76.134419
https://doi.org/10.1103/PhysRevB.76.134419
https://doi.org/10.1103/PhysRevB.76.134419
https://doi.org/10.1103/RevModPhys.81.807
https://doi.org/10.1103/RevModPhys.81.807
https://doi.org/10.1103/RevModPhys.81.807
https://doi.org/10.1103/RevModPhys.81.807
https://doi.org/10.1103/PhysRevB.55.R8666
https://doi.org/10.1103/PhysRevB.55.R8666
https://doi.org/10.1103/PhysRevB.55.R8666
https://doi.org/10.1103/PhysRevB.55.R8666


MATSUDA, IWAHARA, TANIGAKI, AND CHIBOTARU PHYSICAL REVIEW B 98, 165410 (2018)

fulleride salts A4C60(A = K, Rb, Cs), Phys. Rev. B 73, 085415
(2006).

[13] S.-H. Jung, J.-H. Noh, J. Kim, C. L. Zhang, S. W. Cheong, and
E. J. Choi, Infrared phonon study of the S = 1 spinel oxide
ZnV2O4, J. Phys.: Condens. Matter 20, 175205 (2008).

[14] E. A. Francis, S. Scharinger, K. Németh, K. Kamarás, and C.
A. Kuntscher, Pressure-induced transition from the dynamic
to static Jahn-Teller effect in (Ph4P)2IC60, Phys. Rev. B 85,
195428 (2012).

[15] G. Klupp, P. Matus, K. Kamarás, A. Y. Ganin, A. McLennan,
M. J. Rosseinsky, Y. Takabayashi, M. T. McDonald, and K.
Prassides, Dynamic Jahn-Teller effect in the parent insulating
state of the molecular superconductor Cs3C60, Nat. Commun.
3, 912 (2012).

[16] K. Kamarás, G. Klupp, P. Matus, A. Y. Ganin, A. McLennan,
M. J. Rosseinsky, Y. Takabayashi, M. T. McDonald, and K.
Prassides, Mott localization in the correlated superconductor
Cs3C60 resulting from the molecular Jahn-Teller effect, J. Phys.:
Conf. Ser. 428, 012002 (2013).

[17] Z. Qu, Y. Zou, S. Zhang, L. Ling, L. Zhang, and Y. Zhang,
Spin-phonon coupling probed by infrared transmission spec-
troscopy in the double perovskite Ba2YMoO6, J. Appl. Phys.
113, 17E137 (2013).

[18] R. H. Zadik, Y. Takabayashi, G. Klupp, R. H. Colman, A. Y.
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