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Nonlinear Hall effect for a two-dimensional electron gas in a cylindrical nanomembrane
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A detailed study of the effect due to Lorentz-force gradient on the Hall voltage of a two-dimensional electron
gas (2DEG) was carried out on specially prepared cylindrical nanomembranes with 2DEG. In the fabricated
nanomembranes, weak and strong magnetic-field gradients and, also, sign-alternating magnetic fields acting on
the electrons in the nanomembranes were obtained. It was found that an increase in the magnetic-field gradient
led to an increase of the Hall constant of 2DEG in weak fields, whereas a change in the field sign caused an
inversion of this constant in weak fields. An explanation based on the analysis of the dependence of electron drift
velocities on the magnetic field gradient is proposed. The investigated system is of interest both for applications
and fundamental research.

DOI: 10.1103/PhysRevB.98.165401

I. INTRODUCTION

Spatially nonuniform magnetic fields play an important
role in various physical and technological areas as they of-
fer additional possibilities for controlling both the spin and
dynamics of charged particles. Such fields were used in the
famous Stern-Gerlach experiment; magnetic-field gradients
are presently used in magnetic resonance imaging; and in nu-
clear physics such gradients are used for plasma confinement.
Fabrication of spin filters based on semiconductor heterostruc-
tures with two-dimensional electron gas (2DEG) [1] and
graphene sheets [2] placed in a nonuniform magnetic field was
proposed. A magnetic-field gradient leads to a Lorentz-force
gradient and to a gradient of the Larmor radii. As a result,
circular orbits observed in uniform magnetic fields transform
into cycloid orbits. The drift velocity of electrons captured
to those trajectories is normal both to the magnetic field and
to the magnetic-field gradient. If an electron passes regions
having opposite magnetic-field vector directions, snakelike
trajectories are formed [3]. For generation of a nonuniform
magnetic field in a planar 2DEG, the local sputtering of
magnetic materials [4–9] or the growth of heterostructures
with a 2DEG on a faceted surface [10–12] was used. The latter
approaches were used to obtain a stepwise profile of magnetic
field with 1-T characteristic field changes over distances of
200 nm. Fabrication of structures with a smooth and con-
trollable magnetic-field gradient by the above methods seems
not to be possible; accordingly, the electron transport under
smooth spatial variation of magnetic field remains almost
fully unstudied. It should also be noted that magnetic field
gradient and concentration gradient produce similar effects
since the Hall resistance Rxy = B/ne, where B is the mag-
netic field and n is the density of charge carriers. A steplike
electron density distribution was achieved in partially gated,
doubly connected 2D GaAs/AlGaAs heterostructures [13,14].
A linear electron density distribution was obtained using the
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lateral photoeffect [15]. One more relevant study analyzes the
effect of electron density distribution on the measurement of
longitudinal resistance in quantum Hall systems [16].

The electrons in 2DEG experience the action due to the
Lorentz force, defined by the surface-normal magnetic-field
component Bn. In a 2DEG on a cylindrical surface placed in
a magnetic field normal to the axis of the cylinder, the normal
field component varies over the sample area according to the
formula

Bn = B0 cosϕ,

where B0 is the applied magnetic field and ϕ is the angle
between the normal to the surface and the vector B0.

The gradient of Bn also varies along the cylinder surface of
radius R: ∣∣∣∣gradBn

∣∣∣∣ =
∣∣∣∣ 1

R

∂Bn

∂ϕ

∣∣∣∣ =
∣∣∣∣B0

R
sin ϕ

∣∣∣∣.
In the present work we fabricated nanoshells with 2DEG

shaped as cylinder sectors with current direction parallel to
the cylinder axis. The angle α between the sector edges, and
the angle ϕ of rotation of the sector around the cylinder’s
axis, both determine the spatial distribution of Bn and grad
Bn. By varying these parameters, very interesting situations
can be organized. For example, in a semicylinder (α = 180◦)
oriented with respect to the vector В0 like it is shown in
Fig. 1(a), the field Bn is modulated in amplitude, and it varies
on the sample surface from 0 to В0; the gradient of Bn changes
its sign, and the absolute value of the gradient varies as well. If
the semicylinder is oriented like in Fig. 1(b), then the field Bn

varies not only in absolute value, it also change its sign, and
the electron moves in a magnetic field that ranges from −В0

to В0. It is important that the field change preserves its sign
in any external magnetic field. Contrary to this, in flat 2DEG
with sputtered ferromagnets, such a situation is only possible
in a very narrow interval of weak magnetic fields. For getting
an idea about the ranges of involved variables, we can assess
that for a 10◦ cylindrical sector with 10-μm radius placed in a
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FIG. 1. Schematic distribution of the surface-normal magnetic-
field component and its gradient for two orientations of a membrane
shaped as a semicylinder with 2DEG.

magnetic field of 10 T, the drop of the field Bn on the surface
of the sector can reach 1.7 T, and the gradient of Bn can exceed
106 T/m.

To summarize, the transport of a 2DEG on a cylindrical
surface in a uniform magnetic field can be considered as
the transport of a planar 2DEG in a strongly nonuniform,
smoothly varying magnetic field. Various ranges of spatial
variation of the surface-normal magnetic-field component, in-
cluding sign-alternating ones, as well as those of its gradient,
can be created. In turn, the geometric parameters of cylindrical
shells allow one to preset and precisely control the type and

distribution of electron trajectories. The sizes of the region
with continuous variation of magnetic-field strength have
allowed us to realize a situation with coexistent trajectories
of all the three types: skipping, cycloid, and snakelike trajec-
tories; this matter was theoretically analyzed by Müller [3].

The samples with 2DEG on a cylindrical surface were fab-
ricated using the directional rolling procedure of strained het-
erofilms [17] with lithographically defined Hall bars. Earlier
we have shown that in the cylindrical membranes with Hall
bars in which the electric current flowed parallel to magnetic-
field gradient [18], and in the helices [19], the redistribution
of current density led to the vanishing of the longitudinal
resistance and to a giant asymmetry of magnetoresistance
at magnetic-field sign inversion (Rxx (B )/Rxx (−B ) reaches
104). The latter effect offers much promise for precise three-
axis measurements of the direction and strength of magnetic
fields. In quantizing fields, the effect is preserved, and it is
attributed to the shortening of the oppositely directed edge
states by magnetic-induced one-dimensional (1D) channels.
The contribution due to such states into the net conductivity
of samples was recently investigated by Nogaret et al. [20].

In the present study we experimentally examined the
magnetotransport of 2DEG in semiconductor cylindrical
nanomembranes. The Hall bars were oriented along the mem-
brane, and the current was therefore directed normally to
the magnetic-field gradient [Fig. 2(a)]. In the experiment, the
distribution of the field Bn over the sample width and the
drop of this field across the sample were variable quantities
defined by the following parameters: (i) Hall-bar width (the
smaller the Hall-bar width, the smaller the drop of the field
Bn across the bar); (ii) angle of turn of the bar with respect

FIG. 2. (a) Experimental geometry, (b) dependence of the longitudinal and Hall resistances of the 2DEG on the magnetic-field strength in
a 6-μm wide Hall bar, and (c) dependencies of Hall resistance on the magnetic field at various angles of rotation of the sample with respect to
the direction of the external magnetic field.
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to the direction of the external magnetic field В0 (the larger
the angle between the normal to the center of the bar and the
external field, the larger the drop of Bn). The magnitude of the
gradient of Bn and the possibility of its controllable variation
right in the course of experiments have allowed us to reveal a
nonlinear and nonmonotonic behavior of the Hall resistance as
a function of external magnetic field for 2DEG moving along
a cylindrical membrane.

II. EXPERIMENTAL RESULTS

The multilayered heterostructure was grown on a
GaAs (100) substrate by molecular beam epitaxy (MBE)
implemented on the Compact 21T system. After oxide
removal, a smoothing GaAs layer was deposited onto the
substrate to subsequently grow on this layer an AlAs/GaAs
short-period superlattice (SPSL) providing for: (i) further
smoothening of the growth surface, (ii) creation of a
high-resistivity buffer layer intended for isolation of
subsequent layers from the substrate, and (iii) trapping
of impurities undergoing segregation from the substrate. The
complete structure comprised a 50-nm-thick AlAs sacrificial
layer and a 192-nm-thick strained multilayered film to be
detached from the substrate. The multilayered film contained a
20-nm-thick In0.18Ga0.82As stressor and the hereterostructure
stack, including a 13-nm-thick central GaAs QW clad
with δ-doped AlAs/GaAs SPSL spacers (a more detailed
description of the epitaxial structure is given in Ref. [18]).
The presence of two delta-doped layers on both sides of the
quantum well makes it possible to obtain a structure with a
symmetric potential promoting the attainment of a maximum
concentration of charge carriers in the quantum well. Then,
an Al0.3Ga0.7As layer with a third embedded Si delta layer
intended for compensation of the space-charge region
inevitably arising on the surface of the structure was grown.
Finally, a 5-nm-thick GaAs layer intended for protection of
the AlAs-containing layers against oxidation and facilitating
the preparation of ohmic contacts to the structure was grown.

The rolled-up Hall bars used in the present study were pre-
pared by directional rolling of two-level lithography-defined
mesastructures. The procedure for forming the scrolls with
contacts was the one described in Refs. [18,19] except for the
orientation of the Hall bar: in the present study the Hall bar
was oriented along the axis of the cylinder. The scroll radius
was 24 μm.

For obtaining different distribution of magnetic field in the
2DEG on a cylindrical surface, Hall bars of various widths
(6, 16, and 75 μm) were prepared. The widest Hall bar had a
largest angle between the lateral faces and, hence, the largest
range of the surface-normal magnetic-field component over
the surface. For instance, the 75-μm wide Hall bar occupied
half the 24-μm radius circumference; hence, the magnetic
field range in this Hall bar was the widest one. Intuitively, it
was quite clear that the 2DEG in the narrow Hall bar would
behave as a planar 2DEG, and the magnetic-field nonuni-
formity was expected to be manifested most brightly in the
2DEG transport in wide Hall bars. The rotation of the sample
was performed during the measurements in liquid helium. A
home-made rotating sample holder was used. The sample was
oriented so that, during measurements, it was rotated around

the cylinder axis. The experimental geometry is schematically
depicted in Fig. 2(a). The external magnetic field was varied
over the interval from −3 to 3 T.

The magnetic-field dependencies of the longitudinal and
Hall resistances of 2DEG measured in the bent Hall bar
of width 6 μm at ϕ = 0 are shown in Fig. 2(b). The Hall
effect is linear with respect to magnetic field; in quantizing
magnetic fields, a filling factor of ν = 8 is achieved; and
the positions of quantum Hall effect steps coincide with
the minima of Shubnikov–de-Haas oscillations. The Fourier
spectrum of Shubnikov–de-Haas oscillations versus the recip-
rocal magnetic field contains a single peak corresponding to
a 2DEG concentration equal to 5.6 × 1011 cm−2. The Hall
effect yields the same concentration, thus pointing to the
absence of parallel conductions in our structure. The 2DEG
mobility is 8 × 104 cm2/V s.

Consider first how the Hall dependencies evolve with the
rotation of the cylindrical nanomembrane around its axis
[Fig. 2(c)]. Evidently, here the Hall dependencies remain lin-
ear. In the course of the experiment, we additionally measured
the turn angle with a standard Hall sensor and have found
that the turn angles measured with the sensor and the turn
angles calculated from the slope of the Hall dependence of
the membrane were coincident. The peaks in the Fourier
spectra of the dependencies Rxx (B ) also shifted with the
turn through the angle corresponding to the Hall-sensor turn.
All the observations indicated that, due to the small angular
spacing α between the Hall contacts, 14°, the sample behaved
like a planar sample with 2DEG placed in a tilted magnetic
field.

Consider now what occurs in wider samples, with the drop
of Bn across the sample being greater. Figure 3(a) schemat-
ically shows the experimental geometry in the case of a
16-μm-wide Hall bar. Here the angular spacing between
the Hall contacts is 38°. The gradient of the surface-normal
magnetic field component on the sample was controllably
preset during the measurement process by turning the cylin-
drical nanomembrane around its axis. In the position with a
maximum field B0, the change of the surface-normal field is
0.06B0, whereas on the rotation into the region of Bn = 0 the
difference between the values of Bn increases to 0.61В0. Un-
der such conditions, the Hall dependencies exhibit a number
of interesting features [Fig. 3(b)]. It is seen that the Hall effect
at a near-zero angle ϕ is linear. On increasing the angle ϕ and,
hence, on increasing the gradient of the field Bn, in the vicinity
of zero there appears a curve portion with a larger slope than
that in the strong fields. This effect is most pronounced when
the edge of the sample reaches the line of Bn = 0 (Fig. 3,
curve 6). At larger angles, when the field component on the
sample changes its sign, the slope of the Hall dependence also
changes its sign (Fig. 3, curve 7).

For gaining a deeper insight into the variation of the
Hall effect in the presence of a magnetic-field gradient, we
performed measurements on the Hall bar of width 75 μm,
which value equaled half the circumference. The distribution
of the normal magnetic-field component over the sample is
shown in Fig. 4(b). Initially, the Hall dependencies show a
slope reduced in weak fields (Fig. 4(c, d), curves 1 and 2),
the slope changing its sign already at a small deviation from
ϕ = 0 (Fig. 4(c, d), curves 3–7).
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FIG. 3. (а) Schematic representation of the experimental geometry. Indicated are the angles of turn of the bent Hall bar with respect to the
direction of the applied magnetic field, (b) dependence of the Hall resistance of 2DEG on the magnetic field in a Hall bar of width 16 μm at
various turn angles of the sample. Curves 6 and 7 refer to the orientation with the maximum drop of the field Bn across the Hall bar. In the
orientation corresponding to curve 7, the field Bn in the Hall bar changes its sign.

Thus, the brightest effect manifested by the Hall effect in
2DEG on a cylindrical surface is its nonlinearity. The non-
linearity is not observed in narrow Hall bars, and it becomes

more pronounced on increasing the Hall-bar width, or the an-
gle α between the lateral faces. Under certain conditions, the
curve Rxy (B ) exhibits a curve portion with an opposite slope.
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FIG. 4. (а) Schematic representation of the experimental geometry. Indicated are the angles of turn of the bent Hall bar of 75-μm width
with respect to the direction of the applied magnetic field for the curves shown below, (b) the distribution of normal magnetic-field component
over the width of the sample, (с) dependence of the Hall resistance of 2DEG on the magnetic field in the Hall bar at various turn angles of the
sample, and (d) dependencies dRxy/dB(B ) at various turn angles of the sample.
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FIG. 5. (a) Experimental geometry for three different orienta-
tions of the membrane, (b) electron trajectories in the cylindrical
nanomembrane in weak magnetic fields; Larmor radius rc is close
to the sample width W, rc � W , and (c) electron trajectories in the
cylindrical nanomembrane at rc � W .

III. DISCUSSION

Below we give an explanation to the observed effects
with reference to Fig. 5 in classical terms of electron orbits.
Skipping orbits are formed along the sample boundary. Far
from the edge, the cyclotron radius rc changes continuously
due to the gradient of Bn on the cylindrical surface, and
cycloid trajectories are formed. The drift velocity of electrons
captured by such trajectories is perpendicular both to the field
Bn and to grad Bn. This is a gradient drift phenomenon consid-
ered in plasma physics [21]. If an electron crosses a line where
Bn = 0, snakelike trajectories are formed. Only cycloid and
skipping trajectories contribute to the Hall voltage. The snake-
like trajectories on the cylindrical surface are symmetric about
the zero-field line, Bn = 0; that is why the contribution into
the Hall voltage due to the half-period with Bn > 0 in these
trajectories is compensated with the contribution due to the
half-period with Bn < 0. Let us consider the electron motion
along cycloid trajectories in more detail.

The drift velocity of the electrons depends on the field Bn

and on the gradient of this field [21]:

|vH | = 1

2
rc |grad(rc ) |ωc = 1

2

er2
c

m
|grad(Bn) |

= EF

e

|grad(Bn) |
B2

n

,

where rc is the Larmor radius, m is the electron effective mass,
and EF is the Fermi energy in the 2DEG.

For a cylindrical membrane of radius R:

|vH | ∼ 1

B2
|gradBn| = sin ϕ

RB0cos2ϕ
,

i.e., in the 2DEG on a cylindrical surface there form sections
with different values of the drift velocity of electrons, this
velocity in the cycloids located at larger values of ϕ being
greater than that in the vicinity of the region with Bn = B0.
Since the charge-carrier mobility is proportional to the drift

velocity, one can treat the 2DEG on a cylindrical surface as
a set of parallel conductors, each of the conductors featuring
its own charge carrier mobility value depending on Bn. A Bn

sign change is equivalent to a charge-carrier sign change.
With a turn of the membrane, the distribution of electrons

over those conductors undergoes a change. For an estimate,
we can represent such a Hall bar with conductors I and II,
connected in parallel, both containing charge carries of the
same sign whose concentrations are n1 and n2, and whose
mobilities are respectively μ1 and μ2. The Hall voltage for
the two types of charge carriers is:

Uxy=RHeff IBn,

where the effective Hall constant RHeff is given by [22]

RHeff =
(
μ2

1n1 + μ2
2n2

) + (μ1μ2B )2(n1 + n2)

e[(μ1|n1| + μ2|n2|)2 + (μ1μ2B )2(n1 + n2)2]
.

Before calculating μ1 and μ2, one has to mention that the
gradient drift reduces the electron mobility with respect to
the flat 2DEG. This is easy to understand in terms of elec-
tron trajectories: in weak gradients, the trajectory is strongly
knotted. In strong gradients, the trajectory is much closer to
the straight one. So, one can admit that the electron mobility
on the cylinder at ϕ close to 90° is approximately equal to the
mobility of the flat 2DEG. Next, we divide the sample into
two parts (see inset in Fig. 6) and assume that the electron
concentrations in them are n1 + n2 = n, where n is the con-
centration in flat 2DEG, and n1/n2 = l1/l2, where l1 and l2 are
lengths of the segments I and II. The l1 and l2 are chosen to be
equal (l1 = l2 = l/2) in case the Hall bar does not cross the
Bn = 0 line. If one part of the Hall bar is located at Bn > 0,
and the other one at Bn < 0, from geometrical consideration
l1/l2 can be calculated. We admit that the mobility has the
same functional dependence on ϕ as the drift velocity (2). The
mobilities μ1 and μ2 are calculated as the mean values in the
segments l1 and l2,

μi = A

ϕ − ϕi

∫
li

sin ϕ

cos2ϕ
dϕ.

The constant A is calculated knowing the maximal mobility
(8 × 104 cm2/V s) at ϕ close to 90°.

The results of such calculations are shown on Fig. 6. In
the vicinity of ϕ = 0 the gradient of Bn is small, and the
mobilities μ1 and μ2 are nearly identical. For ϕ = 60◦, the
Rxy (B ) is steeper in weak fields. For ϕ = 100◦, the Rxy (B )
slope changes sign. These results are in qualitative agreement
with the experimental observations. The same procedure was
done for the 75 μm Hall bar [Fig. 6(b)].

Thus, the simple approximation of the charge carriers of
two types provides a reasonable explanation to the nonlineari-
ties and their variation observed in the Hall effect in the 2DEG
on a cylindrical nanomembrane in classical magnetic fields.

Figure 5 illustrates the case of an extremely large electron
mean free path: l � rc, l � W (W is the sample width). In the
studied structures, we have a situation with l ≈ 1 μm, which
value implies that l > rc in fields Bn > 0.125 T. In weaker
fields, scattering processes result in electron transfer between
regions with different values of Bn. However, since there is
no preferable scattering direction, there remains dependence
of drift velocities on ϕ. For a more adequate description of
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FIG. 6. Calculated dependencies modeling the Hall effect in the (a) 16-μm and (b) 75-μm wide Hall bars.

the effect, both a greater number of the types of charge carries
and their redistribution over the sections with different values
of Bn have to be taken into account.

A unique feature of our structures with the 2DEG on
a cylindrical surface is the possibility to control the shape
of electron trajectories and their distribution. On increasing
the mobility or on decreasing the shell radius, we expect
an emergence of ballistic effects related with the motion of
electrons over their trajectories (Fig. 5). Those phenomena
may prove interesting from the viewpoint of the local control
of electron transport and magnetic focusing [23,24].

In stronger fields (1.5–3.5 T), stepwise Hall dependencies
are observed. As Rxx does not vanish anywhere in the range of
the used fields, the broadened Landau levels overlap and the

Bn Bn

(a)

(b)

(с)

=0 =45o =90o

EF EF EF

FIG. 7. (а) Schematic illustrating three different orientations of a
cylindrical nanomembrane in an external magnetic field. (b) Landau
levels in the cylindrical nanomembrane En = h̄eBn

m
(n + 1

2 ) =
h̄eB0 cos ϕ

m
(n + 1

2 ). The red and blue solid lines show the spin-split
sublevels. The dashed line is the Fermi level. (c) The point of
intersection of the bent Landau levels with the Fermi level gives
the spatial position of the 1D channels. The spacing between the
channels is defined by the angular position of the membrane with
respect to the external magnetic field, and the value of the external
magnetic field. The dashed line for ϕ = 90◦ shows the state in the
vicinity of Bn = 0, which corresponds to a snakelike trajectory.

IQHE regime is not yet reached. Let us discuss the Landau
level distribution in 2DEG on the cylindrical surface. The
energy gap between Landau levels is given by Bn.

En = h̄eBn

m

(
n + 1

2

)
= h̄eB0 cos ϕ

m

(
n + 1

2

)
.

It means that, depending on the angle α between the sector
edges, and the angle of rotation ϕ [Fig. 7(a)], various Landau
level distributions are formed [Fig. 7(b)]. In higher fields,
when the separation of Landau levels exceeds level broad-
ening, edge states are formed [Fig. 7(c)]. As opposed to the
flat 2DEG, 1D conducting channels are additionally formed
far from the sample edges. In the quantum Hall regime, the
resistances Rxx (B ) and Rxy (B ) in cylindrical nanomembranes
are to be calculated via summation of the contributions due to
all channels with the help of the Landauer-Büttiker formalism
[18,19,25]. It is important that the experimental geometry
described in the present publication permits the variation of
both the distribution of channels and the spacing between
the channels in broad ranges right during the experiment
(Fig. 7). The latter possibility is unachievable in planar 2DEG,
and it opens up additional opportunities for the study of
the interaction between the edge channels with codirected or
antidirected electron spins and momenta [26].

IV. CONCLUSION

In the present work we performed a detailed study of
the effect due to Lorentz-force gradient on the Hall volt-
age in 2DEG. To this end, cylindrical nanomembranes with
2DEG were prepared. That was done by directional rolling
of strained GaAs-based heterostructures with lithographically
defined Hall bars. Experimenting with the width of the bars
and with the angle of their rotation in an external magnetic
field, we have realized both weak and strong magnetic-field
gradients and, also, a sign-alternating magnetic field acting
on the 2DEG in the nanomembrane. It was found that an
increase in the magnetic-field gradient led to an increase of
the Hall constant in weak fields, whereas a change in the
field sign, to an inversion of this constant in weak fields.
An explanation based on the analysis of the dependence of
electron drift velocities on the magnetic field gradient is
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proposed. The results of the model calculations fairly well
agree with the experiment. The behaviour of the system in
quantizing magnetic fields and its potential applications in
the areas of basic research and practical applications were
discussed.
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