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Interactions between Rydberg excitons in Cu2O
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Highly excited states of excitons in cuprous oxide have recently been observed at a record quantum number
of up to n = 25. Here, we evaluate the long-range interactions between pairs of Rydberg excitons in Cu2O,
which are due to direct Coulomb forces rather than short-range collisions typically considered for ground-state
excitons. A full numerical analysis is supplemented by the van der Waals asymptotics at large exciton separations,
including the angular dependence of the potential surfaces.
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I. INTRODUCTION

Excitons play an important role for the optical properties
of many semiconductors. Composed of an electron and a
hole bound by their Coulomb attraction, excitons may be
considered as artificial atoms that feature a series of energy
levels very similar to that of simple one-electron atoms.
Their relatively low exciton binding energies combined with
additional effects such as phonon coupling [1] or crystal
inhomogeneities, however, render the observation of excited
exciton states inherently difficult. Cuprous oxide (Cu2O)
stands out in this respect, as it features a comparably large
Rydberg energy of ∼86 meV, which together with the narrow
absorption lines provides well-suited conditions for exciting
excitonic Rydberg states. In fact, recent measurements on
Cu2O semiconductors [2] have demonstrated the preparation
of highly excited Rydberg excitons with record-breaking prin-
cipal quantum numbers of up to n = 25. This discovery has
sparked renewed theoretical and experimental interest in the
field of excitons, ranging from excitonic spectra in magnetic
[3] and electric [4,5] fields as well as nonatomic scaling laws
[6] to the breaking of all antiunitary symmetries [7] and the
onset of quantum chaos [8].

A further particular appeal of such Rydberg states stems
from their strong mutual interactions, which, as demonstrated
for cold atomic systems [9], can lead to enhanced optical
nonlinearities of the material [10]. In contrast to ground-state
excitons whose low-energy interactions can often be described
in terms of zero-range collisions [11,12], the interaction be-
tween Rydberg excitons can become important already on
much larger length scales and lead to an exciton blockade
[2] that prevents the optical excitation of two excitons within
typical distances of several μm. Under such conditions, the
relevant interactions are no longer dominated by exchange
effects [11] but are determined by direct Coulomb interactions
between the excitons.

In this work, we determine the interaction between Ry-
dberg excitons in Cu2O. Our calculations account for the
dipole-dipole coupling between energetically close exciton
pair states that is induced by their direct Coulomb interaction
and dominates the overall interaction at the large distances
relevant under experimental conditions [2] of Rydberg exciton

blockade. Asymptotically, the interaction is of van der Waals
type with a van der Waals coefficient that is found to follow
a simple scaling law that was previously used for Rydberg
state interactions of alkaline [13] and alkaline earth atoms
[14]. From our calculations, we determine the corresponding
scaling coefficients, providing easy access to precise values of
Rydberg-exciton van der Waals coefficients in Cu2O for future
studies of many-body effects or nonlinear optical phenomena
due to interactions between highly excited excitons.

The article is organized as follows. After outlining the
determination of Rydberg exciton wave functions from the
semiconductor band structure in Sec. II, we describe our
calculations of the direct Coulomb pair interaction in Sec. III.
The obtained potential energy curves are discussed in Sec. IV,
where we present the perturbative calculation of the van der
Waals interactions and summarize our results for the van der
Waals coefficients for a broad range of different excitonic
Rydberg states. Finally, implications, limitations, and poten-
tial applications of the results are discussed in Sec. V.

II. SINGLE EXCITON STATES

Bulk Cu2O is a semiconductor with a cubic crystal struc-
ture of the point group Oh and a direct band gap of Eg =
2.172 08 eV at the center of its Brillouin zone [2]. Without
spin, the uppermost valence band has �+

5 symmetry, which
is split into an upper �+

7 band and a lower �+
8 band by the

spin-orbit interaction. These two bands are separated by a
corresponding spin-orbit splitting of � = 131 meV, and they
can be described by an effective band Hamiltonian derived in
Ref. [15].

Together with the lowest �+
6 conduction band, these va-

lence bands form two excitonic series: the so-called yellow
(�+

6 ⊗ �+
7 ) and green (�+

6 ⊗ �+
8 ) series. The optical transi-

tion from the excitonic vacuum to the s-excitons is dipole-
forbidden for both series due to the positive parity of both
the conduction and the valence band. The series of interest
to this work is the yellow series whose p-exciton resonances
are located below the band gap and have been observed
experimentally [2].
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We determine the exciton binding energies, EK,nl , and
wave functions, �̃(K, k), from the nonparabolic momentum-
space Wannier equation[

h̄2(αK + k)2

2me

+ Th

(|βK − k|2)] �̃(K, k)

+ e2

8π3ε0εr

∫
d3k′ �̃(K, k′)

|k − k′|2 = E�̃(K, k) (1)

as described in Ref. [16]. Here, the hole’s dispersion Th is
obtained from an angular average over the hole dispersion
derived from the valence-band Hamiltonian of Ref. [15], and
ε0 denotes the vacuum permittivity, while εr ≈ 7.5 is the
static relative permittivity of Cu2O. Furthermore, k and K
denote the relative and center-of-mass (COM) momentum
of the electron-hole pair, respectively, and α = me/M and
β = mh/M denote the mass of the electron (me) and the hole
(mh) in units of the total exciton mass M = me + mh.

The nonparabolicity of the hole dispersion Th plays an
important role for the bound-state properties and yields the
leading contribution to the excitonic quantum defect [16]. Its
effect on the center-of-mass dynamics with momentum K can,
however, be neglected as long as K � π/al , where al is the
lattice constant. This approximation is well justified because
the momentum of the optical photon that generates the exciton
is much smaller than π/al . Therefore, we can separate the
relative and COM part of the exciton wave function, whose
real-space representation can consequently be written as

�K,nlm(R, r) = 1√
V

eiK·R ψnlm(r), (2)

with corresponding energies

EK,nl = h̄2K2

2M
+ E0,nl . (3)

Moreover, R = αre + βrh and r = re − rh, as illustrated
Fig. 1(a), and ψnlm(r) denotes the bound-state wave function

FIG. 1. (a) Sketch of a pair of excitons i and j , consisting of
electrons at r(i ),(j )

e and holes at r(i ),(j )
h . The center-of-mass coordinates

are indicated by Ri,j , the exciton separation by Rij . The coordinate
system is aligned with ẑ. (b) Potential energy curves centered around
the 15p-15p asymptote as a function of the exciton-exciton distance
Rij . The gray solid lines show the result of a diagonalization of
the two-exciton Hamiltonian including the dipole-dipole interaction
operator given by Eq. (9). At sufficiently large distances, these nu-
merical results agree well with the expected van der Waals interaction
potentials shown by the colored dashed lines. They correspond to the
van der Waals interaction of exciton pair states with total angular
momentum quantum numbers of |M| = 0 (black), |M| = 1 (red),
and |M| = 2 (green).

obtained from the extended Wannier equation with the stan-
dard quantum numbers n, l, and m.

As we have assumed rotational symmetry and neglected
the nonparabolic COM dispersion, the excitonic states are
degenerate with regard to the magnetic quantum number m.
The anisotropy of the valence band can be included in this
calculation and would lead to further splitting of states with
l � 2. The size of this splitting depends on the momentum-
space extension and scales roughly with n−3. The same is true
for exchange-splitting of the S-excitons, and both effects are
neglected in this work as they are of minor importance to the
Rydberg states of interest.

III. RYDBERG EXCITON INTERACTION POTENTIAL

The pairwise interaction between excitons is given by the
sum

V (ij ) = e2

4πε0εr

(
1∣∣r(i)

e − r(j )
e

∣∣ + 1∣∣r(i)
h − r(j )

h

∣∣
− 1∣∣r(i)

e − r(j )
h

∣∣ − 1∣∣r(i)
h − r(j )

e

∣∣
)

(4)

of mutual Coulomb interactions between the electron and hole
of one exciton at respective positions r(i)

e and r(i)
h , respectively,

and another electron-hole pair at positions r(j )
e and r(j )

h . Within
a multipole expansion, the interaction can be rewritten [13]
as a series of inverse powers of the exciton COM distance
Rij = |Ri − Rj |,

V (ij ) = e2

4πε0εr

∞∑
l,L=1

VlL(ri , rj )

Rij
l+L+1 , (5)

where

VlL(ri , rj ) = (−1)L4π√
(2l + 1)(2L + 1)

rl
i r

L
j (6)

×
∑
m

√(
l + L

l + m

)(
l + L

L + m

)
Ylm(r̂i )YL−m(r̂j )

(7)

and Ylm denotes the spherical harmonics defined with respect
to the distance vector Rij .

While the interaction between ground-state excitons [11]
can often be estimated from first-order perturbation theory,
by evaluating Coulomb scattering matrix elements based on
Hartree-Fock states for pairs of interacting excitons, such
an approximation [17] becomes inapplicable for excitonic
Rydberg states whose large polarizability [2,9,18] requires a
nonperturbative treatment of the Coulomb interactions. In this
regime, the exciton interaction predominantly stems from the
virtual dipole-dipole coupling between exciton bound states
while exchange effects are negligibly small. This is typically
the case for exciton distances [19]

Rij 	 2
(√〈

r2
i

〉 + √〈
r2
j

〉)
. (8)

Note that this condition also ensures convergence of the above
multipole expansion, Eq. (5), which for sufficiently large
distances is predominantly determined by the dipole-dipole
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contribution l = L = 1, such that

V (ij ) ≈ e2

4πε0εr

(
rirj

R3
ij

− 3(ri · Rij )(rj · Rij )

R5
ij

)
. (9)

We proceed by expanding the resulting Hamiltonian
for the two interacting excitons in a pair product basis
|si , sj 〉 = |nilimi, nj ljmj 〉 composed of the single-exciton
states ψni,li ,mi

(ri ) and ψnj ,lj ,mj
(rj ), discussed in Sec. II. The

adiabatic Born-Oppenheimer potentials are then obtained by
diagonalizing the resulting internal-state Hamiltonian for a
given exciton distance Rij . Its diagonal elements are given
by E0,ni li + E0,nj lj while the off-diagonal coupling terms
〈si , sj |V (ij )|s′

i , s′
j 〉 are calculated using Eq. (9). We choose

a quantization that is aligned with Rij , such that the total
angular momentum M = mi + mj is conserved and remains
a good quantum number for the two-exciton states in the
presence of interaction.

The numerical diagonalization then yields potential energy
surfaces Uμ(Rij ) and associated two-exciton states |μ(Rij )〉,
representing a set of exciton pair potentials as a function of
the exciton separation. Examples of the resulting interaction
curves are shown in Fig. 1(b) for exciton-pair states around
the 15p-15p asymptote for different values of M . At large
distances, the exact numerical potentials are well approxi-
mated by the asymptotic curves. The relevant values of n,
l, and m are dictated by the band symmetry and the chosen
excitation scheme as well as the frequency and polarization of
the involved excitation lasers. The polarization of the laser that
drives the Rydberg state transition defines another axis that
generally can have a finite angle with the chosen quantization
axis aligned along the distance vector Rij , such that the optical
coupling strength can depend on the orientation of the exciton
pair through the state composition of the two-exciton state
|μ(Rij )〉, as discussed below.

IV. EXCITONIC van der WAALS INTERACTIONS

The interaction potential and associated two-exciton states
assume a simple form for large distances Rij where

|〈si , sj |V (ij )|s′
i , s′

j 〉|�
∣∣E0,ni li + E0,nj lj − E0,n′

i l
′
i
− E0,n′

j l
′
j

∣∣
(10)

such that the dipole-dipole interaction only induces a weak
far off-resonant coupling to other exciton pair states. Due to
the aforementioned interaction blockade of exciton excitation,
this condition could be satisfied in previous Cu2O experiments
[2]. We can thus apply degenerate second-order perturbation
theory in the form of an effective operator,

ĤvdW =
(

e2

4πε0εrR
3
ij

)2 ∑
|α〉/∈M

V̂
(ij )

11 |α〉〈α|V̂ (ij )
11

δα

=
∑

μ

C
μ
6

R6
ij

|μ〉〈μ| (11)

whose action is restricted to the degenerate subspaces M =
{|sisj 〉} of fixed l and M at energy Ē [18]. Here δα = 2Ē − Eα

is the Förster defect, while the two-exciton eigenstates |μ〉 are
now independent of the distance Rij but can still be composed

FIG. 2. C6 values for the (a) s-s, (b) p-p, and (c) d-d asymptotes.
The fits are for extrapolation for n � 12. Colored lines denote the
families of M with |M| = 0 (black), |M| = 1 (red), |M| = 2 (green),
|M| = 3 (blue), and |M| = 4 (brown).

of several pair states |si , sj 〉. As shown in Fig. 1(b) for
n = 15, the van der Waals interaction potential obtained in
this way provides an excellent description of our numerical
results already for R � 2.5 μm.

Figure 2 and Table I summarize our results for the van
der Waals interaction between Cu2O Rydberg excitons with
angular momenta l = 0 (s), l = 1 (p), and l = 2 (d). The
simplest asymptote is that of two s-excitons. With only one
asymptotic state |n00, n00〉, Eq. (11) reduces to standard
nondegenerate perturbation theory. For higher angular mo-
menta, l > 0, however, the degenerate pair states get mixed
by the interaction as given in Table I. The results are invariant
with respect to the sign of M , reflecting the corresponding
symmetry of the exciton pair.

This leaves a total of 2l + 1 different |M| states for a given
l and 2l + 1 − |M| states within each of the (l, |M|) mani-
folds, which are indicated by different colors in Fig. 1(b). The
depicted van der Waals coefficients and associated eigenstates
have been obtained by diagonalizing Eq. (11) in each (l, |M|)
subspace. While the resulting interaction energies depend
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TABLE I. Various asymptotes listed by quantum numbers l,M with corresponding approximate asymptotic wave functions and van der
Waals coefficients C6(n) = n11(c0 + c1n + c2n

2) as obtained from fitting for principal quantum numbers n = 12–25. The given errors are
standard deviations calculated from the numerically obtained eigenfunctions.

c0
2π

(mHz μm6) c1
2π

(mHz μm6) c2
2π

(mHz μm6)
|M| composition of ns − ns asymptote ×101 ×102 ×103

0
∣∣n00
n00

〉 −2.046 −0.672 0.125

|M| composition of np − np asymptote

2
∣∣n11
n11

〉
1.257 3.641 −0.666

1 1√
2

(∣∣n10
n11

〉 − ∣∣n11
n10

〉)
5.853 8.372 −1.503

1 1√
2

(∣∣n10
n11

〉 + ∣∣n11
n10

〉) −3.574 0.680 −0.160

0 (−0.252 ± 0.003)
(∣∣n1 − 1

n11

〉 + ∣∣ n11
n1 − 1

〉)
8.159 11.549 −2.067

+(0.934 ± 0.001)
∣∣n10
n10

〉
0 1√

2

(∣∣n1 − 1
n11

〉 − ∣∣ n11
n1 − 1

〉) −3.456 −0.205 0.006

0 (0.661 ± 0.001)
(∣∣n1 − 1

n11

〉 + ∣∣ n11
n1 − 1

〉) −4.371 0.608 −0.143

+(0.356 ± 0.004)
∣∣n10
n10

〉
|M| composition of nd − nd asymptote

4
∣∣n22
n22

〉
6.247 4.067 −0.719

3 1√
2

(∣∣n21
n22

〉 + ∣∣n22
n21

〉) −2.201 −1.936 0.481

3 1√
2

(∣∣n21
n22

〉 − ∣∣n22
n21

〉)
10.906 7.237 −1.317

2 −0.429
(∣∣n20

n22

〉 + ∣∣n22
n20

〉) + 0.795
∣∣n21
n21

〉
14.881 9.862 −1.807

2 1√
2

(∣∣n20
n22

〉 − ∣∣n22
n20

〉)
1.536 0.650 −0.018

2 0.562
(∣∣n20

n22

〉 + ∣∣n22
n20

〉) + 0.607
∣∣n21
n21

〉 −4.005 −3.752 0.889

1 0.218
(∣∣n2 − 1

n22

〉 − ∣∣ n22
n2 − 1

〉) − 0.673
(∣∣n20

n21

〉 − ∣∣n21
n20

〉)
17.480 11.564 −2.125

1 (−0.465 ± 0.001)
(∣∣n2 − 1

n22

〉 + ∣∣ n22
n2 − 1

〉)
4.604 2.582 −0.373

+(0.533 ± 0.001)
(∣∣n20

n21

〉 + ∣∣n21
n20

〉)
1 (0.533 ± 0.001)

(∣∣n2 − 1
n22

〉 + ∣∣ n22
n2 − 1

〉) −3.559 −3.905 0.954

+(0.465 ± 0.001)
(∣∣n20

n21

〉 + ∣∣n21
n20

〉)
1 −0.673

(∣∣n2 − 1
n22

〉 − ∣∣ n22
n2 − 1

〉) − 0.218
(∣∣n20

n21

〉 − ∣∣n21
n20

〉) −2.017 −2.208 0.567

0 −0.082
(∣∣n2 − 2

n22

〉 + ∣∣ n22
n2 − 2

〉)
18.386 12.153 −2.234

+0.451
(∣∣n2 − 1

n21

〉 + ∣∣ n21
n2 − 1

〉) − 0.762
∣∣n20
n20

〉
0 (−0.222 ± 0.001)

(∣∣n2 − 2
n22

〉 − ∣∣ n22
n2 − 2

〉)
5.559 3.240 −0.501

+0.671
(∣∣n2 − 1

n21

〉 − ∣∣ n21
n2 − 1

〉)
0 (0.343 ± 0.004)

(∣∣n2 − 2
n22

〉 + ∣∣ n22
n2 − 2

〉) −0.146 −1.315 0.434

+(−0.448 ± 0.003)
(∣∣n2 − 1

n21

〉 + ∣∣ n21
n2 − 1

〉)
+(−0.603 ± 0.001)

∣∣n20
n20

〉
0 (0.613 ± 0.002)

(∣∣n2 − 2
n22

〉 + ∣∣ n22
n2 − 2

〉) −3.861 −4.031 0.956

+(0.311 ± 0.003)
(∣∣n2 − 1

n21

〉 + ∣∣ n21
n2 − 1

〉)
+(0.236 ± 0.004)

∣∣n20
n20

〉
0 −0.671

(∣∣n2 − 2
n22

〉 − ∣∣ n22
n2 − 2

〉)
+(−0.222 ± 0.001)

(∣∣n2 − 1
n21

〉 − ∣∣ n21
n2 − 1

〉) −3.736 −3.639 0.850
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FIG. 3. At n = 11 a near Förster resonance in the channel np +
np → (n − 1)d + (n + 1)d leads to outlying points in the otherwise
quite homogeneous range of C6(n). (a) The Förster defect δ of the
given channel passes zero near n = 11. Taking the repulsive part
of the interaction as an example, the numerical solution (blue dots)
is compared with the long-range asymptote with |M| = 0 (black),
|M| = 1 (red), and |M| = 2 (green) for n = 11 (b) and n = 12 (c).
The color code denotes the relative p-component of each asymptote.
Despite the near resonance at n = 11, their difference is small as long
as R � 1 μm since the dominant channels fall into the van der Waals
regime.

strongly on the principal quantum number n, the correspond-
ing asymptotic angular eigenstate compositions turn out to be
virtually independent of n (cf. standard deviations given in
Table I) since the coupling matrix elements and energy defects
of the dominant channel |α〉 in Eq. (11) exhibit a very similar
dependence on n.

The van der Waals interaction rapidly increases with the
principal quantum number n. This is due to the quadratic
increase of the dipole matrix elements for transitions between
Rydberg states and the decreasing level spacing, such that
δ ∼ n−3, which overall results in an increase of the van
der Waals coefficient as C6 ∼ n11. Similar to the behavior
of atomic systems [13], our numerical results can be well
described by the slightly modified scaling relation

C6(n) = n11(c0 + c1n
1 + c2n

2), (12)

whose coefficients ci depend on the angular numbers and are
given in Table I. As shown in Fig. 2, this simple expression
yields accurate values of the van der Waals interaction for the
range 12 � n � 25 over which the fit has been determined.
We note that this n-scaling is indeed consistent with the
experimentally observed blockade volume, as deduced from
the simple Rydberg model used in [2]. For lower principal
quantum numbers, Förster resonances can lead to resonantly
enhanced van der Waals coefficients and consequently devia-
tions from the simple dependence assumed in Eq. (12).

One such example are the van der Waals coefficients of
the np − np asymptotes for n = 11, which show slightly
larger deviations. This is due to the np + np → (n − 1)d +
(n + 1)d coupling channel, which becomes near resonant
around n = 11 as shown in Fig. 3(a). As the denominator
in Eq. (11) goes through a minimum, the resulting van der
Waals interaction is enhanced, while the validity of Eq. (11)
requires larger exciton distances. However, a comparison with
our numerical results [Fig. 3(b)] shows that the agreement
remains good even at relatively small exciton separations of
∼1 μm, comparable to what is also required for n = 12 in the
absence of the Förster resonance.

FIG. 4. Overlap of the optically active pair state φa with the
asymptotic molecular eigenstates |μ〉, O = |〈φa|μ〉|2. Here, for il-
lustration purposes, we chose |φa〉 = |n11, n11〉 for σ+-light and the
eigenstates of the p-p asymptote (labeled as listed in Table I). Note
that antisymmetric states 2 and 5 do not couple to the excitation laser.

An interesting and often relevant situation arises when an
external field introduces an axis that is not parallel to the
intermolecular axis Rij . Examples include electric and mag-
netic fields as well as a tilted excitation laser, each defining a
new axis ẑlab. Without loss of generality, we assume that the
molecular axis lies in the (x, z) plane of the laboratory frame,
such that the two ẑ axes span the interaction angle θ [20].
A general transformation of the states between the frames is
given by

|nlm〉mol =
∑
m′

[
dl

mm′ (θ )
]∗|nlm′〉lab, (13)

where dl
mm′ (θ ) denotes elements of the lowercase Wigner

d-matrix [21]. While it is often advantageous to express the
external field in the molecular frame, we illustrate the angular
dependence by evaluating the optical coupling strengths of
the p-p asymptotic pair states in the laboratory frame. For a
definite laser polarization, only certain pair states are optically
active, and the optical coupling, given by the overlap with the
optically active pair state, becomes a function of θ (Fig. 4).

V. DISCUSSION

In summary, we have evaluated the interaction between
Rydberg excitons in Cu2O semiconductors and provided an
expression that, together with the tabulated parameters, facil-
itates a simple and yet accurate determination of the resulting
van der Waals interaction for a broad range of Rydberg states.
Such van der Waals interactions may be responsible for the
recently observed [2] excitation blockade of excitons in Cu2O.
The highest-lying exciton state reported in these experiments
(n = 25) covers a 4 million times larger volume than the
2p-exciton state, due to the ∼n2 scaling of the exciton radius.
Such a large radius entails an even higher enhancement of the
polarizability as ∼n7, such that electrostatic interactions be-
come relevant at exciton separations where exchange effects
are negligible.

The importance of long-range dipole interactions for
Rydberg excitons is connected to the way they are created by
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optical excitation. Shifts of the Rydberg pair-state energy due
to exciton-exciton interactions can inhibit the simultaneous
generation of Rydberg excitons within a certain radius once
they exceed the width of the corresponding exciton line. For
strong interactions and sufficiently narrow excitation lines,
this excitation blockade effect thus ensures that excitons are
only created at distances where van der Waals interactions
dominate. This may open up a new regime where strong
interaction effects become observable at very low densities
of excitons, which therefore interact over long distances in a
quasistatic fashion, as opposed to short-range collisional inter-
actions that determine the behavior of ground-state excitons.
Accurate knowledge of van der Waals interactions between
Rydberg excitons, as provided by the present work, enables
quantitative theoretical studies of this blockade effect. This in
turn would also make it possible to estimate the importance of
other mechanisms such as interactions with the free charges of
potentially forming electron-hole plasmas [4] and to thereby
determine their relative contribution to the nonlinear optical
response of the semiconductor.

One major difference between the typical scales of
Rydberg states of excitons and atomic Rydberg states stems
from the effective electron and hole masses as well as the
dielectric constant, εr , of the semiconductor. Both factors
tend to decrease the binding energy and lead to a decrease of

the Rydberg constant by a factor ν = μX/(μAε2
r ), where μX

and μA denote the reduced mass of the excitonic and atomic
system, respectively. On the other hand, the excitonic radius
is increased by a factor (εrν)−1. Therefore, we expect the van
der Waals coefficient to increase as ∼ε4

r μ
5
A/μ5

X. Accordingly,
the van der Waals coefficients as calculated in the present
work exceed those of typical atomic Rydberg states with com-
parable quantum numbers [13,14] by five orders of magnitude.
This also opens the search for other suitable semiconductor
systems with Rydberg states [22,23], each featuring different
interaction properties and additional rich physics [24].

Rydberg excitons thus suggest promising avenues to stud-
ies of strong interaction effects in confined geometries [25],
optical nonlinearities [10], or nonclassical light generation
[26,27] at ultralow exciton densities. The results of the present
work provide simple yet accurate interaction potentials for
future theoretical explorations of these perspectives.
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