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Conventional topological superconductors are fully gapped in the bulk but host gapless Majorana modes on
their boundaries. We instead focus on a new class of superconductors, second-order topological superconductors,
that have gapped, topological surfaces and gapless Majorana modes instead on lower-dimensional boundaries,
i.e., corners of a two-dimensional system or hinges for a three-dimensional system. Here, we propose two general
scenarios in which second-order topological superconductivity can be realized spontaneously with weak-pairing
instabilities. First, we show that (px + ipy)-wave pairing in a (doped) Dirac semimetal in two dimensions with
four mirror-symmetric Dirac nodes realizes second-order topological superconductivity. Second, we show that
p + id pairing on an ordinary spin-degenerate Fermi surface realizes second-order topological superconductivity
as well. In the latter case, we find that the topological invariants describing the system can be written using simple
formulas involving only the low-energy properties of the Fermi surfaces and superconducting pairing. In both
cases, we show that these exotic superconducting states can be intrinsically realized in a metallic system with
electronic interactions. For the latter case, we also show it can be induced by proximity effect in a heterostructure
of cuprate and topological superconductors.
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I. INTRODUCTION

One of the characteristic properties of topological in-
sulators (TIs) and superconductors (TSCs) is the presence
of stable, gapless modes hosted on their boundaries. Such
surface states are special because they cannot be realized
in their intrinsic dimension having the same symmetries. A
well-known example is the one-dimensional (1D) p-wave
superconducting wire that is gapped in the bulk, but exhibits
Majorana zero mode bound states (MBS) localized at its two
ends [1]. In higher dimensions, there are a wide variety of
phases including two-dimensional (2D) Chern insulators that
host chiral edge states [2], and three-dimensional (3D) time-
reversal-invariant topological insulators that exhibit an odd
number of surface Dirac cones [3,4]. The topological bound-
ary modes are commonly used to diagnose the presence of the
topological phase, e.g., by identifying the surface Dirac cone
spectrum of topological insulators through angular-resolved
photoemission spectroscopy [3,4]. They also generate much
of the intrinsic interest in these systems for possible appli-
cations, e.g., using MBS as topological qubits [5], or chiral
modes as dissipationless transport channels.

Recently, the notion of topological insulators has been
extended to include higher order topological insulators
[6–11]: a new class of topological phases without gap-
less surface states. A second-order topological insula-
tor/superconductor (TI2/TSC2) is a d-dimensional system
with gapped (d − 1)-dimensional boundaries that are them-
selves topologically nontrivial such that there are protected
low-energy modes at the (d − 2)-dimensional boundaries,
e.g., corners in 2D and hinges in 3D. The first predicted
TI2 is the 2D quantized electric quadrupole insulator [6–11]
that has gapped edge states, but hosts degenerate low-energy

modes localized at the corners of a sample. This topological
phase can be protected by a variety of symmetries, but the
most commonly considered ones are either a pair of mirror
symmetries Mx,My, or C4 symmetry. A simple model for this
phase was proposed in Ref. [6], and was subsequently realized
experimentally in three independent metamaterial contexts
[12–14].

In this paper, we focus on higher order topological su-
perconductors [9,10,15–21]. In analogy with 2D TI2’s, we
provide mean-field Bogoliubov–de Gennes (BdG) Hamilto-
nians that exhibit second-order topological superconducting
phases and stable corner MBS. Corner Majorana state has
been predicted in other superconductors with defects [22],
such as impurity [23] and distillations [24]. We explore two
general scenarios in which one can spontaneously realize
TSC2’s. First, we focus on mirror symmetries and show that
for a normal state corresponding to a two-dimensional Dirac
semimetal with four mirror-symmetric Dirac nodes, a px +
ipy order parameter will generate second-order topology. Typ-
ically, a (px + ipy)-wave superconducting order parameter
gives rise to a Chern number and associated chiral Majorana
edge modes. Here, however, something unusual happens due
to the normal-state electronic structure, and the px + ipy

order does not induce a nonzero Chern number, instead pro-
ducing a TSC2 with a Z2 topological invariant protected by
mirror or particle-hole symmetries. We consider the effects of
shifting the position of the Dirac nodes, gapping them out,
and doping them and find that the TSC2 phase remains robust
in a wide range of parameter space. Moving the Dirac nodes
(in a mirror-symmetric fashion) does not change the topology
as long as they do not collapse and annihilate. Gapping out
the Dirac points competes with the SC order parameter, but
we show that the topology and corner MBS are robust as long
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as the Dirac mass is smaller than the superconducting order
parameter. Additionally, with a finite chemical potential, the
Dirac points in the normal state evolve into Fermi surfaces,
and can pass through a Lifshitz transition to eventually shrink
and vanish. We show that the topology of the superconducting
state remains robust throughout this process until the Fermi
surfaces vanish.

The second context we consider is based on C4T symmetry
in a system realizing p + id superconductivity. The d-wave
order is odd under C4 lattice rotation symmetry, and its π/2
relative phase to the p-wave order ensures a combined C4T
symmetry. The normal state in this case is a featureless,
spin-degenerate Fermi surface. To understand the origin of the
topological phase heuristically, one can think of a two-stage
process where the normal metal state forms a nodal d-wave
superconductor with four nodal points, and then the nodal
BdG quasiparticles are fully gapped by the generation of
coexisting p-wave superconductivity. This process could arise
in, e.g., d-wave cuprate superconductors when coexisting p-
wave order is intrinsically or extrinsically proximity induced.
Alternatively, one could start from a normal state that is
first fully gapped in the bulk by px + ipy/px − ipy pairing
to form a time-reversal-invariant TSC [25,26]. As such, the
system will have protected edge states and the addition of
d-wave order can gap the edges out in a C4T -invariant way
to produce corner modes and TSC2 topology. We analyze
the topological invariants of 2D and 3D TSC2’s protected
by C4T symmetry and show that in both dimensions it is
characterized by a Z2 topological invariant. Furthermore, we
find that these topological invariants can be reduced to simple
forms that depend only on the normal-state Fermi surfaces and
the properties of the pairing, when in the weak-pairing limit.

Aside from focusing on mean-field BdG Hamiltonians,
we show that certain interactions can favor the spontaneous
formation of both TSC2 scenarios in a weak-pairing picture.
For the first scenario, we start with a normal state formed
by a two-band Dirac nodal structure that can be realized in
solid-state or cold-atom systems [27]. We consider adding a
chemical potential to the four Dirac nodes since, from the
point of view of energetics, the presence of Fermi surfaces
(FS) is beneficial for superconductivity, as the density of
states is finite (as opposed to vanishing linearly for the 2D
Dirac points). Remarkably, we show that for a normal state
having four “doped Dirac points” in the presence of a finite-
range attractive interaction, a SC state with px or py pairing
symmetry appears spontaneously through a low-temperature
instability. Further, we show by Landau-Ginzburg free-energy
analysis that a (px + ipy)-wave order parameter is favored.
We show that these ingredients are sufficient to generate the
TSC2 phase for the first scenario.

For the realization of the second scenario, we take two dif-
ferent approaches. First, we consider a metallic system with a
conventional spin-degenerate FS, and subject it to two types of
electronic interactions that favor p-wave pairing and d-wave
pairing, respectively. These interactions, and their relevance
to experiments, have been extensively studied previously
[28–35]. In particular, for the p-wave order, it has been
recently proposed [30,31,33] that fluctuations in the vicinity
of an inversion-symmetry-breaking ordered phase induce p-
wave order. For the d-wave order, perhaps the simplest mech-
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FIG. 1. Lattice representation of 2D second-order topological
superconductor Hamiltonian in a Majorana basis as in Eq. (1). Each
unit cell has four Majorana fermions represented by black dots as
labeled. The tunneling strength −2t is indicated by a solid line, while
2t is represented by a dashed line. As a result, there is a π flux in each
plaquette.

anism is through the antiferromagnetic exchange interaction
in an itinerant fermion system [35]. We show that the combi-
nation of these interactions naturally leads to the coexistence
of p- and d-wave order. Following a similar Landau-Ginzburg
free-energy analysis, we show that the coexistence state in-
deed has (p + id)-wave order which is the desired form for
the TSC2 state. Additionally, we show that by coupling a
d-wave superconductor with a 2D TSC will naturally produce
the p + id state and TSC2 topology through the proximity
effect. In particular, we show that a heterostructure between
FeTe0.55Se0.45 [36–38] and a cuprate SC can potentially real-
ize a high-Tc TSC2 phase.

II. TSC2 FROM MIRROR-SYMMETRIC
DIRAC SEMIMETAL

A. A lattice model for TSC2

We begin constructing a model for a 2D TSC2 phase by
close analogy with the quadrupole model in Ref. [6]. That
model is a tight-binding model on a square lattice with four
complex fermion degrees of freedom per cell. If one sim-
ply replaces the four complex fermion orbitals by Majorana
fermions, and replaces all of the hopping terms with Majorana
tunneling terms, then one will have a model for a TSC2 in
a Majorana basis (see Fig. 1). The Hamiltonian in terms of
Majorana operators is given by

H = −2it
∑
(m,n)

[
γ 2

m,nγ
1
m+1,n + γ 4

m,nγ
3
m+1,n

− γ 2
m,nγ

4
m,n+1 + γ 1

m,nγ
3
m,n+1

]
, (1)

where (m, n) are the site coordinates. The phases of the
Majorana tunneling terms are tuned to have an effective π

flux per plaquette, and each plaquette is gapped. If we have
boundaries of a sample, then the edges are gapped, but have
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“unpaired” Kitaev chains, and the corners harbor unpaired
MBS (as shown in Fig. 1). Thus, this is a natural model for
a TSC2 phase in 2D.

Since two Majorana degrees of freedom represent one
complex fermion degree of freedom, this model can physi-
cally describe a superconductor formed from a normal metal-
lic state with two bands. We can express the Majorana Hamil-
tonian in a complex fermion basis in terms of the hopping and
pairing of electrons. To do this, we combine the four Majorana
operators per unit cell in pairs to form two complex fermions.
There are several inequivalent ways one could choose to do
this, and each one yields a different possible microscopic
electronic realization of this TSC2 phase.

The choice of how to group the four Majorana modes per
cell into two complex fermion modes essentially decides how
the Hamiltonian splits into normal-state band structure and
superconducting pairing gaps. Since our goal is to have the
pairing terms generated as a low-temperature instability of
the low-energy electrons, then it is desirable that we choose
a microscopic realization such that the hopping terms lead to
a gapless band structure, and the pairing terms describe its
intrinsic superconducting tendency. Interestingly, this can be
achieved by the following identification [↑ and ↓ denote the
two (pseudo)spin bands]:

c↑,2m+1,n = (
γ 1

2m+1,n + iγ 2
2m+1,n

)
/
√

2,

c↓,2m+1,n = (
γ 3

2m+1,n + iγ 4
2m+1,n

)
/
√

2,

c↑,2m,n = (
γ 3

2m,n + iγ 4
2m,n

)
/
√

2,

c↓,2m,n = (
γ 1

2m,n + iγ 2
2m,n

)
/
√

2. (2)

From this combination of Majorana operators, the resulting
four-band BdG Hamiltonian derived from Eq. (1) is given by
H = ∫

dk �
†
kH(k)�k where �k = (ck, c

†
−k )T and

H(k) = t cos kxσxτz + t cos kyσy

+ � sin kxσxτy + � sin kyσxτx, (3)

where we have allowed for two separate parameters t and �

[for which Eq. (1) has t = �], σi’s are Pauli matrices in the
(pseudo)spin space, τj ’s are Pauli matrices in Nambu space,
σiτj denotes their Kronecker product, and we have set the
lattice constant a0 = 1. This BdG Hamiltonian has a particle-
hole symmetry C = τx , such that CHT (−k)C−1 = −H(k).

Before discussing the full TSC2 phase, let us consider
just the normal-state, two-band Bloch Hamiltonian with a
chemical potential μ (whose effect on the topology we discuss
later):

HN(k) = t cos kxσx + t cos kyσy − μ, (4)

which has four gapless Dirac points, when μ = 0, located
at (kx, ky ) = (±π/2,±π/2). For finite μ, the system de-
velops Fermi surfaces centered around each of the Dirac
points, and for large values of μ > t the system will undergo
a Lifshitz transition eventually leading to vanishing Fermi
surfaces when μ >

√
2t , i.e., when Fermi level lies outside

bandwidth. This system has mirror symmetries Mx = I and
My = I satisfying

Mx,yHN(k)M−1
x,y = HN(m̂x,yk), (5)
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FIG. 2. The Fermi surface for the BdG Hamiltonian in Eq. (3)
with (t,�) = (1, 1

2 ), and (a) μ = 0.90, (b) μ = 1.11, and (c) μ =
1.20. The phase of the p-wave order parameter and the spin texture
of each pocket are indicated around each Fermi surface. Upon
increasing the chemical potential μ, the pockets will increase in
sizes, and merge, and vanish at the high-symmetry points in the BZ.

where, e.g., m̂x (kx, ky ) = (−kx, ky ). We note that these op-
erators obey [Mx,My] = 0, and thus these mirror symme-
tries do not support higher order topology [6]. Let us focus
on the range 0 < μ <

√
2t , for which there are closed or

open Fermi surfaces centered at (kx, ky ) = (±π/2,±π/2),
which we show in Fig. 2. Each of the Fermi surfaces has
a (pseudo)spin texture (see Fig. 2), and crucially, as far as
superconductivity is concerned, the portions of the FS’s with
opposite momenta always occur with the same (pseudo)spin
texture. This means that, as a weak-coupling instability, only
(pseudo)spin triplet, odd-parity (e.g., p-wave) pairing can
occur, which is exactly what is required by nontrivial second-
order topology according to Eq. (3).

Now, let us tune back to μ = 0 so that we only have the
four Dirac points, and consider the addition of the px + ipy

pairing terms in Eq. (3). The superconducting gaps at the four
Dirac points have a circulating phase structure as one moves
from a Dirac point in one quadrant to another, with phases of
0, π/2, π, and 3π/2, respectively, as shown in Fig. 2. These
pairing terms break the mirror symmetries of the normal state,
however, we can define a new set of mirror symmetries

Mx = σyτy, My = σyτx, (6)

such that Mx,yH(k)M−1
x,y = H(m̂x,yk). Crucially, these op-

erators satisfy {Mx,My} = 0 and can support gapped Wilson
loop spectra and higher order topology. Indeed, if one calcu-
lates the nested Wilson loops one finds that this system is in a
nontrivial TSC2 phase analogous to the quadrupole insulator,
but with unpaired MBS on the corners of the sample instead
of complex fermions. In fact, this is immediately manifest
since we constructed our BdG Hamiltonian from a higher
order TSC2 in the Majorana basis in Eq. (1). To generate these
new, noncommuting mirror reflections, the superconducting
gap has to transform nontrivially under mirror symmetries in
both directions separately. Thus, gapped superconductors with
other possible pairing symmetries, such as s wave, px wave,
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or py wave, will not generate mirror-protected second-order
topology starting from this normal-state Hamiltonian.

We can add various perturbations to the Hamiltonian
(3). Specifically, we consider four types of terms: H1 =
−μτz, H2 = mσzτz, H3 = bxσxτz, H4 = byσy . The effect
of H2 is to open gaps in the normal-state Dirac nodes, and it
competes with the superconducting gap. H3,4 shift the Dirac
nodes in a mirror-symmetric fashion in the kx and ky direc-
tions, respectively. We find that, when individually turned on
and tuned, the conditions to remain in the topological phase
are

|μ| <
√

2|t |, |m| <
√

2|�|, |bx | < |t |, |by | < |t |. (7)

This condition can be understood in two ways. In a
momentum-space picture, the critical values for m, bx,y, and
μ correspond to either gapping out (m) the Dirac nodes,
shifting and annihilating (bx,y) them, or shifting the chemical
potential μ out of the bandwidth. In a real-space picture in
the Majorana basis shown in Fig. 1, these terms correspond to
onsite coupling terms between the Majorana modes. When the
onsite couplings become larger than the intercell couplings,
the system transitions into a trivial phase.

Interestingly, we note that the chemical potential H1 term
actually breaks the mirror symmetries Mx,y! However, the
higher order topological phase is still robust, as the bulk topo-
logical invariant is also protected by particle-hole symmetry
C. The invariant that characterizes the higher order supercon-
ductor is the mathematical analog of the quadrupole moment
qxy which is defined in the analogous insulator system as

qxy ≡ QCor − px − py (8)

for a square lattice with edges and corners. For superconduc-
tors we interpret QCor is the parity of the number of Majorana
bound states, and px (py) are the edge Berry phases in units
of 2π for the edges parallel to x̂ (ŷ) (px/y are interpreted as
the edge polarizations in the context of quadruple insulator
[6]). Since particle-hole symmetry is a local symmetry that
flips the sign of the charge, it quantizes both QCor and px,y

to integer or half-integer values in the insulator case. As a
result of Eq. (8), qxy is also quantized, and the higher order
topological phase is robust in the presence of particle-hole
symmetry. The model we consider is mathematically identical
to the insulator system and hence has a quantized topological
invariant protected by C alone.

However, to illustrate that this topology is a bulk property,
it is desirable to calculate qxy in terms of bulk quantities,
for example, in a periodic system with no edges or corners
where Eq. (8) is not applicable. As shown in Ref. [6], this
can be done via the nested Wilson loop which is quantized by
the mirror symmetries, and is not quantized by particle-hole
symmetry alone. We discuss the role of mirror symmetries
in more detail in Sec. II B, and leave the identification of a
purely bulk expression for the invariant in the presence of
particle-hole symmetry alone to future work.

B. A more general condition for TSC2

For many examples of TSCs in the weak-coupling limit,
it can be shown that the topological characterization of the
system is completely determined by the properties of the

normal-state FS and SC order parameter [39]. A topological
invariant that can be determined from the low-energy physics
alone serves as a useful tool for identifying and searching
for TSC states in real materials. However, we find that the
topological invariant of the mirror-protected TSC2 cannot be
reduced to the low-energy quantities near the FS, at least in
the linearized limit. Heuristically, determining the topology
through the nested Wilson loops relies on the properties of
the Wannier bands [6], not the energy bands. Therefore, low-
energy physics near the Fermi energy does not necessarily
completely capture the topology, even in the weak-coupling
limit. Indeed, one can consider a case where there are four,
mirror-related, Dirac nodes, but which do not arise from a
single pair of bands. They could arise from two pairs of
bands, each with two Dirac nodes, or four pairs of bands,
each with a single Dirac node. After turning on a (necessar-
ily interband) px + ipy SC order parameter, the low-energy
theory is identical to our model; their differences are encoded
in how the Dirac points are connected at high energies. We
found that these models where all four normal-state Dirac
nodes are not connected at high energies (i.e., when they do
not all arise from the same pair of bands) generally do not
support higher order topology in the presence of px + ipy

pairing. We will see in our second TSC2 scenario that for
some symmetry classes, i.e., at least for the C4T class, we
can find low-energy topological invariants that describe the
higher-order topology. It may also be possible to circumvent
this problem by considering other symmetry classes beyond
the ones studied here, or by keeping track of the low-energy
physics of both the bulk and the boundaries, which may be
sufficient to capture the Wannier band topology. We will leave
such considerations to future work.

Despite this difficulty for the mirror-symmetric TSC2, one
can prove the following sufficient condition for a TSC2 phase
based purely on low-energy considerations: for a two-band
doped Dirac semimetal that is mirror symmetric [satisfying
Eq. (5)] with H ′

N = ∫
dk c†(k)H′

N(k)c(k) where

H′
N(k) = f1(kx, ky )σx + f2(kx, ky )σy − μ (9)

with μ inside the bands, and four Dirac nodes at (±k∗
x ,±k∗

y )
with k∗

x , k
∗
y �= 0, a fully gapped (px + ipy)-wave SC order

realizes a TSC2 phase. By mirror symmetry (5) f1 and f2

are real, even functions of both kx and ky, and we assume
they have a simultaneous zero at a generic point in the
Brillouin zone; mirror symmetry implies zeros at four points
(±k∗

x ,±k∗
y ). At any chemical potential μ inside the bands,

the (pseudo)spin texture of the fermions near the Fermi level
lies in the x, y (pseudo)spin plane, and the spin orientations
for k and −k are the same at the Fermi level. One can
straightforwardly show that the pairing order

H ′
p =

∫
dk �(k)c†(k)σx[c†(−k)]T + H.c. (10)

gaps out ±k points with the same spin orientation in our case.
Further, we focus on fully gapped, p-wave pairing where

�(k) = g1(kx, ky ) + ig2(kx, ky ), (11)

where g1(k) and g2(k) are real, odd functions and vanish
only at time-reversal-invariant momentum points kx,y = 0 or
π . (We assume that aside from these symmetry enforced
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nodes, g1,2 do not have any other accidental nodes.) The BdG
Hamiltonian of this SC state is given by

H′(k) = f1(k)σxτz + f2(k)σy − μτz

+ g1(k)σxτx + g2(k)σxτy. (12)

We now argue that this gapped phase described by Eq. (12)
is in a TSC2 phase. Let us focus on the case with μ = 0
first. We can think of a process to obtain this generic Hamil-
tonian H′ by deforming Eq. (3) while maintaining, e.g, the
mirror symmetries. Namely, we define H′(k, α) in the same
form as (12) with α ∈ (0, 1) where f1(k, 0) ≡ cos kx and
f1(k, 1) ≡ f1(k) and similarly define f2(k, α) and g1,2(k, α).
During the deformation process, the Dirac points given by the
normal-state part of the BdG Hamiltonian do not collapse and
annihilate, and the bulk gap remains open since the equal-
spin pairing term always gaps out the Dirac points. While
this shows we can continuously connect these Hamiltonians
without the bulk gap closing, we also need to show that the
corner Majorana modes in Eq. (3) do not disappear due to a
Wannier transition either, i.e., a bulk-driven transition of the
edge Hamiltonian [6,7,40]. In Appendix A we prove that such
a Wannier transition does not occur as long as the normal-state
Dirac points do not annihilate. If we then include a chemical
potential μ in Eq. (12) it is straightforward to show that,
for sufficiently small μ, neither the bulk nor edge spectrum
undergo a transition. Therefore, we have shown that Eq. (12)
realizes a TSC2.

As an explicit example of this condition, we can consider
the Hamiltonian

Hb(k) = (bx + t cos kx )σxτz + t cos kyσy

+ � sin kxσxτy + � sin kyσxτx, (13)

which we have already found is a TSC2 for |bx | < |t |. We
note that precisely within this range, the BdG Hamiltonian
describes a px + ipy superconductor with a normal state with
four mirror-symmetric Dirac points. At bx = −t , the normal-
state Dirac points are maximally shifted and annihilate on
the kx = 0 axis. Interestingly, at this point the system goes
through a Wannier transition while the bulk gap remains
open. To see this, we can calculate the effective Hamiltonian
for the top and bottom edges (open boundaries in the y

direction). From the second and fourth terms in Eq. (13), the
wave function of the edge states satisfies σzτx�

b/t (kx, y) =
±�b/t (kx, y), where b/t denotes bottom and top edge, respec-
tively. The edge Hamiltonians are given by

Hb/t
b (kx ) = (bx + t cos kx )μb/t

x − � sin kxμ
b/t
y , (14)

where μb
i are the Pauli matrices in the subspace of | ⇑〉b ≡ | ↑

〉σ ⊗ | →〉τ and | ⇓〉b ≡ | ↓〉σ ⊗ | ←〉τ , and μt
i are the Pauli

matrices in the subspace of | ⇑〉t ≡ | ↑〉σ ⊗ | ←〉τ and | ⇓〉t ≡
| ↓〉σ ⊗ | →〉τ . One can straightforwardly verify that this edge
Hamiltonian becomes gapless and transitions from topologi-
cal to trivial at bx = −t . From this example we see that the
Wannier transition is tied to the fate of the normal-state Dirac
points, and as long as the Dirac points do not annihilate the
system generates TSC2 topology with the px + ipy pairing.

C. Realization from electronic interactions

The fact that our proposed superconducting Hamiltonian
(3) has a gapless normal-state band structure indicates that the
required superconducting gap can potentially be intrinsically
induced from electronic interactions. From an energetic per-
spective, the presence of Fermi surfaces at a finite μ greatly
enhances the pairing instability so we will consider a normal
state of “doped” Dirac points with Fermi surfaces at finite
μ. We have shown above that doing so does not change the
topology of the superconducting state in which we are inter-
ested. To be specific, we consider the same nearest-neighbor
tight-binding Hamiltonian as in Eq. (4) with a finite μ with
0 < μ < t (the situation with four closed pockets around each
Dirac point, shown in Fig. 2). There are four Fermi pockets
centered at (kx, ky ) = (±π/2,±π/2), and the regions of the
FS’s with opposite momenta always occur with the same
(pseudo)spin texture, hence naturally leading to triplet, odd-
parity pairing instead of, e.g., singlet s-wave pairing. Unlike
topology, the superconducting critical temperature Tc as well
as the exact form and magnitude of the superconducting gap
� are not universal properties, and depend on microscopic
details such as the band dispersion and the structure of the
electronic interactions. However, the remarkable feature that
odd-parity (p-wave) pairing is expected to be dominant over
s-wave pairing for our normal-state system is an encouraging
sign for its realization.

We now move on to study a concrete pairing mechanism.
The sign-changing structure of the p-wave order parameter in
k space places restrictions on the required k-space structure of
the electronic interactions. Indeed, momentum-independent
electron-phonon interactions do not induce pairing in the p-
wave channel at weak coupling because, within the ladder
approximation,1 the contribution to the pairing susceptibility
from FS regions with positive and negative pairing gaps
cancels out. For our purposes, we consider a density-density
interaction given by the effective action

Sint = −
∫

dk dq D(q )c†α (k)cα (k)c†β (k + q )cβ (k + q ), (15)

where α, β are (pseudo)spin indices and are summed over,
k ≡ (ωm, k), q ≡ (�m, q), and ωm,�m are Matsubara fre-
quencies. D(q ) can be thought as the propagator of a col-
lective mode, and for simplicity we take an Ornstein-Zernike
form

D(�, q) = 1/(�2 + c2q2 + c2ξ−2). (16)

This propagator is peaked at zero momentum, and it can be
realized physically by fluctuations of an electronic nematic
order [43] or a soft optical phonon mode with a strong
momentum dependence peaked at q = 0. For example, such
a phonon mode has been proposed to play an important role
in high-temperature superconductivity in monolayer FeSe on
SrTiO3 [44,45].

We make three further simplifications. First, we assume
that the Fermi pockets in Fig. 2(a) are circular. Second, we

1Quantum corrections beyond the ladder approximation can induce
p-wave instabilities; see, e.g., Refs. [41,42].
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take the weak-coupling limit and neglect all self-energies
and vertex corrections. Third, we assume that the correlation
length in units of the lattice constant a0 satisfies 1 � ξ/a0 �
t/μ, such that the intrapocket interaction can be treated as
constant, and dominates over the interpocket ones. With these
assumptions, the linearized gap equation for the p-wave order
�1 between the two pockets centered at ±(k∗

x , k
∗
y ) is

�1 = λ0 − λ2

4
N (0)�1 ln

�

T

∫
dθ

2π
cos2 θ

2
, (17)

where we have defined λ0 ≡ D(� = 0, q = 0), λ1 ≡ D(� =
0, |q| = π ), and λ2 ≡ D(� = 0, q = (π, π )). We note that
λ1-dependent terms happen to cancel and not enter the equa-
tion. The ln(�/T ) factor corresponds to the standard Cooper
instability, where � is an ultraviolet cutoff and T is the
temperature. N (0) is the density of states at the Fermi level.
Additionally, the angular integrand cos2(θ/2) obtains from the
spin texture on the FS’s.

We can extract the superconducting critical temperature as

Tc = � exp

[ −8

(λ0 − λ2)N (0)

]
. (18)

By the spatial symmetry of our system, the analysis for
the p-wave order �2 between the two pockets centered at
±(k∗

x ,−k∗
y ) follows analogously, and the resulting Tc is iden-

tical. The interplay between the �1,2 orders can be addressed
within a Ginzburg-Landau free-energy formalism:

F = α(|�1|2 + |�2|2) + β(|�1|4 + |�2|4)

+ 4β ′|�1|2|�2|2 + β ′′[�2
1(�∗

2 )2 + �2
2(�∗

1 )2
]
. (19)

Whether, and how, the �1 and �2 order parameters coexist
is determined by the quartic terms. Since in our case �1

and �2 couple to different pockets, their competition effects
(which are captured by the β ′ term) are small, and �1 and �2

coexist in the ground state. From the β ′′ term, no matter how
small, the relative phase between �1,2 is fixed to be ±π/2
[46–48]. It is straightforward to check the phase of the SC gap
on each pocket to find that such a coexistence state is indeed a
px + ipy SC state. Therefore, we have shown that via a simple
pairing mechanism, a two-dimensional Dirac system precisely
realizes the second-order topological superconductivity spon-
taneously.

III. TSC2 FROM A C4T -SYMMETRIC SUPERCONDUCTOR

A. ( p + i d)-pairing symmetry

In this section we discuss another type of TSC2 phase
in both 2D and 3D characterized by a combined symmetry
of C4 spatial rotation and time reversal T . We consider the
following Hamiltonian:

H =
∫

dk
[
c†(k)

(
k2

2m
− μ

)
c(k)

+�pcT (k)(k · σ )iσ yc(−k)

+ i�dc
T (k)

(
k2
x − k2

y

)
iσ yc(−k) + H.c.

]
, (20)

which can be used in both 2D and 3D. The first term describes
an ordinary spin-degenerate Fermi surface, and the second

term corresponds to a time-reversal-invariant p-wave pairing,
commonly denoted as (p + ip)/(p − ip) order in 2D, or
the analog of the superfluid 3He-B phase in 3D [26,49].
The first two terms have time-reversal symmetry T , as well
as a particle-hole symmetry C. The third term is a d-wave
pairing term, which is odd under a C4 lattice rotation, with
a relative phase of π/2 with respect to the p-wave order.
For convenience, we take this phase difference into account
by treating the d-wave order parameter as imaginary, and we
denote the pairing symmetry of this SC state as p + id. Owing
to the imaginary d-wave pairing term, such a superconducting
state breaks both time-reversal symmetry T and C4 rotational
symmetry, but is invariant under the combined C4T operation.

Such a SC model supports chiral Majorana modes on the
hinges of a sample in 3D, or MBS on the corners of a sample
in 2D. We can understand the origin of these topological
modes in a simple picture. For example, in 3D, the p-wave
superconducting order by itself realizes topological super-
conductivity in class DIII, which supports gapless Majorana
cones on all surfaces. The addition of the bulk d-wave order
parameter gaps out these surface Majorana cones, as its rel-
ative π/2 phase with the p-wave order breaks T . Since the
d-wave order parameter changes sign under a C4 rotation in
the xy plane, the Majorana masses for the neighboring side
surfaces (parallel to the z axis), say xz and yz surfaces, are
opposite. Therefore, the hinges separating these surfaces can
be viewed as mass domain walls for the surface Majorana
fermions, and therefore they localize chiral Majorana modes.
This argument holds similarly in 2D to generate single MBS at
corners from mass domain walls of the initially gapless helical
Majorana modes on the edges. We illustrate these MBS in
Fig. 3.

For the sake of completeness, we note that there is another
set of C4 and T broken, but C4T invariant, terms allowed
in the superconducting system. Such terms are given by, for
example, ∫

dk c†(k)
(
k2
x − k2

y

)
σic(k), i = x, y, z (21)

and represent spin-nematic order that might be induced as a
Pomeranchuk instability in the spin channel [50–52]. These
terms deform the Fermi surfaces in a spin-dependent way.
However, we found that these terms do not fully gap the
system. Choosing i = x, y, or z, either the bulk becomes
gapless (i = x, y) or the edges remain gapless (i = z). There-
fore, these perturbation terms, although allowed by symmetry,
do not generate higher order topology from our normal-state
Hamiltonian.

We also note that in 2D, this Hamiltonian (20) has a
similarity with the second-order TSC Hamiltonian (3) in the
previous section. The first and the third terms in Eq. (20) de-
scribe a regular d-wave SC, which has four quasiparticle Dirac
nodes in the four diagonal directions in the BdG spectrum.
Analogous to the discussion in the previous section, to con-
struct a second-order TSC one needs to further gap out these
Dirac points using a p-wave pairing. It is straightforward to
show that in this situation the p-wave order that can further
gap out the Dirac nodes here is the T -invariant p + ip/p − ip

type with an overall phase difference π/2 with the d-wave
order. Such a superconductor is equivalent to the following
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FIG. 3. (a) The normal-state band structure of a cuprate. With
the d-wave order nodes are generated, as indicated by the four
Dirac cones along the nodal directions. The phase of the d-wave
order parameter is indicated by the sign structure in orange. In the
presence of p-wave order, the Dirac cones in the nodal directions
are coupled, as shown in blue, which results in a completely gapped
superconducting order. (b) A TSC2 in 2D with gapped edges. The
Majorana gaps have opposite signs on neighboring edges such that
there is a MBS residing at the corner. (c) A TSC2 in 3D with gapped
surfaces, and gapless Majorana modes along the hinges. The colors
red and green indicate that the neighboring hinges have different
chiralities.

lattice-regularized BdG Hamiltonian

H = [(2 − cos kx − cos ky )/m − μ]σ0τz

− �p(sin kxσzτx + sin kyσ0τy )

+ �d (cos kx − cos ky )σyτx. (22)

In this basis, the time-reversal operator is given by T = iσyK,

and the particle-hole operator is given by C = iσxτyK . It has
a similar mathematical structure to what was proposed for a
second-order topological insulator in a recent work [8]. Here,
we show that it also has a natural interpretation as a TSC2

model.

B. Topological invariant of the C4T -symmetric superconductor

We first focus on the 3D case. In the presence of time-
reversal symmetry, topological superconductors in class DIII
have a Z classification in 3D. This integer topological invari-
ant can be computed from the bulk properties via a winding
number ν [25]. We quickly review the key derivation of the
winding number here [25,39].

The combination of particle-hole symmetry C and T gives
rise to a chiral symmetry χ , which ensures that the BdG
Hamiltonian can be unitarily transformed into a block off-
diagonal form. Let us take a p-wave topological supercon-
ductor as an example:

H =
∫

dk �
†
k

[
εk �p(k · σ )(iσ y )

�p(−iσ y )(k · σ ) −εk

]
�k,

(23)

where εk = k2/2m − μ and �k = (ck, c
†
−k )T . Owing to the

chiral symmetry χ , we can rewrite the Hamiltonian as

H = 1

2

∫
dk �̃

†
k

[
Qk

Q
†
k

]
�̃k, (24)

where

�̃k ≡ (ck + σyc
†
−k, ck − σyc

†
−k )T ,

Qk ≡ εk − i�pk · σ. (25)

In general, Qk is an N × N matrix, and can be decom-
posed via a singular value decomposition as Qk = U

†
kDkVk,

where Uk and Vk are unitary. Dk is a diagonal matrix that
consists of the positive eigenvalues of H . We can adiabatically
tune the matrix Dk to the identity matrix I such that Qk

is deformed to a unitary matrix qk ≡ U
†
kVk ∈ U (N ). The

topological invariant is the integer winding number ν of qk
defined as

ν = 1

24π2

∫
dk εijk Tr[q†

k∂iqkq
†
k∂jqkq

†
k∂kqk], (26)

which captures the homotopy class π3(U (N )) = Z.

By construction, it can be proven that this integer topo-
logical invariant corresponds to the number of stable, gapless
Majorana cones on the surface of a class DIII TSC. Moreover,
for a weak-coupling superconductor in which the SC gap is
only significant near the Fermi surface, this winding number
can be conveniently expressed in terms of the low-energy
properties at the Fermi surface. Specifically, it was obtained
in Ref. [39] that

ν = 1

2

∑
i

sgn(�i )Ci, (27)

where i labels each non-spin-degenerate, T -invariant FS in
the normal state, �i is the sign of the SC gap on the ith FS
(time-reversal symmetry ensures all SC gaps can be made
real), and the Chern number Ci is the (quantized) net flux of
the Berry phase gauge field piercing each FS. For a single-
band, spin- 1

2 system, the requirement for a TSC is simply that
the signs of the superconducting pairing on the two spin-split
FS’s are opposite.

Since our construction of a 3D TSC2 here is closely
tied to class DIII TSC, the question now is whether it also
has a Z classification in 3D. For our C4T -symmetric BdG
Hamiltonian (20), since T is broken, there is no conventional
chiral symmetry, and one generally cannot transform its BdG
Hamiltonian to an off-diagonal form. However, due to the
C4T symmetry, all the T -breaking terms in the Hamiltonian
are also odd under C4 rotation. After a unitary transformation,
it is then possible to rearrange the Hamiltonian such that the
C4- and T -symmetric terms of the Hamiltonian are in the
off-diagonal block, while the C4-odd part is in the diagonal
block. As an example, for Eq. (20), we obtain

H = 1

2

∫
dk �̃

†
k

[
−�d (k2

x − k2
y ) Qk

Q
†
k �d (k2

x − k2
y )

]
�̃k. (28)

Furthermore, the T -invariant p-wave part of the Hamiltonian
is already fully gapped in the bulk, which ensures the BDG
Hamiltonian is fully gapped for a generic d-wave order.
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FIG. 4. Topological phase transitions for (a) T -invariant TSC
and (b) C4T -invariant second-order TSC. In the trivial phase of a
T -invariant TSC, the winding number is ν = 0 as the SC gaps on
the two FS’s have the same sign. A topological transition occurs
when a pair of nodal lines are created on one of the FS’s, and the
SC gap changes from positive to negative on this FS as the nodal
lines nucleate, sweep over the FS, and eventually annihilate. The
TSC enters the topological phase with ν = 1, after the nodal lines
are annihilated. In the presence of C4T , however, a d-wave order
can gap most out the nodal lines except at eight Weyl points. When
the Weyl points are annihilated, a second-rder TSC is formed.

Just like for the class DIII TSC in 3D, the fully gapped,
chiral symmetric part of the Hamiltonian Qk can be charac-
terized by π3(U (N )) = Z, i.e., the winding number defined
in Eq. (26). Specifically, one can extract just the block off-
diagonal (T -symmetric) part of the Hamiltonian, which is
fully gapped on its own, and calculate its winding number.
However, this procedure raises the question of whether the
winding number defined for only a part of the Hamiltonian
actually has any physical meaning. To this end, one needs
to verify whether it is tied to any topological properties. For
example, one can check if it is necessary to close a gap in the
bulk spectrum to generate a change in ν, and one should de-
termine the relation between ν and any boundary/hinge modes
that are stable against symmetry-allowed perturbations. We
will now illustrate both of these properties.

To gain some intuition, we first show that in a two-band,
weak-coupling superconductor, the change from ν = 1 to 0 in
the presence of the C4T symmetry, necessarily involves a bulk
gap closing via Weyl points in the BdG quasiparticle spectrum.
Reference [53] showed that for a T -invariant weak-coupling
superconductor, generally in the presence of discrete lattice
symmetries, the transition from ν = 1 to 0 is induced by the
creation and annihilation of pairs of nodal lines on one of the
spin-split FS’s. We illustrate this process in Fig. 4(a). We have
used ellipsoidal FS’s to illustrate the lack of full rotational
symmetry, but the scenario applies to generic FS’s in lattice
systems. From the formula in Eq. (27), the leftmost config-
uration in Fig. 4(a) is a trivial SC phase and the rightmost
configuration is a TSC phase. There is an intermediate gapless
state separating these two gapped phases where nodal lines
separate “puddles” of positive and negative superconducting
gap function on a FS.

Now, we can evaluate if this critical transition region is
destroyed when we break T , but preserve C4T . For our TSC2

model, the presence of the imaginary d-wave gap generates
this symmetry breaking. In the presence of this term we find

that most of the pieces of the nodal lines in the T -symmetric
sector are gapped. However, the d-wave gap here necessarily
has nodes that are related by C4 rotations. Where the d-wave
nodes intersect the nodal lines there will be Weyl nodes in the
BdG quasiparticle spectrum [54]. While, in general, the nodal
lines in the T -invariant limit may have more complicated
geometry, it is straightforward to see that the Weyl-nodal
intermediate state is unavoidable through this transition. As
Weyl points cannot be gapped on their own, and they are
related by a C4 rotation, such a gapless intermediate state is
stable. Therefore, the transition between a C4T -symmetric
second-order TSC and a trivial SC occurs via an interesting
Weyl-nodal SC phase and is captured by the changing of the
winding number ν of just the gapped, T -symmetric part of the
Hamiltonian.

Interestingly, the same argument does not hold for two
copies of TSC2, i.e., when ν = 2. The issue is that with a
four-band, i.e., four (spin-split) FS model, it is possible to have
fully gapped d-wave order [55] such that the Weyl nodes will
not be created. Labeling the two copies of the TSC2 phase
with μz = ±1, such a pairing term can be written as

Hd = i

∫
dk cT (k)

[(
k2
x − k2

y

)
μz + (kxky )μx

]
iσ yc(−k)

+ H.c., (29)

which is a noncommuting combination between dx2−y2 -wave
and dxy-wave order. This imaginary d-wave pairing term
completely gaps out the Fermi surface, including the would-be
nodal lines in the T -symmetric sector during a transition from
ν = 2 to 0. Thus, this transition can occur without a gap
closing, hence ν = 2 and 0 belong to the same phase. This
result indicates that the topological invariant is a Z2 quantity
given by P ≡ (−1)ν .

The identification of P ≡ (−1)ν as a bulk topological
invariant can also be established via the stability of the hinge
modes. As we discussed, for the T -invariant system the
winding number ν ∈ Z corresponds to the number of stable,
surface Majorana cones. When the imaginary d-wave order
parameter is turned on it gaps out the Majorana cones on sur-
faces parallel to the z axis, and induces chiral Majorana modes
at the hinges where these surfaces intersect. The direction of
propagation of these hinge modes are determined by the sign
of the d-wave gap, but importantly, this sign does not enter the
calculation of the winding number ν. Since, for even values of
ν, there are an even number of hinge modes, one always tunes
the signs of the multiband imaginary d-wave order parameters
such that the hinge modes form counterpropagating pairs. It
is then possible to gap out these counterpropagating modes
without changing ν. In the case of ν = 2, the dxy order
in Eq. (29) can couple the counterpropagating hinge modes
and gap them without breaking the C4T symmetry. By the
definition of our winding number ν, the d-wave order does
not affect it, yet it can gap the hinge states, hence, we do
not expect even values of ν to be stable. One can also argue
that one can glue 2D chiral px + ipy layers to the surfaces
in a C4T -preserving pattern which will flip the propagation
directions of the hinge modes, but not destablize them. From
this picture, having two copies, i.e., ν = 2, will not be stable
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since the hinge modes on one copy can be flipped and coupled
to gap the original copy without breaking the symmetry.

For a weak-coupling SC, the protected Z2 topological
invariant P = (−1)ν is given by [see Eq. (27)]

P =
∏

i

[i sgn(Re�i )]
Ci =

∏
i

[sgn(Re�i )]
mi , (30)

where mi is the number of time-reversal-invariant momentum
points enclosed by the ith FS, Ci is the Chern number of
the ith FS, and Re�i is understood as the T -invariant part
of the pairing gap on the FS. In the second step we have
used the properties [39] that (i) (−1)Ci = (−1)mi , and (ii)
following the Nielsen-Ninomiya theorem, the total Chern
number of all FS’s vanishes,

∑
i Ci = 0. From Eq. (30) it

is straightforward to verify that for a single-orbital spin- 1
2

system, our p + id state indeed is a TSC2.
The identification of the topological invariant for the 2D

case is also possible. In the T -symmetric class DIII TSC, the
topological invariant is already a Z2 number, which indicates
the presence/absence of stable helical Majorana edge modes.
The breaking of T with a d-wave order that preserves C4T
will generically gap the helical Majorana edge modes and
generate MBS at the four corners. Thus, the topological in-
variant is the same as the Z2 number for just the T -symmetric
sector. Via a dimensional reduction procedure, it was found
in Ref. [39] that in the weak-pairing limit, the Z2 invariant
can be defined as the parity of the winding number for the
Hamiltonian H(kx, ky, θ ) that smoothly interpolates between
the 2D SC in consideration (at θ = 0) and a trivial SC (at
θ = π ). For a 2D T -symmetric weak-coupling SC, the topo-
logical invariant is given by

∏
i[sgn(�i )]mi , where i,�i , mi

are defined in the same way as before. Therefore, for our TSC2

its topological invariant is

P2D =
∏

i

[sgn(Re�i )]
mi , (31)

where Re�i is understood as the TR-invariant part of the
pairing gap on the FS.

In summary we have found that the topological invariants
in for both the 2D and 3D C4T -symmetric TSC2 phases
can be determined from just the T -invariant sector. This is
similar to the chiral hinge insulator with C4T symmetry
shown in Ref. [8] where the magnetoelectric θ angle [56]
was shown to still characterize the topological phase even
when T is broken. Further, by analogy, our results on the 2D
TSC2 topological invariant suggest that 2D C4T quadrupole
insulators are described by the same topological invariant as
the T -invariant quantum spin Hall insulator.

C. Realization of p + i d pairing in a metallic system

To realize (p + id)-wave SC order, we now explicitly
construct a 2D TSC2 phase with p- and d-wave pairing
from an instability of a metallic normal state with electronic
interactions. In the literature the pairing interactions for the T -
invariant p-wave SC [28–31,33,34] and d-wave SC [35,57,58]
have been extensively studied. The strategy here is to combine
two types of interactions that respectively favor p-wave and
d-wave order and show that by tuning the interactions to

comparable strengths the system naturally develops a TSC2

state with (p + id)-pairing symmetry.
Following Refs. [31,53], a p-wave instability is

induced by fluctuations of inversion-breaking order.
To this end, we consider the following interaction
mediated by parity fluctuations: Hparity(k, k′, p, p′) =
U

parity
αβ,γ δ (k, k′, p, p′)c†α (k)c†γ (p)cβ (k′)cδ (p′) where

U
parity
αβ,γ δ (k, k′, p, p′)

= V parity

[(
k̂ + k̂′

2

)
· σαβ

][(
p̂ + p̂′

2

)
· σγ δ

]
, (32)

where α, β are (pseudo)spin indices. V parity is the correlation
function of the parity fluctuations; for our purposes we simply
set it to a constant. It is helpful to introduce the helicity
operator χ = k̂ · σ = ±1, and it is straightforward to see
that the scattering of electrons via this interaction preserves
helicity. It is therefore convenient to introduce pairing gaps
�±(k) on FS’s with a given helicity,

H± =
∫

dk �±(k)cT (k)iσyP±c(−k) + H.c., (33)

where P± ≡ (1 ± k̂ · σ )/2 are helicity projection operators.
For the interaction term Uαβ,γ δ , the superconducting gaps
�± decouple in the linearized gap equations, though when
other interactions are included �± will be coupled in general.
Interestingly, if �+ = −�− is enforced due to their coupling,
then the resulting order corresponds to a p-wave order with
�p = |�±|. Indeed, we can write the p-wave pairing gap in
terms of �± as

Hp =
∫

dk �p(k)cT (k)iσy

[
P+ − P−

]
c(−k) + H.c.

=
∫

dk �p(k)cT (k)iσy (k̂ · σ )c(−k) + H.c. (34)

To further couple �±, we consider interactions that are me-
diated by antiferromagnetic fluctuations peaked at momentum
transfer Q = (π, π ) with

U af
αβ,γ δ (k, k′, p, p′) = V af

∑
i=x,y,z

σ i
αβχ (k, k′)σ i

γ δ, (35)

where the spin-spin correlation function is given by

χ (k, k′) = 1

(k − k′ − Q)2 + ξ−2
. (36)

This interaction is repulsive in nature [35], and for a large
enough ξ favors �+(k) = −�−(k + Q). If U af is treated
as a small perturbation, together with the dominant parity
fluctuations U parity, p-wave order will be favored. On the other
hand, if U af is dominant over U parity, it is well known that
antiferromagnetic fluctuations by themselves favor d-wave
pairing. In terms of the helical pairing fields �±, a d-wave
pairing order satisfies

�d (k) = �+(k) = �−(k) (37)

and both transforming with a sign change under a C4 rotation.
Therefore, depending on the relative amplitude of V af and
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V parity, either a p-wave order or a d-wave order is induced
as a leading instability. We verify these claims in Appendix B.

When the p- and d-wave instabilities are comparable, then
at low temperatures the two orders can coexist. Again, the
coexisting ground state can be determined by analyzing the
Ginzburg-Landau (GL) free energy, all the symmetry-allowed
terms of which are given by

F = α1|�p|2 + α2|�d |2 + β1|�p|4 + β2|�d |4

+ 4β̄|�p|2|�d |2 + β̃
(
�2

p�∗2
d + �2

d�
∗2
p

)
, (38)

where we have split the momentum-dependent gaps
�p,d (k) ≡ �p,d (θ ) into a constant part and a form-factor
part, i.e., �p,d (θ ) = �p,d × fp,d (θ ). The form factors fp,d (θ )
enter the evaluation of the coefficients of the free energy.

As discussed in the previous section, β̃ fixes the relative
phase of �d and �p to be ±π/2 [46–48], if they coexist. As
can be verified by a straightforward minimization of the free
energy, the two order parameters coexist if [46,47]

β1β2 > (2β̄ − β̃ )2. (39)

The values of the β’s can be obtained by integrating out the
fermions, and are given by the product of fermionic Green
functions and the form factors fs,d (θ ). [31,53,59] Explicitly
evaluating the β’s by integrating over the fermionic Green
functions, we obtain that for our circular FS,

β1 = β

∫
dθ

2π
f 4

p (θ ), β2 = β

∫
dθ

2π
f 4

d (θ ),

β̄ = β̃ = β

∫
dθ

2π
f 2

p (θ )f 2
d (θ ), (40)

where

β = N (0)T

2

∑
m

∫ ∞

−∞

dε(
ω2

m + ε2
)2 = 5ζ (3)

8π2T 2
N (0).

Here, ζ (x) is the Riemann zeta function. By the Cauchy-
Schwarz inequality one can prove that generally

β1β2 > β̄2 = β̃2, (41)

which we also verified numerically. This is precisely the
coexistence condition for �p and �d . Combined with the
result on their relative phase, we have shown that the ground
state has a T -breaking (p + id)-pairing symmetry, and thus
spontaneously generates a TSC2 phase protected by C4T
symmetry.

D. Realization of p + i d pairing in a superconducting
heterostructure

Alternatively, a (p + id)-pairing state can also be induced
extrinsically by Josephson coupling a p-wave SC and a d-
wave SC. In Fig. 5(a) we illustrate such a setup of supercon-
ducting heterostructure, with, e.g., a cuprate d-wave SC on
top, and a p-wave SC on the bottom. Due to the conflicting
pairing symmetries [60,61], the Josephson coupling between
the top and bottom layers can only be achieved by a quartic
term ∼�2

p�∗2
d + H.c. Using the same argument for Eq. (38),

the two order parameters �p and �d differ by a phase of
π/2. By proximity effect, the cuprate layer develops (p +
id)-wave order. Since the cuprate system is C4 symmetric

MBS

p-wave SC

Cuprate

π-
ju

nc
tio

n

(a)

MBS

CuprateFeTe0.55 Se0.45

(b)

FeTe0.55 Se0.45FeTeTT 0.55 Se0.45

FIG. 5. Two experimental setups for a proximity-induced TSC2

phase. (a) A cuprate superconductor with d-wave symmetry is placed
on top of a T -invariant p-wave superconductor. The Josephson
coupling induces a quartic term in the free energy, forcing the two
order parameters to differ by a ±π/2 phase. Due to the C4 symmetry
of the cuprate system, it develops a C4T -invariant (p + id)-wave
order with MBS’s at the corners. (b) A cuprate superconductor is
sandwiched between two iron-based superconductors FeTe0.55Se0.45.
The cuprate layer, together with its interfaces with FeTe0.55Se0.45

layers, realizes a 2D TSC2, with four MBS’s at the corners.

on its own, the bottom layer now realizes a C4T -symmetric
TSC2 and can host corner Majorana modes, as we illustrate
in Fig. 5(a). A similar setup was recently proposed using a
heterostructure of high-Tc SC and quantum spin Hall insulator
[21,62]; there the authors found a related, proximity-induced
superconducting phase with a pair of Majorana modes at each
corner.

For a material realization of the p-wave SC layer, re-
cent theoretical and experimental studies have identified
CuxBi2Se3 [28,63] and the half-Heusler compound YPtBi
[34,64] as promising candidates for T -symmetric p-wave
pairing. However, further investigations are needed to deter-
mine whether these 3D materials remain p-wave supercon-
ductors in a thin-film geometry.

Alternatively, we propose that one can “mimic” a 2D
p-wave SC using a superconducting heterostructure. Very
recently it has been experimentally identified [36–38] that
FeTe0.55Se0.45 is a Fu-Kane–type [65] topological supercon-
ductor with surface Dirac cones in the normal state at a rather
high SC transition temperature Tc = 14.5 K. We note that,
since the two Dirac cones on the opposite surfaces are of
opposite helicity, the pairing gaps on them can be regarded as
our �± in Eq. (33). With a π -Josephson junction connecting
the two opposite surfaces, the quasi-2D system effectively
realizes a 2D p-wave SC. Indeed, with opposite SC gaps on
the two surfaces, the SC order of the whole system is odd
under spatial inversion. To generate a TSC2 phase, we propose
a setup based on this idea illustrated in Fig. 5(b). A cuprate SC
thin film is sandwiched between two FeTe0.55Se0.45 supercon-
ductors that are connected by a π junction. For similar reasons
as above, the cuprate layer together with its interfaces with
the FeTe0.55Se0.45 layers is in a TSC2 phase that hosts four
corner Majorana modes. A particularly appealing feature of
this proposal is that it can potentially realize a high-Tc TSC2.

165144-10



WEAK-PAIRING HIGHER ORDER TOPOLOGICAL … PHYSICAL REVIEW B 98, 165144 (2018)

IV. CONCLUSION

In this work, we have studied 2D and 3D second-order
topological superconductors, which host Majorana bound
states at the corners in the 2D system, and gapless, chiral Ma-
jorana modes at the hinges of a 3D system. The purpose of this
work was twofold: to understand the topological properties
TSC2 such as their symmetry requirements and topological
invariants, and to investigate how these exotic superconduct-
ing states may be realized in weak-pairing scenarios.

We have identified two routes towards TSC2 phases The
first route is through inducing px + ipy order on a 2D Dirac
semimetal with four mirror-symmetric Dirac nodes. Such a
band structure can be realized either in a magnetic, or spin-
polarized two-band electronic system or in cold-atom systems
[27]. The intrinsic particle-hole symmetry quantizes the Z2

topological invariant defined in Eq. (8); with mirror symmetry,
the invariant can be expressed through nested Wilson loops.
Furthermore, we have shown that in the presence of a chem-
ical potential μ, a finite-range, attractive interaction naturally
induces such a (px + ipy)-wave pairing in the doped Dirac
point normal state.

For our second system we considered a somewhat more
exotic C4T -symmetric p + id order, but in this scenario the
requirement on the normal state is much less restrictive, i.e.,
just a featureless, spin-degenerate Fermi surface. Remarkably,
we have shown that the topological invariant of this class of
TSC2 is Z2 in both 2D and 3D, and were able to express the
topological invariants in simple formulas involving just the
low-energy properties of the system. We have found that a
combination of interactions favoring p- and d-wave orders
naturally induces the (p + id)-pairing symmetry to generate
the TSC2 phase. Alternatively, we proposed that the (p + id)-
pairing order may also be induced by proximity effect in a
superconducting heterostructure, which can even potentially
realize a high-Tc TSC2 system.

One interesting extension of this work is whether TSC3’s,
which are 3D topological superconductors with eight vertex
modes, can be realized. Building from a Majorana plaquette
model similar to an octupole version of Eq. (1), it is not
difficult to construct a BdG Hamiltonian for TSC3 for a four-
band normal state. However, we did not find an analogous
identification like the TSC2 case where the BdG Hamiltionian
describes a superconducting order that develops from a gap-
less band structure. Thus, we do not expect that TSC3’s can
be spontaneously realized by simply generalizing the analysis
in Sec. II. We leave the issue of realizing TSC3 to future
work.
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APPENDIX A: ABSENCE OF A WANNIER
TRANSITION IN H′(k, α)

In this Appendix we show that H′(k, α), defined as a
smooth interpolation between Eq. (3) (at α = 0) and Eq. (12)
(at α = 1) does not go through a Wannier transition, i.e.,
gap closing for the edge Hamiltonian as a function of α.
From mirror symmetry this could only occur through a band
inversion of the edge Hamiltonian at high-symmetry points,
say, kx,y = 0 or π . To confirm this does not happen, we need
to show that the 1D subsystem h(ky, α) ≡ H′(kx = 0, ky, α)
at kx = 0, when treated as an effective 1D superconductor
with boundaries in the y direction, can never host bound-
ary zero modes throughout this deforming process. This 1D
Hamiltonian h(ky, α) can again be split into a normal-state
part and a pairing-gap part. Since the Dirac points are always
in the four quadrants, the normal-state spectrum of h(ky, α)

with eigenvalues e±(ky, α) = ±
√

f 2
1 (0, ky, α) + f 2

2 (0, ky, α)
is gapped. The two bands have opposite spin texture, and
importantly, our same-spin, p-wave pairing for this subsystem
only pairs within each of the two bands. Then, the subsystem,
throughout this process, is just two copies of decoupled p-
wave SC. In the Nambu space of each given band, the effective
Hamiltonian is

h±(ky, α) = ±
√

f 2
1 (0, ky, α) + f 2

2 (0, ky, α)sz

+ sgn(ky )
√

g2
1 (0, ky, α) + g2

2 (0, ky, α)sx,

(A1)

where sz,x are Pauli matrices in the Nambu subspace. [Note
that sgn(ky ) is enforced by Fermi statistics, and for odd
g1,2, the pairing gap is a smooth function of ky .] From the
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FIG. 6. The form factors of the superconducting pairing func-
tions for the two leading instabilities. We find the two leading
instabilities are p-wave (red) and d-wave order. For p-wave order,
the two red curves are for the gap functions �±(θ ) separately, and we
can see the relative sign change that is characteristic of p-wave order.
The d-wave pairing has the characteristic four-node structure at
θ = ±π/4, ±3π/4. To ensure that the Fermi surface is large enough
to allow for a Q momentum transfer, we chose kF = 5π/(6a0). We
have set the antiferromagnetic correlation length ξ = 1, and we have
verified that choosing other values does not change our results.
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well-known results in early works [1,66], it is clear that both
h± are in the trivial phase because the normal-state spectrum
does not host a Fermi surface (“strong-pairing phase” in the
terminology of Ref. [66]). Thus, h±(ky ) do not host boundary
zero modes. Since h(ky, α) decouples into h±(ky ), it does not
host boundary zero modes either. The same arguments can
be applied to other high-symmetry subsystems at kx = π and
ky = 0, π . This way we have proven that Eq. (12) with μ = 0
is topologically equivalent with Eq. (3). We can now turn on
a nonzero chemical potential μ term. For sufficiently small μ

that is smaller than the bandwidth, the topology of h± does
not change, and there is no gap closing either at the edge or in
the bulk. With no gap closing, the particle-hole symmetry is
sufficient to protect the corner MBS’s.

APPENDIX B: LINEAR GAP EQUATION FOR p-WAVE
AND d-WAVE PAIRING

In this Appendix we verify that the combined interactions
given by Eqs. (32) and (35) lead to instabilities towards p-
and d-wave order parameters. We consider a circular FS
parametrized by an angle θ , where

k = (kF cos θ, kF sin θ ), (B1)

where kF is the Fermi momentum. After summing over the
spin indices for parity and antiferromagnetic fluctuations, and
within the BCS approximation, the linear gap equations for
�± parametrized by the FS angle θ are given by

λc�+(θ ) =
∫

dθ ′
[
V parity cos2

(
θ − θ ′

2

)
�+(θ ′) − V afχ (θ, θ ′)

(
3 − cos(θ − θ ′)

2
�+(θ ′) + 3 + cos(θ − θ ′)

2
�−(θ ′)

)]
,

λc�−(θ ) =
∫

dθ ′
[
V parity cos2

(
θ − θ ′

2

)
�−(θ ′) − V afχ (θ, θ ′)

(
3 − cos(θ − θ ′)

2
�−(θ ′) + 3 + cos(θ − θ ′)

2
�+(θ ′)

)]
, (B2)

where λc = 1/[N (0) log �
Tc

], N (0) is the density of states at
the Fermi level, and χ (θ, θ ′) is χ (k, k′) in Eq. (36) projected
to the Fermi surface. The factors cos2[(θ − θ ′)/2] and [3 −
cos(θ ± θ ′)]/2 come from the product of projection operators
P±(k) and the spin dependence of U parity and U af .

By Fermi statistics, we explicitly only keep solutions that
satisfy �±(θ ) = �±(θ + π ). (Note that even the odd-parity
p-wave order satisfies this.) This set of linear integral equa-
tions can be solved numerically as an eigenvalue problem
in the vector space of [�+(θ ),�−(θ )]. From the eigenvalue

λc one can obtain the mean-field critical temperature Tc of
the pairing channels. The eigenfunctions for �±(k) with the
largest λc, and thus highest Tc’s, correspond to channels of
strongest-pairing instability. Indeed, as we expected from the
heuristic arguments above, with this combination of interac-
tions, the two leading pairing instabilities are towards d wave
and p wave (as is confirmed in Fig. 6 in which we plot the
two eigenfunctions (pairing form factors) that had the largest
eigenvalues). By tuning V parity and V af , either p wave or d

wave is dominant. For our model, when V af = 1.234V parity,
the two instabilities are degenerate.

[1] A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
[2] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[3] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[4] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[5] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[6] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Science

357, 61 (2017).
[7] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Phys. Rev.

B 96, 245115 (2017).
[8] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S.

Parkin, B. A. Bernevig, and T. Neupert, Sci. Adv. 4, 0346
(2018).

[9] Z. Song, Z. Fang, and C. Fang, Phys. Rev. Lett. 119, 246402
(2017).

[10] J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W.
Brouwer, Phys. Rev. Lett. 119, 246401 (2017).

[11] L. Trifunovic and P. Brouwer, arXiv:1805.02598.
[12] M. Serra-Garcia, V. Peri, R. Süsstrunk, O. R. Bilal, T. Larsen,

L. G. Villanueva, and S. D. Huber, Nature (London) 555, 342
(2018).

[13] C. W. Peterson, W. A. Benalcazar, T. L. Hughes, and G. Bahl,
Nature (London) 555, 346 (2018).

[14] S. Imhof, C. Berger, F. Bayer, J. Brehm, L. Molenkamp, T.
Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert
et al., Nat. Phys. 14, 925 (2018).

[15] L. Trifunovic and P. Brouwer, Phys. Rev. B 96, 195109 (2017).
[16] E. Khalaf, Phys. Rev. B 97, 205136 (2018).
[17] Y. Peng, Y. Bao, and F. von Oppen, Phys. Rev. B 95, 235143

(2017).
[18] Y. Wang and R. M. Nandkishore, Phys. Rev. B 95, 060506

(2017).
[19] H. Shapourian, Y. Wang, and S. Ryu, Phys. Rev. B 97, 094508

(2018).
[20] M. Geier, L. Trifunovic, M. Hoskam, and P. W. Brouwer,

Phys. Rev. B 97, 205135 (2018).
[21] Z. Yan, F. Song, and Z. Wang, Phys. Rev. Lett. 121, 096803

(2018).
[22] J. C. Y. Teo and T. L. Hughes, Phys. Rev. Lett. 111, 047006

(2013).
[23] R.-J. Slager, L. Rademaker, J. Zaanen, and L. Balents,

Phys. Rev. B 92, 085126 (2015).

165144-12

https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246401
http://arxiv.org/abs/arXiv:1805.02598
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/s41567-018-0246-1
https://doi.org/10.1038/s41567-018-0246-1
https://doi.org/10.1038/s41567-018-0246-1
https://doi.org/10.1038/s41567-018-0246-1
https://doi.org/10.1103/PhysRevB.96.195109
https://doi.org/10.1103/PhysRevB.96.195109
https://doi.org/10.1103/PhysRevB.96.195109
https://doi.org/10.1103/PhysRevB.96.195109
https://doi.org/10.1103/PhysRevB.97.205136
https://doi.org/10.1103/PhysRevB.97.205136
https://doi.org/10.1103/PhysRevB.97.205136
https://doi.org/10.1103/PhysRevB.97.205136
https://doi.org/10.1103/PhysRevB.95.235143
https://doi.org/10.1103/PhysRevB.95.235143
https://doi.org/10.1103/PhysRevB.95.235143
https://doi.org/10.1103/PhysRevB.95.235143
https://doi.org/10.1103/PhysRevB.95.060506
https://doi.org/10.1103/PhysRevB.95.060506
https://doi.org/10.1103/PhysRevB.95.060506
https://doi.org/10.1103/PhysRevB.95.060506
https://doi.org/10.1103/PhysRevB.97.094508
https://doi.org/10.1103/PhysRevB.97.094508
https://doi.org/10.1103/PhysRevB.97.094508
https://doi.org/10.1103/PhysRevB.97.094508
https://doi.org/10.1103/PhysRevB.97.205135
https://doi.org/10.1103/PhysRevB.97.205135
https://doi.org/10.1103/PhysRevB.97.205135
https://doi.org/10.1103/PhysRevB.97.205135
https://doi.org/10.1103/PhysRevLett.121.096803
https://doi.org/10.1103/PhysRevLett.121.096803
https://doi.org/10.1103/PhysRevLett.121.096803
https://doi.org/10.1103/PhysRevLett.121.096803
https://doi.org/10.1103/PhysRevLett.111.047006
https://doi.org/10.1103/PhysRevLett.111.047006
https://doi.org/10.1103/PhysRevLett.111.047006
https://doi.org/10.1103/PhysRevLett.111.047006
https://doi.org/10.1103/PhysRevB.92.085126
https://doi.org/10.1103/PhysRevB.92.085126
https://doi.org/10.1103/PhysRevB.92.085126
https://doi.org/10.1103/PhysRevB.92.085126


WEAK-PAIRING HIGHER ORDER TOPOLOGICAL … PHYSICAL REVIEW B 98, 165144 (2018)

[24] W. A. Benalcazar, J. C. Y. Teo, and T. L. Hughes, Phys. Rev. B
89, 224503 (2014).

[25] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,
Phys. Rev. B 78, 195125 (2008).

[26] X.-L. Qi, T. L. Hughes, S. Raghu, and S.-C. Zhang, Phys. Rev.
Lett. 102, 187001 (2009).

[27] F. Grusdt, T. Li, I. Bloch, and E. Demler, Phys. Rev. A 95,
063617 (2017).

[28] L. Fu and E. Berg, Phys. Rev. Lett. 105, 097001 (2010).
[29] P. M. R. Brydon, S. Das Sarma, H.-Y. Hui, and J. D. Sau,

Phys. Rev. B 90, 184512 (2014).
[30] V. Kozii and L. Fu, Phys. Rev. Lett. 115, 207002 (2015).
[31] Y. Wang, G. Y. Cho, T. L. Hughes, and E. Fradkin, Phys. Rev.

B 93, 134512 (2016).
[32] P. M. R. Brydon, L. Wang, M. Weinert, and D. F. Agterberg,

Phys. Rev. Lett. 116, 177001 (2016).
[33] J. Ruhman, V. Kozii, and L. Fu, Phys. Rev. Lett. 118, 227001

(2017).
[34] L. Savary, J. Ruhman, J. W. F. Venderbos, L. Fu, and P. A. Lee,

Phys. Rev. B 96, 214514 (2017).
[35] A. V. Chubukov, D. Pines, and J. Schmalian, A spin fluctua-

tion model for d-wave superconductivity, in Superconductivity:
Conventional and Unconventional Superconductors, edited by
K. H. Bennemann and J. B. Ketterson (Springer, Berlin, 2008),
pp. 1349–1413.

[36] P. Zhang, K. Yaji, T. Hashimoto, Y. Ota, T. Kondo, K.
Okazaki, Z. Wang, J. Wen, G. D. Gu, H. Ding, and S. Shin,
Science 360, 182 (2018).

[37] D. Wang, L. Kong, P. Fan, H. Chen, S. Zhu, W. Liu, L. Cao, Y.
Sun, S. Du, J. Schneeloch, R. Zhong, G. Gu, L. Fu, H. Ding,
and H.-J. Gao, Science 362, 333 (2018).

[38] P. Zhang, Z. Wang, X. Wu, K. Yaji, Y. Ishida, Y.
Kohama, G. Dai, Y. Sun, C. Bareille, K. Kuroda, T. Kondo, K.
Okazaki, K. Kindo, X. Wang, C. Jin, J. Hu, R. Thomale, K.
Sumida, S. Wu, K. Miyamoto, T. Okuda, H. Ding, G. D. Gu, T.
Tamegai, T. Kawakami, M. Sato, and S. Shin, Nat. Phys. (2018),
doi:10.1038/s41567-018-0280-z.

[39] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 81,
134508 (2010).

[40] L. Fidkowski, T. S. Jackson, and I. Klich, Phys. Rev. Lett. 107,
036601 (2011).

[41] W. Kohn and J. M. Luttinger, Phys. Rev. Lett. 15, 524 (1965).

[42] A. V. Chubukov and S. A. Kivelson, Phys. Rev. B 96, 174514
(2017).

[43] S. Lederer, Y. Schattner, E. Berg, and S. A. Kivelson, Phys. Rev.
Lett. 114, 097001 (2015).

[44] D.-H. Lee, Chinese Physics B 24, 117405 (2015).
[45] Z.-X. Li, F. Wang, H. Yao, and D.-H. Lee, Science Bulletin 61,

925 (2016).
[46] S. Maiti and A. V. Chubukov, Phys. Rev. B 87, 144511

(2013).
[47] Y. Wang and A. Chubukov, Phys. Rev. B 90, 035149 (2014).
[48] W.-C. Lee, S.-C. Zhang, and C. Wu, Phys. Rev. Lett. 102,

217002 (2009).
[49] A. P. Schnyder, P. M. R. Brydon, D. Manske, and C. Timm,

Phys. Rev. B 82, 184508 (2010).
[50] C. Wu, K. Sun, E. Fradkin, and S.-C. Zhang, Phys. Rev. B 75,

115103 (2007).
[51] M. H. Fischer and E.-A. Kim, Phys. Rev. B 84, 144502

(2011).
[52] R. Soto-Garrido and E. Fradkin, Phys. Rev. B 89, 165126

(2014).
[53] Y. Wang and L. Fu, Phys. Rev. Lett. 119, 187003 (2017).
[54] V. Kozii, J. W. F. Venderbos, and L. Fu, Sci. Adv. 2, e1601835

(2016).
[55] A. V. Chubukov, O. Vafek, and R. M. Fernandes, Phys. Rev. B

94, 174518 (2016).
[56] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 78,

195424 (2008).
[57] P. A. Lee, N. Nagaosa, T.-K. Ng, and X.-G. Wen, Phys. Rev. B

57, 6003 (1998).
[58] E. Demler, W. Hanke, and S.-C. Zhang, Rev. Mod. Phys. 76,

909 (2004).
[59] P. Goswami and B. Roy, Phys. Rev. B 90, 041301 (2014).
[60] A. Zazunov and R. Egger, Phys. Rev. B 85, 104514 (2012).
[61] C. Schrade and L. Fu, arXiv:1803.01002.
[62] Q. Wang, C.-C. Liu, Y.-M. Lu, and F. Zhang, arXiv:1804.04711.
[63] X. Wan and S. Y. Savrasov, Nat. Commun. 5, 4144 (2014).
[64] H. Kim, K. Wang, Y. Nakajima, R. Hu, S. Ziemak, P. Syers,

L. Wang, H. Hodovanets, J. D. Denlinger, P. M. R. Brydon,
D. F. Agterberg, M. A. Tanatar, R. Prozorov, and J. Paglione,
Sci. Adv. 4, 4513 (2018).

[65] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[66] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).

165144-13

https://doi.org/10.1103/PhysRevB.89.224503
https://doi.org/10.1103/PhysRevB.89.224503
https://doi.org/10.1103/PhysRevB.89.224503
https://doi.org/10.1103/PhysRevB.89.224503
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevLett.102.187001
https://doi.org/10.1103/PhysRevLett.102.187001
https://doi.org/10.1103/PhysRevLett.102.187001
https://doi.org/10.1103/PhysRevLett.102.187001
https://doi.org/10.1103/PhysRevA.95.063617
https://doi.org/10.1103/PhysRevA.95.063617
https://doi.org/10.1103/PhysRevA.95.063617
https://doi.org/10.1103/PhysRevA.95.063617
https://doi.org/10.1103/PhysRevLett.105.097001
https://doi.org/10.1103/PhysRevLett.105.097001
https://doi.org/10.1103/PhysRevLett.105.097001
https://doi.org/10.1103/PhysRevLett.105.097001
https://doi.org/10.1103/PhysRevB.90.184512
https://doi.org/10.1103/PhysRevB.90.184512
https://doi.org/10.1103/PhysRevB.90.184512
https://doi.org/10.1103/PhysRevB.90.184512
https://doi.org/10.1103/PhysRevLett.115.207002
https://doi.org/10.1103/PhysRevLett.115.207002
https://doi.org/10.1103/PhysRevLett.115.207002
https://doi.org/10.1103/PhysRevLett.115.207002
https://doi.org/10.1103/PhysRevB.93.134512
https://doi.org/10.1103/PhysRevB.93.134512
https://doi.org/10.1103/PhysRevB.93.134512
https://doi.org/10.1103/PhysRevB.93.134512
https://doi.org/10.1103/PhysRevLett.116.177001
https://doi.org/10.1103/PhysRevLett.116.177001
https://doi.org/10.1103/PhysRevLett.116.177001
https://doi.org/10.1103/PhysRevLett.116.177001
https://doi.org/10.1103/PhysRevLett.118.227001
https://doi.org/10.1103/PhysRevLett.118.227001
https://doi.org/10.1103/PhysRevLett.118.227001
https://doi.org/10.1103/PhysRevLett.118.227001
https://doi.org/10.1103/PhysRevB.96.214514
https://doi.org/10.1103/PhysRevB.96.214514
https://doi.org/10.1103/PhysRevB.96.214514
https://doi.org/10.1103/PhysRevB.96.214514
https://doi.org/10.1126/science.aan4596
https://doi.org/10.1126/science.aan4596
https://doi.org/10.1126/science.aan4596
https://doi.org/10.1126/science.aan4596
https://doi.org/10.1126/science.aao1797
https://doi.org/10.1126/science.aao1797
https://doi.org/10.1126/science.aao1797
https://doi.org/10.1126/science.aao1797
https://doi.org/10.1038/s41567-018-0280-z
https://doi.org/10.1038/s41567-018-0280-z
https://doi.org/10.1038/s41567-018-0280-z
https://doi.org/10.1103/PhysRevB.81.134508
https://doi.org/10.1103/PhysRevB.81.134508
https://doi.org/10.1103/PhysRevB.81.134508
https://doi.org/10.1103/PhysRevB.81.134508
https://doi.org/10.1103/PhysRevLett.107.036601
https://doi.org/10.1103/PhysRevLett.107.036601
https://doi.org/10.1103/PhysRevLett.107.036601
https://doi.org/10.1103/PhysRevLett.107.036601
https://doi.org/10.1103/PhysRevLett.15.524
https://doi.org/10.1103/PhysRevLett.15.524
https://doi.org/10.1103/PhysRevLett.15.524
https://doi.org/10.1103/PhysRevLett.15.524
https://doi.org/10.1103/PhysRevB.96.174514
https://doi.org/10.1103/PhysRevB.96.174514
https://doi.org/10.1103/PhysRevB.96.174514
https://doi.org/10.1103/PhysRevB.96.174514
https://doi.org/10.1103/PhysRevLett.114.097001
https://doi.org/10.1103/PhysRevLett.114.097001
https://doi.org/10.1103/PhysRevLett.114.097001
https://doi.org/10.1103/PhysRevLett.114.097001
https://doi.org/10.1088/1674-1056/24/11/117405
https://doi.org/10.1088/1674-1056/24/11/117405
https://doi.org/10.1088/1674-1056/24/11/117405
https://doi.org/10.1088/1674-1056/24/11/117405
https://doi.org/10.1007/s11434-016-1087-x
https://doi.org/10.1007/s11434-016-1087-x
https://doi.org/10.1007/s11434-016-1087-x
https://doi.org/10.1007/s11434-016-1087-x
https://doi.org/10.1103/PhysRevB.87.144511
https://doi.org/10.1103/PhysRevB.87.144511
https://doi.org/10.1103/PhysRevB.87.144511
https://doi.org/10.1103/PhysRevB.87.144511
https://doi.org/10.1103/PhysRevB.90.035149
https://doi.org/10.1103/PhysRevB.90.035149
https://doi.org/10.1103/PhysRevB.90.035149
https://doi.org/10.1103/PhysRevB.90.035149
https://doi.org/10.1103/PhysRevLett.102.217002
https://doi.org/10.1103/PhysRevLett.102.217002
https://doi.org/10.1103/PhysRevLett.102.217002
https://doi.org/10.1103/PhysRevLett.102.217002
https://doi.org/10.1103/PhysRevB.82.184508
https://doi.org/10.1103/PhysRevB.82.184508
https://doi.org/10.1103/PhysRevB.82.184508
https://doi.org/10.1103/PhysRevB.82.184508
https://doi.org/10.1103/PhysRevB.75.115103
https://doi.org/10.1103/PhysRevB.75.115103
https://doi.org/10.1103/PhysRevB.75.115103
https://doi.org/10.1103/PhysRevB.75.115103
https://doi.org/10.1103/PhysRevB.84.144502
https://doi.org/10.1103/PhysRevB.84.144502
https://doi.org/10.1103/PhysRevB.84.144502
https://doi.org/10.1103/PhysRevB.84.144502
https://doi.org/10.1103/PhysRevB.89.165126
https://doi.org/10.1103/PhysRevB.89.165126
https://doi.org/10.1103/PhysRevB.89.165126
https://doi.org/10.1103/PhysRevB.89.165126
https://doi.org/10.1103/PhysRevLett.119.187003
https://doi.org/10.1103/PhysRevLett.119.187003
https://doi.org/10.1103/PhysRevLett.119.187003
https://doi.org/10.1103/PhysRevLett.119.187003
https://doi.org/10.1126/sciadv.1601835
https://doi.org/10.1126/sciadv.1601835
https://doi.org/10.1126/sciadv.1601835
https://doi.org/10.1126/sciadv.1601835
https://doi.org/10.1103/PhysRevB.94.174518
https://doi.org/10.1103/PhysRevB.94.174518
https://doi.org/10.1103/PhysRevB.94.174518
https://doi.org/10.1103/PhysRevB.94.174518
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1103/PhysRevB.57.6003
https://doi.org/10.1103/PhysRevB.57.6003
https://doi.org/10.1103/PhysRevB.57.6003
https://doi.org/10.1103/PhysRevB.57.6003
https://doi.org/10.1103/RevModPhys.76.909
https://doi.org/10.1103/RevModPhys.76.909
https://doi.org/10.1103/RevModPhys.76.909
https://doi.org/10.1103/RevModPhys.76.909
https://doi.org/10.1103/PhysRevB.90.041301
https://doi.org/10.1103/PhysRevB.90.041301
https://doi.org/10.1103/PhysRevB.90.041301
https://doi.org/10.1103/PhysRevB.90.041301
https://doi.org/10.1103/PhysRevB.85.104514
https://doi.org/10.1103/PhysRevB.85.104514
https://doi.org/10.1103/PhysRevB.85.104514
https://doi.org/10.1103/PhysRevB.85.104514
http://arxiv.org/abs/arXiv:1803.01002
http://arxiv.org/abs/arXiv:1804.04711
https://doi.org/10.1038/ncomms5144
https://doi.org/10.1038/ncomms5144
https://doi.org/10.1038/ncomms5144
https://doi.org/10.1038/ncomms5144
https://doi.org/10.1126/sciadv.aao4513
https://doi.org/10.1126/sciadv.aao4513
https://doi.org/10.1126/sciadv.aao4513
https://doi.org/10.1126/sciadv.aao4513
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.61.10267



