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To elucidate the pairing states in Fe-based superconductors, we perform a careful calculation of the dynamical
spin susceptibility χS (q, ω) at very low temperatures (T � 1 meV). The feedback effect on both the self-energy
and χS (q, ω) from the superconducting gap is self-consistently analyzed based on the fluctuation-exchange
(FLEX) approximation. In the s±-wave state, which has sign reversal in the gap function, χS (q, ω) at the nesting
momentum q = Q shows a resonance peak even when the system is away from the magnetic quantum critical
point (QCP). In the s++-wave state that has no sign reversal, χS (q, ω) shows a large hump structure when the
system is close to the magnetic QCP. This result confirms the validity of a self-energy driven resonancelike peak
in the s++-wave state proposed in our previous semimicroscopic study: The enhancement in χS (q, ω) due to the
self-energy effect exceeds the suppression due to the coherence factor effect near the magnetic QCP. We stress
that the hump structure in the s++-wave state given by the FLEX method smoothly changes to a resonancelike
sharp peak structure as the system approaches the magnetic QCP, which was not reported in our previous studies.
The obtained ω and T dependence of χS (q, ω) in the s++-wave states resembles the resonancelike feature in
inelastic neutron scattering spectra recently observed in Na(Fe,Co)As and FeSe.
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I. INTRODUCTION

In Fe-based superconductors, the pairing mechanism and
the gap structure with s-wave symmetry have been central
open problems. When interpocket repulsive interaction due to
the spin fluctuations is strong, the fully gapped sign-reversing
s-wave state (the s±-wave state) is expected to appear [1,2].
On the other hand, when orbital-fluctuation-driven inter-
pocket attractive interaction is strong, the fully gapped s-wave
state without sign reversal (the s++-wave state) will emerge
[3–5]. In many optimally doped Fe-based superconductors,
nematic orbital fluctuations and spin fluctuations develop
cooperatively, as reported in Refs. [6,7]. Theoretically, strong
orbital fluctuations are driven by moderate spin fluctuations,
thanks to the orbital-spin mode coupling due to the higher-
order many-body effects, especially the Aslamazov-Larkin-
type vertex correction [8–12].

To detect the presence or absence of the sign rever-
sal in the gap, phase-sensitive experiments are very sig-
nificant. The nonmagnetic impurity effect provides us with
useful phase-sensitive information. In typical d-wave super-
conductors, like cuprate superconductors and CeCoIn5, Tc is
quickly suppressed by impurities, following the prediction
of the Abrikosov-Gor’kov theory [13]. In many Fe-based
superconductors, the superconductivity survives even when
the residual resistivity due to the randomness is very high,
comparable to high-Tc s-wave superconductors MgB2 and
YNi2B2C [13,14]. Since the s±-wave state is as fragile as the
d-wave state theoretically [15,16], these experiments support
the (impurity-induced) s++-wave state in optimally doped
pnictides [3,17,18].

Another promising phase-sensitive experiment is the in-
elastic neutron scattering study. A large resonance peak in

the dynamical spin susceptibility appears in d-wave super-
conductors, such as cuprates [19–21] and CeCoIn5 [22],
reflecting the sign reversal of the d-wave gap [23–26]. In
the s±-wave state, χS (q, ω) is expected to show the res-
onance peak at ω = ωres < 2� since the coherence factor
enlarges the spin fluctuation for the s±-wave state [27–32],
while it suppresses the spin fluctuation for the s++-wave
state. (� is the amplitude of the gap function.) Experi-
mentally, clear broad peak structures in χS (q, ω) were ob-
served for T � Tc in FeSe [33], BaFe2−xCoxAs2 [34,35], Ca-
Fe-Pt-As [36], Na(Fe,Co)As [37], and (Ba, K)Fe2As2 [38].
However, χS (q, ω) is drastically modified by not only the
coherence factor but also the self-energy effect. In fact, exper-
imentally observed hump structures can be explained based
on the s++-wave state [39,40] if one considers the energy
dependence of the normal self-energy �(k, ω). This effect is
totally dropped in the random-phase- approximation (RPA).
Previous theoretical studies [39,40] claim that the peak energy
ωres of the hump structure in the s++-wave state satisfies the
relation ωres�2�.

To distinguish between the resonance peak and the hump
structure experimentally, it is important to verify the res-
onance condition ωres < 2�. However, it is very difficult
to obtain the accurate gap amplitude � experimentally. In
addition, from the theoretical viewpoint, we cannot rule out
the relation ωres < 2� in the s++-wave state if the system is
very close to the magnetic quantum critical point (QCP), as
we will discuss in this paper.

The main player in realizing the hump structure of the s++-
wave state is the ω dependence of the inelastic quasiparticle
damping γ ∗

k (ω) ≡ −Im�R (k, ω)/Z(k, ω), where Z(k, ω) is
the mass-enhancement factor. Above Tc, χS (q, ω) is strongly
suppressed by large γ ∗

k (ω). Since γ ∗
k (ω) ≈ 0 for ω < 3� for
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T � Tc, χS (q, ω) takes large hump structures at ω � 2�.
Despite the significance of γ ∗

k (ω), the authors of Refs. [39,40]
assumed a very simple functional form of γ ∗

k (ω), just as a
phenomenological function. In addition, the renormalization
effect due to the real part of �(k, ω) was dropped. In order to
verify the hump-structure mechanism in the s++-wave state
without ambiguity, the self-consistent calculation between
χS (q, ω) and �(k, ω) should be performed at sufficiently low
temperatures.

In this paper, we study the dynamical spin susceptibility
χS (q, ω) in order to elucidate the pairing states in Fe-based
superconductors. We self-consistently calculate χS (q, ω)
and the normal self-energy �(k, ω) using the fluctuation-
exchange (FLEX) approximation [23,26,41–50]. We develop
the multistep FLEX procedure to perform precise numerical
studies at very low temperatures (T � 1 meV) and analyze
the feedback effect on �(k, ω) and χS (q, ω) from the su-
perconducting gap carefully. In the s±-wave state, χS (q, ω)
shows the resonance peak even when the system is away
from the magnetic QCP. In the s++-wave state, χS (q, ω)
shows large hump structures near the magnetic QCP since
the enhancement in χS (q, ω) due to the self-energy effect
exceeds the suppression due to the coherence factor effect.
This result confirms the validity of the self-energy driven
resonancelike peak in the s++-wave state, which was proposed
in our previous semimicroscopic study [39,40]. We stress that
the hump structure in the s++-wave state smoothly changes
to a resonancelike sharp peak as the system approaches the
magnetic QCP, which was not reported previously [39,40].
The obtained ω and T dependence of χS (q, ω) in the s++-
wave states near the magnetic QCP resembles the inelastic
neutron scattering spectra in Na(Fe,Co)As [37] and FeSe [33].

Mathematically, the resonance peak appears in the case
in which the dynamical spin Stoner factor αS (ω) reaches
unity for ω < 2�. We show that αS (ωres) ≈ 1 is realized even
in the s++-wave state near the magnetic QCP if the (ω, T )
dependence of the self-energy is taken into account correctly.

II. MODEL

A. Hubbard model

The Hamiltonian used is the two-dimensional five-orbital
Hubbard model [15]

H =
∑
ij

∑
lm

∑
σ

t lmij c
†
ilσ cjmσ + HCoulomb, (1)

where i, j are the Fe sites, l, m represent the d orbitals, and
σ is the spin index. The interaction potentials included are
the intraorbital Coulomb potential U , interorbital Coulomb
potential U ′, Hund’s coupling J , and pair hopping J ′. The
hopping parameters used are those of 1111-type iron-based
superconductors, and the Fermi surface obtained is shown in
Fig. 1.

Using this Hamiltonian, we solve the 10 × 10 Nambu
Green’s function for the superconducting state in the orbital
representation,

Ĝ(k) =
(

Ĝ(k) F̂ (k)

F̂ †(k) −Ĝt (−k)

)
, (2)

FIG. 1. Fermi surface of 1111-type iron-based superconductors.

where k = (k, iεn). This can be calculated from finding the
inverse of the following matrix:

Ĝ−1(k) = iεn̂1 −
(

Ĥ (k) + �̂(k) �̂(k)

�̂†(k) −Ĥ t (−k) − �̂t (−k)

)
,

(3)

where 1̂ is the identity matrix, �̂ is the superconducting gap
without renormalization, and εn = πT (2n + 1) is the Matsub-
ara frequency for fermions. �̂ is the normal self-energy, which
represents the mass enhancement and quasiparticle damping.
In this study, we introduce �̂ as a parameter.

B. Gap functions

To calculate the spin susceptibility in superconducting
state, we introduce the “unrenormalized gap functions” in
Eq. (3). In each band, we introduce the following s++- and
s±-wave gap functions in the band representation:

s++ : �(k) = �0, (4)

s± : �(k) = �0[cos(kx ) + cos(ky )]. (5)

To calculate the temperature dependence of spin
susceptibility, we introduce a superconducting gap
with a BCS-like temperature dependence, �0(T ) =
�0(0) tanh [1.74

√
(Tc/T ) − 1].

Hereafter, in the numerical study using the FLEX ap-
proximation, we set Tc = 8 meV and �0(T = 0) = 50 meV
unless otherwise noted. The physical gap function is given
as �∗(k) ≈ �(k)/Z(k), where Z(k) = 1 − ∂

∂ω
�(k, ω)|ω=0 is

the mass-enhancement factor given by the normal self-energy.
In optimally doped Fe-based superconductors, the energy

scale of spin and/or orbital fluctuations, which gives the pair-
ing glue, is small. For this reason, �(k) should be large only
near the Fermi level. To express this fact [51], we introduce
the following high-energy cutoff for the gap function:

�e(k) = �(k) · ε2
cut

[ε(k) − μ]2 + ε2
cut

, (6)
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with εcut = 4�0. The gap function in the orbital representation
can be expressed as

[�̂(k)]lm =
∑

b

Ulb(k)U †
mb(k)�e(k), (7)

where Ulb(k) is the unitary matrix element and b represents
the conduction band number.

C. FLEX approximation

The FLEX approximation is a method to calculate self-
energy and susceptibilities in a self-consistent manner. The
feedback effect from spin fluctuation is included by using the
FLEX approximation, allowing a microscopic calculation of
the system.

The bare susceptibilities in the Matsubara frequency repre-
sentation are written as

χ0
ll′mm′ (q ) = − T

N

∑
k

Glm(k + q )Gm′l′ (k), (8)

φ0
ll′mm′ (q ) = − T

N

∑
k

Flm′ (k + q )F †
l′m(k), (9)

where q = (q, iωl ), ωl = 2πlT , and N is the number of k
meshes. The spin and charge susceptibilities are

χS
ll′mm′ (q ) =

[
χ̂0(q ) + φ̂0(q )

1 − �̂S[χ̂0(q ) + φ̂0(q )]

]
ll′mm′

, (10)

χC
ll′mm′ (q ) =

[
χ̂0(q ) − φ̂0(q )

1 − �̂C[χ̂0(q ) − φ̂0(q )]

]
ll′mm′

, (11)

where �̂S and �̂C are the spin and charge interaction matrices,
respectively [9].

The Feynman diagrams considered in the calculation of
self-energy are the bubble terms and ladder terms. Normal
self-energy in the superconducting state is calculated by the
expression

�lm(k) = T

N

∑
q

∑
l′m′

Gl′m′ (k − q )Vll′mm′ (q ). (12)

The interaction part Vll′mm′ (q ) is

Vll′mm′ (q ) = 3

2
V S

ll′mm′ (q ) + 1

2
V C

ll′mm′ (q )

−
∑

l1l2l3l4

[
+ 1

4
�

↑↑
ll′l1l2χ

0
l1l2l3l4

(q )�↑↑
l3l4mm′

+ 1

2
�

↑↓
ll′l1l2χ

0
l1l2l3l4

(q )�↑↓
l3l4mm′

− 1

2
�

↑↑
ll′l1l2φ

0
l1l2l3l4

(q )�↑↓
l3l4mm′

− 1

2
�

↑↓
ll′l1l2φ

0
l1l2l3l4

(q )�↑↑
l3l4mm′

]
. (13)

Here, we define V̂ S(C) = �̂S(C)χ̂S(C)�̂S(C), �̂↑↑ = (�̂C +
�̂S )/2, and �̂↑↓ = (�̂C − �̂S )/2. For the numerical study of
the spin susceptibility, we derive the retarded (advanced) self-
energy �̂R(A)(k, ε) from �̂(k, iεn) given by the FLEX by
performing the numerical analytic continuation.

D. Spin susceptibility

The normal bare susceptibility χ0,R and the anomalous
bare susceptibility φ0,R in the real-energy representation can
be expressed by the following equations [26,40]:

χ
0,R
ll′mm′ (q, ω) = −1

4πiN

∑
k

×
[∫ ∞

−∞
dz tanh

( z

2T

)
GR

lm(k+, z+)ρG
m′l′ (k, z)

+
∫ ∞

−∞
dz tanh

( z

2T

)
ρG

lm(k+, z+)GA
m′l′ (k, z)

]
,

(14)

φ
0,R
ll′mm′ (q, ω) = −1

4πiN

∑
k

×
[ ∫ ∞

−∞
dz tanh

( z

2T

)
FR

lm′ (k+, z+)ρF †

ml′ (k, z)

+
∫ ∞

−∞
dz tanh

( z

2T

)
ρF

lm′ (k+, z+)F †A
ml′ (k, z)

]
.

(15)

Here, ρG
ll′ = (GA

ll′ − GR
ll′ )/2πi, and ρF (†)

ll′ = (F (†)A
ll′ −

F
(†)R
ll′ )/2πi. GA, FA are the advanced Green’s functions,

and GR, FR are the retarded Green’s functions. We define
k+ = k + q and z+ = z + ω for simplicity.

The spin susceptibility χS,R can be expressed by

χ
S,R
ll′mm′ (q, ω) =

[
χ̂0,R (q, ω) + φ̂0,R (q, ω)

1 − �̂S[χ̂0,R (q, ω) + φ̂0,R (q, ω)]

]
ll′mm′

.

(16)
Here, we introduce the Stoner factor αS defined as the maxi-
mum eigenvalue of

�̂S[χ̂0,R (q, 0) + φ̂0,R (q, 0)]. (17)

It is proportional to the strength of the spin fluctuation; χS

diverges when αS is 1.
The results of neutron scattering experiments correspond

to the imaginary part of the spin susceptibility,

ImχS ( Q, ω) = Im

[∑
lm

χ
S,R
llmm( Q, ω)

]
. (18)

III. RESULTS

In order to calculate at low temperatures, the multistep
method is used in this research. We present the explanation
for this method in Appendix A. Results for the FLEX ap-
proximation and RPA are calculated with a k mesh of 1282

and Matsubara frequency of 216. Bare susceptibilities in the
energy representation [Eqs. (14) and (15)] are calculated with
a k mesh of 2562 and an energy range divided by 212 (δz ∼
1 meV).

In this section, we perform a self-consistent numerical
study based on the FLEX approximation. Except in Fig. 8,
we calculate the T dependences of physical quantities for a
fixed Coulomb interaction which satisfy the condition αS =
0.90–0.97 at T = Tc(= 8 meV).
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FIG. 2. T dependence of the Stoner factor at the nesting vector Q
given by the RPA (�0 = 10 meV) and by the FLEX (�0 = 50 meV).
In each case, αS = 0.95 at Tc. We set UFLEX = 2.11 eV and URPA =
1.13 eV. Note that �∗ ≈ 13 (9.6) meV for s++ (s±)-wave state, as
shown in Fig. 3.

A. Feedback effect

Figure 2 shows the T dependence of the Stoner factor
αS in the superconducting state. The Stoner factor behaves
differently for the s++ and s± states in both the RPA and
FLEX approximation. One of the reasons is that φ0(q ) in the
irreducible susceptibility is proportional to −�(k)�(k + q ),
which is negative (positive) for s++-wave (s±-wave) states
at nesting vector Q = (π, 0). By reflecting the difference in
sign of this factor, which corresponds to the difference in the
coherence factor in the BCS theory, αS in the s++-wave state
is smaller than αS in the s±-wave state. To summarize, αS

slightly decreases in the s++-wave state, whereas it increases
in the s±-wave state.

The T dependence of αS obtained by the RPA for �0 =
10 meV is similar to that obtained by the FLEX for �0 =
50 meV for both s++ and s± states. This result is reasonable
because the renormalized gap in the FLEX averaged over the
Fermi surfaces is �∗ ≈ 13 (9.6) meV for the s++- (s±-) wave
state at T = 1 meV, as we will discuss in the next subsection.

Figure 3 shows αS in the superconducting state obtained
by the FLEX approximation for �0 = 50 meV in the case of
αS (Tc) = 0.90–0.97. In Fig. 3(a) for the s++-wave state, the
Stoner factor monotonically decreases with decreasing T in
the case of αS (Tc) � 0.95. In contrast, the Stoner factor first
increases slightly and then decreases at low temperatures in
the case of αS (Tc) � 0.96. In Fig. 3(b) for the s±-wave state,
the Stoner factor is almost constant when αS (Tc) � 0.90.
In contrast, the Stoner factor monotonically increases with
decreasing T when αS (Tc) � 0.95.

Thus, when the system is close to the magnetic QCP in the
normal state, the spin fluctuations remain strong even in the
s++-wave superconducting states. The reason is the following:
in the normal state at T � Tc, χS (q, ω = 0) is suppressed by
the large inelastic scattering γk(ω) for ω ∼ 0. [Here, γk(ω)
is the imaginary part of the self-energy.] For T � Tc, γk(ω)

FIG. 3. T dependence of αS for the initial values αS = 0.90–0.97
at T = Tc in the case of (a) the s++-wave state and (b) the s±-wave
state.

is prominently reduced for |ω| < 3�∗ (see Sec. III C), which
leads to the increment of χS (q, ω = 0). Therefore, the self-
energy gives the positive feedback from the superconducting
gap to the spin susceptibility for both the s++ and s± states.
To summarize, both the coherence factor and the self-energy
effect are important for understanding the spin fluctuations in
the superconducting state.

B. Renormalized gap size �∗

By including the normal self-energy, the original gap �0

in Eq. (5) is renormalized to be the physical gap function
�∗. Figure 4 shows both �0 and �∗ obtained by the FLEX
approximation; αS (Tc) = 0.95. The size of �∗ is estimated
numerically from the relation 1/ReF (k, ω) = 0 on the Fermi
surfaces. In the s++-wave state, 2�∗ ≈ 13 meV, so the re-
lation 2�∗/Tc ≈ 3.3 holds at T = 1 meV. The ratio 2�∗/Tc

increases to 4.3 if we set Tc = 6 meV. We remark that the
numerical result of χS (q, ω) is insensitive to Tc in the case
T � 0.5Tc.

FIG. 4. Renormalized superconducting gap �∗ given by the
FLEX approximation, for both the s++- and s±-wave states. The
original unphysical gap �0 is also plotted.
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FIG. 5. The ω dependence of Imχ 0( Q, ω) at T = 3 meV for
both the s++ and s± states. In each state, we set αS (Tc ) = 0.95.
The result for the normal state (T = Tc = 8 meV) is plotted for
comparison. �∗ ≈ 13 meV (9.6 meV) for the s++ wave (s± wave).

We can also derive �∗ from the energy dependence of
Imχ0( Q, ω). Since Imχ0( Q, ω) is the absorption spectrum
of particle-hole scattering, it should be zero for |ω| < 2�∗ at
zero temperatures. Figure 5 shows the Imχ0( Q, ω) obtained
by the FLEX at T = 3 meV for both the s++- and s±-wave
states. From the result, �∗ is estimated to be 10–15 meV for
both the s++-wave and s±-wave states, consistent with the
results in Fig. 4.

C. Damping γ due to inelastic scattering

Figure 6 shows the energy dependence of quasiparticle
damping, γ (k, ω) = −∑

l Im[�R
ll (k, ω)], given by the FLEX

approximation. Compared to the normal state (T = Tc), the
damping in the superconducting state (T = 3 meV) is drasti-
cally suppressed for the lower-energy region. In the s++-wave

FIG. 6. Energy dependence of γ (k, ω) at k = (0.74π, 0) given
by the FLEX approximation. We set αS = 0.95 in the normal state
at T = Tc = 8 meV. In this case, Fermi liquid behavior γ (ω) ≈
γ0 + aω2 is obtained. The low-energy (ω ∼ 0) inelastic scattering
is strongly suppressed in both the s++- and s±-wave states. The
oversimplified phenomenological damping rate introduced in pre-
vious research [40] is plotted for comparison. Note that the renor-
malized quasiparticle damping is γ ∗ = γ /Z, where Z is the mass-
enhancement factor (Z ∼ 5).

FIG. 7. Energy dependence of ImχS for (a) s++- and (b) s±-wave
states for αS (T ) = 0.95–0.6 at T = 5 meV. Each calculation is in the
superconducting state with �0 = 50 meV. The values of �∗ for each
αS (T ) are shown by vertical dashed lines.

state, γ (k, ω) is suppressed for |ω| < 3�∗ [40]. The reason
is as follows: in the inelastic scattering process, the initial
quasiparticle with energy Ei should create a particle-hole
excitation with Eph > 2�∗, and the final quasiparticle should
satisfy Ef > �∗. Thus, the relation Ei = Eph + Ef > 3�∗
is required at T = 0. In the s±-wave state, γ (k, ω) is large
even for |ω| � 3�∗ since the low-energy collective resonance
mode (ωres < 2�∗; see Sec. III D) contributes to the low-
energy inelastic scattering processes.

D. Calculations for the neutron scattering experiment

Here, we explain the dynamical susceptibility χS (q, ω)
obtained by the FLEX approximation for various parameters
in the cases of the s++-wave and s±-wave states. The reso-
nancelike hump structure in the ω dependence of χS (q, ω)
appears even in the s++-wave state. This result is consistent
with previous RPA analysis in Refs. [39,40].

1. αS dependence of Imχ S(q, ω)

Figure 7 shows the ω dependence of ImχS ( Q, ω) for
various Stoner factors in both the s++-wave [Fig. 7(a)] and s±-
wave [Fig. 7(b)] states. Calculations are done with parameters
T = 5 meV and �0 = 50 meV. The nesting vector is Q =
(π, 0). In Fig. 7(a) we find that a hump structure is obtained
in the s++-wave state, even for moderate spin fluctuations
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FIG. 8. Energy dependence of ImχS for (a) s++ and (b) s± states
below Tc. The black line (Tc = 8 meV) is the normal state. In the
s++-wave state, the height of the peak saturates at low temperatures.

(αS = 0.90). The obtained hump structure is similar to the
report of previous RPA analysis [40]. As the spin fluctuations
become stronger (αS = 0.95), the hump structures become
narrower, such that it looks like a resonance peak. The relation
ωres ≈ 2�∗ is satisfied. In Fig. 7(b), we see that unlike the s++
state, results for the s± state have a peaklike structure at small
spin fluctuation. The condition of the resonance ωres < 2�∗
is apparently satisfied for αS � 0.9. As αS is increased, the
resonance peak becomes narrower, and ωres decreases.

2. Temperature dependence of Imχ S(q, ω)

Figure 8 shows the ω dependence of ImχS ( Q, ω) in the
superconducting state T � Tc obtained by the FLEX approx-
imation. The lowest temperature is T = 3 meV, which is
considerably lower than Tc = 8 meV. We set αS (Tc) = 0.95.
In the case of the s++ state shown in Fig. 8(a), the hump
structure at ωres � 30 meV becomes taller and sharper as T

is lowered. The hump structure looks like a resonance peak at
the lowest temperature T = 3 meV. The energy position ωres

slightly increases as T decreases, and ωres is slightly above
2�∗. Figure 8(b) shows the result for the s± state. Compared
to the s++ state, the magnitude of the structures is much larger,
and the resonance energy ωres does not move.

Compared to the result at T = Tc, the height of
ImχS ( Q, ω) in the s++ state is approximately two times
larger in size, while the height of the resonance peak in the
s± state is approximately nine times larger. In many Fe-based

FIG. 9. Energy dependence of ImχS with αS (Tc ) = 0.90 for
Tc � T � 5 meV for the (a) s++ and (b) s± states. Energy depen-
dence of ImχS with αS (Tc ) = 0.97 for Tc � T � 3 meV for the (c)
s++ and (d) s± states. In (c), the relation ωres ≈ 2�∗ holds even in
the s++-wave state.

superconductors, the observed “resonance peak” is not so
sharp, its weight is not so large, and the height tends to saturate
at low temperatures [34,37]. Thus, the obtained ImχS ( Q, ω)
in the s++ state well explains experimental results.

We also examine the spin susceptibility ImχS ( Q, ω) for
αS (Tc) = 0.90 and 0.97 in Figs. 9(a)–9(d). When the system
is away from the magnetic QCP [αS (Tc) = 0.90], the height
of the hump structure in the s++-wave state becomes small,
as shown in Fig. 9(a). On the other hand, a sharp resonance
structure still exists in the s±-wave state, as shown in Fig. 9(b).

When the system is very close to the magnetic QCP
[αS (Tc) = 0.97], a resonancelike peak structure is obtained
in the s++-wave state in Fig. 9(c). In the s±-wave state, the
resonance peak becomes very large, as shown in Fig. 9(d).
We note that the peak structure in the s++-wave state for
αS (Tc) = 0.97 [Fig. 9(c)] is similar to that in the s±-wave state
for αS (Tc) = 0.90 [Fig. 9(b)]. These results suggest that re-
sults from neutron scattering experiments should be discussed
carefully by considering the distance from the magnetic QCP.

IV. ANALYSIS: REASON FOR THE HUMP STRUCTURE
IN THE s++-WAVE STATE

Here, we discuss the origin of the resonance or hump
structure in the dynamical spin susceptibility in the supercon-
ducting state. Below, we drop the orbital degrees of freedom
for simplicity. The imaginary part of the spin susceptibility
χS can be written in terms of the real and imaginary parts
of bare susceptibility. We set � ′ = Re(χ0 + φ0) and � ′′ =
Im(χ0 + φ0):

χS = � ′ + i� ′′

1 − U (� ′ + i� ′′)
. (19)

Taking the imaginary part of χS , we obtain

ImχS = � ′′

(1 − U� ′)2 + (U� ′′)2
. (20)
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FIG. 10. Dynamical spin Stoner factor αS (ω) given by the FLEX
for the (a) s++ and (b) s± states. Here, U is fixed under the condition
αS (Tc ) = 0.97.

The denominator contains the term U� ′, which at ω = 0
corresponds to the Stoner factor.

Here, we introduce the dynamical spin Stoner factor αS (ω),
which is given by the largest real part of the eigenvalue
of �̂S�̂(q, ω) in the multiorbital model. αS (ω) at ω = 0 is
equivalent to αS introduced in Sec. II D.

Figures 10(a) and 10(b) show, respectively, the dynamical
spin Stoner factor for the s++-wave state α++

S (ω) and that for
the s±-wave state α±

S (ω), given by the FLEX approximation.
In both cases, we set αS = 0.97 at T = Tc. Both α++

S (ω) and
α±

S (ω) take the maximum values at finite ω. In the s±-wave
state, at T = 3 meV, α±

S (ω) reaches unity at ω ≈ 12 meV,
which corresponds to the resonance energy in the s±-wave
state shown in Fig. 8(b). In the s++-wave state, at T = 3 meV,
α++

S (ω) nearly reaches unity at ω ≈ 20 meV, which corre-
sponds to the peak energy ω in the s++-wave state in Fig. 8(a).
Thus, the resonancelike peak structure in the s++-wave state
originates from the condition α++

S (ω) ≈ 1 at ω ≈ ωres.
To understand the role of the coherence factor, we also

show the normal-part spin Stoner factors, α++
S,N(ω) and

α±
S,N(ω), in Fig. 11. They are defined as the largest real part

of the eigenvalue of �̂Sχ̂0(q, ω) in the superconducting state.
[The coherence factor due to φ̂0(q ) is dropped.] We set αS =
0.97 at T = Tc. Below Tc, both α++

S,N(ω) and α±
S,N(ω) increase

with ω for ω � ωres, reflecting the coherence peak in the
density of states at ω = ±�∗. α±

S,N(ω) is smaller than α++
S,N(ω)

at ω ∼ ωres since Im�(k, ω) is larger in the s±-wave state.
By comparing Figs. 10 and 11, we find that the coherence
factor enlarges (reduces) the dynamical spin Stoner factor in
the s±-wave (s++-wave) state.

We note that the authors in Refs. [52,53] studied the
Kondo insulator model using the dynamical mean-field theory
and obtained a large hump structure in χS (q, ω) below the
Kondo temperature. The origin of the hump structure of

FIG. 11. Normal-part dynamical Stoner factor given by dropping
φ̂0(q ) in Eq. (9) for the (a) s++ and (b) s± states. Here, U is fixed
under the condition αS (Tc ) = 0.97.

χS in the Kondo insulator, which is actually observed in
CeNiSn [54,55], is expected to be the same as that in the s++-
wave state, that is, the suppression of the inelastic scattering
at low energies.

To summarize, we verified that α±
S (ω) ≈ 1 is realized in the

s±-wave state at the resonance energy ω = ωres. The condition
α++

S (ω) � 1 at ω = ωres is also realized in the s++-wave
state. For |ω| � 3�∗, α±

S (ω) and α++
S (ω) are suppressed by

the large inelastic scattering γ (k, ω) [39,40]. For this reason,
ImχS ( Q, ω) shows resonancelike behavior even in the s++-
wave state when the normal state is close to the magnetic QCP.
We verified that, in the RPA without self-energy, α++

S (ω) for
T < Tc is smaller than αS (ω) at T = Tc for any ω. For this
reason, the RPA fails to reproduce the hump structure in the
s++-wave state in Figs. 8–9.

V. SUMMARY

In this paper, we studied the dynamical spin susceptibilities
χS (q, ω) in the s++-wave and s±-wave states using the FLEX
approximation. We calculated the low-temperature electronic
states (T � 1 meV) accurately by using a very large number
of Matsubara frequencies (216) based on the multistep FLEX
method in Appendix A. In this method, we reduce the memory
size of χ0

ll′mm′ (q, iωl ) and φ0
ll′mm′ (q, iωl ) by assigning crude k

meshes for high Matsubara frequencies ωl . In the FLEX ap-
proximation in the superconducting state, αS is approximately
independent of T , as shown in Fig. 2. Near the magnetic
QCP, αS slightly increases below Tc in the s±-wave state,
whereas it decreases for T � Tc in the s++-wave state. This
fact means that the expected phase diagrams for the s++-wave
and s±-wave states do not have a pronounced difference, as
schematically shown in Figs. 12(a) and 12(b). This result is
consistent with the phase diagram given by the mean-field
approximation in Ref. [56].
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FIG. 12. Schematic magnetic-superconducting phase diagram
expected from the Stoner factor in the superconducting state shown
in Figs. 2 and 4: (a) s++-wave state and (b) s±-waves state.

We also studied the energy dependence of ImχS (q, ω) for
3 meV � T � 8 meV(= Tc) using the FLEX approximation.
Figure 8 shows the numerical results in the case of αS (Tc) =
0.95, which would correspond to the optimally doped case.
Then, we obtained sharp peak structures in ImχS (q, ω) at
ω = ωres even in the s++-wave state. The relation ωres ∼ 2�∗
holds in the s++-wave state (see Fig. 4). In the s±-wave
state, the resonance peak is very sharp, and the resonance
condition ωres < 2�∗ is satisfied. Figures 9(a) and 9(b) show
the results in the case of αS (Tc) = 0.90, which corresponds to
the overdoped case. Then, the peak structures in ImχS (q, ω)
in the s++-wave state become tiny. In the s±-wave state, the
resonance peak is realized even in the overdoped case. These
results confirm the self-energy driven resonancelike peak in
the s++-wave state, which was proposed in our previous
semimicroscopic study [39,40]. That is, the enhancement in
χS (q, ω) due to the self-energy effect (i.e., suppression of
inelastic scattering below Tc) exceeds the suppression due to
the coherence factor effect.

Both the ω and T dependences of the peak structure in the
s++-wave state near the magnetic QCP, shown in Fig. 8(a)
[αS (Tc) = 0.95] and Fig. 9(c) [αS (Tc) = 0.97], resemble the
experimental results in Na(Fe,Co)As and FeSe reported in
Refs. [33,37]. Thus, characteristic inelastic neutron spectra in
optimally doped Fe-based superconductors are well explained
in the present FLEX study if the s++-wave superconducting
state is assumed. As the system approaches the magnetic QCP
at T = Tc, which corresponds to the optimally doped case,
ImχS (q, ω) smoothly changes to a resonancelike sharp peak
structure (ωres ≈ 2�∗) in the s++-wave state since αS is very
close to unity for T � Tc in the FLEX approximation.

Since the overall (ω/�∗) dependence of ImχS ( Q, ω) is
insensitive to �∗ for T � 0.5Tc, the present numerical results
are reliable. We note that the resonancelike peak structure
becomes sharper for smaller �∗ at a fixed αS .

In the FLEX approximation, both the coherence factor
effect and self-energy effect on the dynamical susceptibility
are taken into account on the same footing. In order to clarify
the important role of the latter effect, we perform the RPA
analysis in Appendix B. It is confirmed that the self-energy
effect [(ω, T ) dependence of the self-energy] discussed in

Refs. [39,40] is indispensable for the resonancelike peak in
the s++-wave state shown in Figs. 8(a) and 9(c).
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APPENDIX A: MULTISTEP METHOD OF THE FLEX
APPROXIMATION

In the present study, we have to perform the FLEX ap-
proximation at low temperatures (T � Tc) accurately. For this
purpose, however, very large numbers of Matsubara frequen-
cies (from −NM to NM) are required in the numerical study.
To perform the FLEX at T = 1 meV precisely, for example,
NM ∼ 216 is required. This fact has been preventing us from
studying the FLEX approximation at very low temperatures.
To solve this difficulty, we introduced the multistep FLEX
method in the main text. In this method, we reduce the mem-
ory size of χ0

ll′,mm′ (q, iωl ) and φ0
ll′,mm′ (q, iωl ) by assigning

fine q meshes only for smaller |ωl|. We assign crude q meshes
for larger |ωl| because the q dependence of χ0(q, iωl ) is small
then.

Here, we explain how to calculate the irreducible suscep-
tibility χ0(q, iωl ) based on the multistep procedure. First,
we introduce the set of number of momentum meshes and
cutoff of Matsubara frequency number, {(N (i)

q , N
(1)
M ); i =

1, 2, . . . , L}. Here, N (i)
q (N (i)

M ) decreases (increases) with

i. For example, we may set (N (1)
q , N

(1)
M ) = (642, 16),

(N (2)
q , N

(2)
M ) = (322, 64), and (N (3)

q , N
(3)
M ) = (162, 256) for

L = 3. Then, we introduce the following irreducible suscepti-
bility from the ith energy width:

χ0(i)(q, iωl ) = −T
∑

n

N
(i)
q∑
k

G(i)(k + q, iεn + ωl )G
(i)(k, iεn)

×[�i (εn, ωl ) − �i−1(εn, ωl )], (A1)

where G(i) is the Green’s function with meshes (N (i)
q , N

(i)
M ),

�i (εn, ωl ) = θ (ε
N

(i)
M

− |εn| + δ)θ (ε
N

(i)
M

− |εn + ωl| + δ), and
�0 = 0. Then, the irreducible susceptibility in the multistep
RPA or FLEX is given as

χ0 =
L∑

i=1

χ0(i). (A2)

Note that χ0(i)(q, iωl ) = 0 for |ωl| > ω
N

(i)
M

. (Since the q-mesh

number of χ0(i) decreases with i, interpolation should be
performed for larger i.) The obtained χ0 is very similar to that
given by the conventional RPA or FLEX using (N (1)

q , N
(L)
M )

since the q dependence of χ0(i)(q, iωl ) is small when i or
|ωl| is large. In the same way, we introduce the self-energy
from the ith energy width �(i)(k, iεn), and then the total
self-energy is given as �(k, iεn) = ∑L

i=1 �(i)(k, iεn).
By employing this multistep FLEX procedure, calculation

time and memory can be saved. In the present numerical
research, we put (N (1)

q , N
(1)
M ) = (1282, 16), (N (L)

q , N
(L)
M ) =

165143-8
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FIG. 13. Energy dependence of ImχS given by the RPA in the
s++-wave and s±-wave states. ImχS in the normal state is also shown.

(2, 216), and L = 6. This multistep procedure is justified by
the basic idea of coarse graining or renormalization in that the
momentum dependence of physical quantities is moderate for
higher energies.

APPENDIX B: DYNAMICAL SPIN SUSCEPTIBILITY
GIVEN BY RPA

In this paper, we studied the dynamical spin susceptibil-
ity χS in both the s++-wave and s±-wave states by taking
both the coherence factor effect and self-energy effect into
account. Both effects are comparably important in strongly
correlated superconductors [39,40]. For this purpose, we used
the FLEX approximation, in which both the self-energy and
χS are calculated self-consistently. Near the magnetic QCP,
a resonancelike peak appears in the s++-wave state since
the enhancement in χS (q, ω) due to the self-energy effect
(i.e., suppression of inelastic scattering below Tc) exceeds the
suppression due to the coherence factor effect.

Here, we perform the RPA analysis in order to explain that
the resonancelike peak in the s++-wave state in Sec. III cannot
be obtained once the self-energy effect is dropped. Figure 13
shows the energy dependence of ImχS in both the supercon-
ducting states (T = 3 meV) and normal states (T = 8 meV)
given by the RPA. We set U = 1.27 eV for both normal and
superconducting states, �0 = 20 meV in the superconducting
states. The Stoner factor at T = Tc is 0.98. In the RPA, the
physical gap energy �∗

0 discussed in the main text is equal to
�0 since the self-energy is absent. In the s±-wave state, a clear
resonance peak appears in ImχS at ω ≈ 1

2 (2�0), consistent
with previous RPA studies [27–32]. In contrast, in the s++-
wave state, the obtained ImχS is smaller than that in the
normal state for ω < 2�0. In addition, the hump structure at

FIG. 14. Dynamical spin Stoner factor αS (ω) and the normal-
part one αS,N(ω) given by the RPA for the (a) s++-wave and (b)
s±-wave states. In αS,N(ω), the contribution from φ̂0(q ) in Eq. (9)
is dropped.

ω � (2�0) is tiny. Therefore, the resonancelike peak structure
in the s++-wave state obtained by the FLEX approximation,
discussed in the main text, cannot be obtained in the RPA.
Thus, the self-energy effect [39,40] is indispensable for the
resonancelike peak in the s++-wave state.

In order to clarify the importance of the coherence factor,
we show both the dynamical spin Stoner factor αS (ω) and
the normal-part one αS,N(ω) given by the RPA in Figs. 14(a)
and 14(b) for the s++-wave and s±-wave states, respectively.
The difference between αS (ω) and αS,N(ω) originates from
the coherence factor given by φ̂0(q ) in Eq. (9). We see that
αS,N(ω) is larger than αS (ω) in the normal state at ω ∼
2�0 meV by reflecting the coherence peak in the density of
states at ω = ±�0. [In Fig. 14, a small difference between
α++

S,N(ω) and α±
S,N(ω) originates from the difference of |�(k)|

in the s++-wave and s±-wave states in Eq. (5).] By including
the coherence factor, α++

S,N(ω) [α±
S,N(ω)] becomes smaller

(larger) than αS (ω) in the normal state.
As we see in Fig. 14(a), the top of α++

S,N(ω) is comparable
to that in the normal state. Therefore, we cannot expect the
emergence of the resonancelike peak structure in the s++-
wave state in the RPA. In the FLEX approximation, αS,N(ω)
below Tc becomes much larger than that in the normal state,
as we show in Fig. 11. The reason is that the large γ (k, ω)
in the normal state, which suppresses the spin susceptibility,
is reduced for ω � 3�∗ in the superconducting state. This
self-energy effect [39,40] is indispensable for reproducing the
resonancelike peak in ImχS in the s++-wave state.
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