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Effect of site dilution in the two-dimensional attractive Hubbard model
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We study the percolative superconducting transition as the density of randomly placed attractive centers grows
in a host metal. Employing the Hubbard-Stratanovich transformation for the interaction and allowing for spatial,
thermal fluctuations of the pairing field, we obtain real-space features of the transition from weak to strong
coupling. Spectral and transport properties are studied in detail. BCS-BEC crossover is discussed in the context
of site dilution of attractive centers.
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I. INTRODUCTION

The interplay between superconductivity (SC) and disorder
is a long-standing problem [1–4]. For weak disorder, the two
are not expected to be inimical to each other since pairing
takes place between time-reversed states [5] that are present
when only potential impurities disorder the system [6]. In
this limit, the superconducting state is not expected to be
much different from the mean-field BCS state. In particular,
it remains homogeneous in low-disorder regime. However,
when the disorder is strong, it dramatically alters the super-
conducting phase [7,8]. Large phase fluctuations can reduce
the superconducting transition temperature from its mean field
value and in a temperature window between Tc and TBCS,
where Tc is the transition temperature and TBCS is the mean
field value expected from the BCS theory, a pseudogap phase
is expected [3]. This is a region where preformed pairs exist,
but global coherence is absent. The strong disorder also makes
the phase highly inhomogeneous. Theoretical studies at strong
disorder [7–15] reveal the inhomogeneous natures of the SC
state, formation of superconducting puddles, and presence of
a pseudogap phase where long-range SC order diminishes
although the quasiparticle gap remains open. While Josephson
effect between puddles can give rise to a global SC state
[16], strong phase fluctuations among them may lead to an
insulating state [10,17]. Recent experimental studies have
probed this behavior [18–27]. They reveal fragmentation of
the superconducting state into islands, pseudogaplike features
in the normal state, and a change in the normal state resistivity
suggestive of a metal-insulator transition.

Competition between SC and disorder is expected to
be more interesting in two dimensions since the arbitrar-
ily small disorder is capable of localizing electrons [28]
while the superconducting transition itself is of Berezenskii-
Kosterlitz-Thouless (BKT) type. Experimental studies show a
superconductor-insulator transition in many two-dimensional
systems [29–32], a theoretical understanding of which is still
not very satisfactory. Another complication arises as one in-
creases the strength of attractive interaction since, in absence
of disorder, this is expected to lead to a BCS-BEC crossover
[33–35]. The latter results from the Bose condensation of local
pairs of electrons arising due to enhanced double occupancy

for large local attractive interactions. The physics is very
different from the BCS limit; there is still a large, local pairing
gap that is visible in the spectral function, but in contrast to
the BCS limit, Tc is much reduced and does not scale with
the pairing gap, though the zero -temperature pairing gap
continues to increase with interaction. Phase fluctuations play
a dominant role here and are the cause of suppression of SC
order even when there are strong local pairing tendencies.
The effect of disorder in this limit has not been explored
adequately.

Further, there are various systems in which an SC ground
state is arrived at by doping an insulating host. For ex-
ample, PbTe is a semiconductor, but when doped with Tl
(Pb(1−x)TlxTe) becomes superconducting beyond a critical
xc ∼ 0.3 [36,37]. Tc increases with x suggesting that Tl
induces pairing. It is also known that Tc decreases when a
superconducting material is doped with certain atoms. Exam-
ples include MgB2 doped with carbon [38] (Mg(1−x)CxB2) or
aluminium (Mg(1−x)AlxB2) [39]. A simple way of looking at
this problem is to assume that a host system is doped with
inhomogeneous attractive centers which promote local pairing
[40]. As the number of such attractive centers increases,
superconducting islands start to form. However, the onset of
SC requires percolation of these puddles, thereby establishing
global phase coherence. This problem has several interesting
features. Disorder and SC contribute on an equal footing
and the superconducting state is expected to be intrinsically
inhomogeneous. In the absence of attractive centers, the host
could be metallic or nonconducting, though we study only the
former in this paper. One could also explore the BCS-BEC
crossover in the context of dilution of attractive centers if one
is able to handle the regime of large attractive interactions.

Theoretical studies based on the above picture have been
carried out previously using mean field theory [8,41–43] or
quantum Monte Carlo (QMC) [44,45]. The former does not
have the prospect of studying large interaction strengths. The
latter can handle the entire range, but is numerically expensive
with obvious system size limitations; transport is harder to
evaluate. Recently, dynamical mean field theory (DMFT)
[46] was employed in conjunction with the coherent poten-
tial approximation (CPA) to treat disorder [47,48]. However,
neglect of spatial correlations leads to unphysical results at
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strong interactions. To this end, we use a numerically less
expensive method that captures the entire parameter regime
while retaining thermal fluctuations of the pairing field and is
able to shed light on the physics in real space. We employ the
random attractive Hubbard model [49] where the number of
attractive centers is determined by the dilution on an average.
We use a real-space Hubbard-Stratanovich (HS) [8,50,51]
transformation by introducing auxiliary fields in the pairing
and charge channels that couple to electrons. For simplicity,
we assume the auxiliary fields to be classical; while we allow
spatial fluctuations of amplitude and phase of the pairing
field, we neglect their dynamics. This results in studying
the self-consistent quantum dynamics of electrons coupled
to thermal fluctuations, the classical pairing field which is
treated numerically using Monte Carlo (MC) method [52].
The details of the model and numerical procedure are given
in Sec. II. We discuss the critical temperature of the supercon-
ducting transition and its variation with dilution and strength
of interaction in Sec. III. Afterward, we present the spectral
and transport properties of this model. Being a real-space
method, this gives us a direct image of the physics in real
space, while allowing us to access the BCS-BEC crossover
regime. We conclude by pointing out certain limitations of the
present approach and possible extensions.

II. MODEL AND THE STATIC AUXILIARY
FIELD METHOD

To study the nature of percolative SC due to variation in
the density of attractive centers, we employ a minimal model,
which is the attractive Hubbard model with site dilution, that
captures the essential features of the problem. The Hamilto-
nian employed is

H = −t
∑
〈ij〉,σ

c
†
iσ cjσ −

∑
i

Uini↑ni↓ − μ
∑

i

ni . (1)

Here, t is the nearest-neighbor hopping integral (which we
take to be unity to set the energy scales), Ui is the strength
of attractive interaction that is site dependent, and μ is the
chemical potential which fixes the mean electron density. In
this paper, we fix the electron density to be n = 0.875. How-
ever, the physics is not very sensitive to changes in average
electron density, except at half filling. The case of half filling
is special, which we discuss in the last section. Site dilution
is introduced via site-dependent Ui that follows a bimodal
probability distribution such that Ui = U with probability
P (U ) = δ and Ui = 0 with probability P (U ) = 1 − δ [53],
where δ is the average number of sites having attractive
centers (e.g., δ = 1 when all sites have attractive centers,
which is the clean limit). We employ the HS transformation
to reduce the interacting, quartic Hamiltonian to a quadratic
fermionic Hamiltonian coupled to a pairing field �i , which
is a complex variable and a real, scalar-valued charge (or,
equivalent density) field φi . The resulting Hamiltonian reads

Heff = − t
∑
〈ij〉,σ

c
†
iσ cjσ − μ

∑
i

ni +
∑

i

(�ic
†
i↑c

†
i↓ + H.c.)

+
∑

i

|�i |2
Ui

+
∑

i

φini +
∑

i

φ2
i

Ui

, (2)

where �i = 〈ci↑ci↓〉 and ni = ∑
σ c

†
iσ ciσ . The partition func-

tion can be evaluated in terms of the effective Hamiltonian and
is given by

Z =
∫

D�D�∗DφD[c†, c]e−βHeff , (3)

so that the probability of occurrence of a particular configu-
ration of �i at inverse temperature β = 1/(kBT ) is obtained
from

P (�i ) = 1

Z

∫
DφD[c†, c]e−βHeff . (4)

The saddle-point solutions of the action corresponding to
the effective Hamiltonian give Bogoliubov-de Gennes (BdG)
equations for the pairing field �i and the charge field φi .
While at this level the action is exact, to make progress,
we assume that the pairing fields are static (i.e., we neglect
quantum fluctuations), but their amplitudes and phases are
site dependent and thermally fluctuating [13,35,52]. Charge
field is also assumed to be classical. At finite temperatures,
this necessitates thermally averaging over their most probable
configurations, which we carry out using an MC estimation of
their weights based on Metropolis algorithm. This essentially
means that for a given electron density and temperature, we
start with a random configuration of attractive centers by
fixing the amount of site dilution, and a judicious choice of
the pairing and charge fields at every site. This leaves us with a
problem of electrons moving in random (classical) fields that
requires an exact diagonalization of the fermion problem. A
thermal sampling of the most probable configurations of the
auxiliary fields is performed by MC updating of the (classical)
fields. Thermodynamic properties of the system, as well as
spectral features of electrons and transport, are obtained by
averaging over configurations thus obtained. This method,
which requires exact diagonalization of the electron system
at every MC step, obviously restricts the system size and
to circumvent it we use a traveling cluster algorithm [54].
Here, the fermion problem is diagonalized on a smaller cluster
around the chosen MC update site, embedded in a much larger
lattice. The cluster moves during every MC update restoring
ergodicity. A similar approach was recently used successfully
for the case of repulsive Hubbard-Holstein model in two
dimensions [55].

Before presenting our results, we review the previous
works based on the above model. These include mean field
calculations based on BdG equations [41–43] with disorder
treated using CPA, QMC [44,45], and the DMFT with iterated
perturbation theory as an impurity solver in conjunction with
CPA to handle disorder [47,48]. In general, a critical concen-
tration of attractive centers, δc, is required to get the super-
conducting ground state. The system undergoes a first-order
metal-SC transition at δc. While δc increases with U in mean
field calculations, it is seen to decrease and then saturate with
U in QMC. DMFT studies reveal that δc decreases sharply
with increasing U . For all U � 2.7, δc ∼ 0. This is obviously
an artifact of the infinite coordination number employed in
DMFT, neglecting spatial correlations. They also find that
suppressing dynamic fluctuations leads to δc = 0, suggesting
that an arbitrarily small number of attractive dopants are
needed for the onset of SC. In general, δc displays a strong
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FIG. 1. Structure factor S(0) for the pairing field as a function of
temperature for U = 8 and for different values of dilution δ.

dependence on U , which suggests that the transition from the
metallic to SC state cannot be thought of entirely in terms
of percolation alone. In the next section, we provide results
on the metal-SC transition in the model based on our study
focusing on the variation of structure factor with temperature
which determines Tc.

III. ORDER PARAMETER AND CRITICAL
TEMPERATURE

Once the system reaches equilibrium, we use the thermal
averaged structure factor for the pairing field �i = 〈ci↑ci↓〉, to
track the onset of SC as a function of dilution and temperature:

S(q) = 1

N2

∑
ij

〈�i�
∗
j 〉eiq·(ri−rj ). (5)

For a uniform superconducting solution, we look at the
wave vector q = (0, 0) and the corresponding structure factor
S(0). For a given dilution, S(0) is vanishingly small at high
temperatures and starts picking up at a characteristic temper-
ature, which we identify with the superconducting transition
temperature Tc. A typical result is plotted in Fig. 1 for U = 8.
We note that there is a critical concentration of attractive
centers, δc, needed to have “global” SC, which for this case
happens to be roughly δc = 0.6. Further, the saturation value
and Tc increases with δ. As we will discuss later, the onset
of SC is brought about by percolation of locally supercon-
ducting islands and having the larger number of attractive
centers helps in enhancing the superconducting correlations,
and hence the transition temperature itself. For most of our
discussions, we have used a system size of 32 × 32 with
the size of the traveling cluster being 8 × 8. There is a
marginal decrease in Tc as system size increases, which is to
be expected in a two-dimensional system. However, we expect
that in a three-dimensional system, even with a small hopping
between layers (or, in other words, a large anisotropy between
them), transition temperatures would stabilize. Of course, we
do not take up this task since it is computationally expensive
and more importantly, we are interested in the generic features
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FIG. 2. Transition temperature Tc as a function of dilution δ for
different values of interaction strength U .

of the problem, demonstrating the usefulness of the procedure.
Results for other values of U show similar behavior. However,
a notable change is the nonmonotonic variation of Tc as a
function of U , which we discuss next.

Figure 2 shows the variation of Tc as a function of δ

for different values of U . The critical density of attractive
centers needed for the onset of “globally phase coherent” SC
increases with U and appears to saturate around U ∼ 6. For
small values of U , Tc is determined by the pairing scale at
which the amplitude of the Cooper pair becomes nonzero.
This is the BCS limit where phase fluctuations hardly play any
role. However, as U increases, the pair size (or equivalently,
the coherence length) comes down and the onset of SC is
determined by the phase coherence temperature, instead of the
pairing scale. In fact, at large U , the pairing amplitude remains
almost constant across the transition at the sites where there is
an attractive center. However, the relative phases among the
sites fluctuate wildly and global coherence is established only
at a very low temperature (compared to the BCS mean-field
value) and is determined by phase fluctuation scale, which
goes as ∼t2/U . This results in a nonmonotonic variation of
Tc with U arising due to BCS-BEC crossover and is most
clearly seen in Fig. 2 for δ = 1 (the clean limit). However,
such a behavior sets in roughly at U = 6, establishing this
crossover in an intrinsically disordered system. This also sig-
nals a clear separation of energy scales. The zero-temperature
pairing gap in the quasiparticle spectrum continues to increase
with U , though it determines the superconducting Tc only
in the weak-coupling limit. This also results in a nontrivial
behavior of the normal phase, wherein it changes from a Fermi
liquid to a gapped phase at large interaction strengths. There
is a smooth crossover between these two regimes with an
intermediate high-temperature normal phase that intervenes
in the crossover region with anomalous properties, which we
will discuss in the next section.

Our method incorporates spatial fluctuations of the pair-
ing field, both its amplitude and phase, in an unbiased way
and, in fact, this is a crucial ingredient to obtain the BCS-
BEC crossover. The latter arises due to site-dependent phase
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FIG. 3. Real-space configurations of the distribution of attractive
centers and various auxiliary fields at U = 2 at the lowest temper-
ature (T = 0.001 in units of t). The three columns correspond to
different dilution : δ = 0.2 (first), δ = 0.3 (second), and δ = 0.7
(third). The first row gives the distribution of attractive centers with
blue circles denoting sites with Ui = U . The other rows depict the
phase cos(arg(�i )) (second) and the amplitude |�i | (third) of the
pairing fields, and the charge field ni (fourth). The system size is
32 × 32.

fluctuations, which cannot be captured in the conventional
BCS framework as was discussed earlier. Further, unique to
this problem, the local charge fluctuations can be quite large
due to site dilution. Next, we discuss the role of each of
these, the charge, and the amplitude, and phase of pairing
field fluctuations, and their role in nucleating/stabilizing SC
as a function of temperature and dilution. In the clean limit
with δ = 1, all sites have uniform charge distribution and
fluctuations are negligible [see Figs. 3 and 4]. However, as
sites are being diluted, there is a strong tendency to have an
average charge density to be larger near attractive centers and
this can be seen most clearly in the lowest rows of Fig. 4,
corresponding to U = 8.

On the contrary, the local amplitude of the pairing field
|�i |, where �i = |�i |eiθi , is almost vanishing at every site
for large enough dilution, except in small islands where it is
nonzero, grows in size as dilution decreases. This, in fact,
is the origin of the percolative nature of the transition as a
function of δ for a fixed U . There are puddles where the ampli-
tude is nonzero, but there are large intervening regions where
it is vanishingly small. There is phase coherence within a
given puddle, but that cannot stabilize a global superconduct-
ing state. Beyond a percolation threshold δc, which happens
mostly in the BCS-BEC crossover region, there is sufficient

FIG. 4. Real-space configurations of the distribution of attractive
centers and various auxiliary fields at U = 8 at the lowest temper-
ature (T = 0.001 in units of t). The three columns correspond to
different dilution : δ = 0.4 (first), δ = 0.6 (second), and δ = 0.8
(third). The first row gives the distribution of attractive centers with
blue circles denoting sites with Ui = U . The other rows depict the
phase cos(arg(�i )) (second) and the amplitude |�i | (third) of the
pairing fields, and the charge field ni (fourth). The system size is
32 × 32.

pairing amplitude at most sites since the dilution is less.
However, physics in this strong-coupling region is determined
entirely by phase fluctuations. To bring out this feature more
clearly, we present the same physical quantities in Fig. 4
for U = 8. The behavior of 〈ni〉 and |�i | are qualitatively
different at larger values of U . The site-to-site charge fluc-
tuations increase enormously, with attractive centers having
localized pair of electrons with opposite spins. As δ varies
from 0.4 to 0.8, charge-rich sites increase in number. The
charge density at the charge-rich sites reaches close to 2 for
systems with large U . The amplitude of the order takes zero
almost everywhere in the lattice for δ = 0.40 or smaller than
that. It starts to take nonzero values from δ = 0.50 onward.
However, there is a strong fluctuation of these amplitudes
compared to U = 2. Average value of this amplitude on sites
with Ui = U increases with δ for δ > 0.50 whereas |�| does
not change much on the sites with Ui = 0.

Naturally, the picture that emerges is that, as expected, fluc-
tuations of the phase degrees of freedom do not play a major
role for small values of U . The transition is entirely BCS-like.
Variation of δ affects the percolative nature of the transition;
otherwise, locally phase coherent islands have to overlap to
give rise to a globally superconducting state. However, as can
be seen from the second rows of Figs. 3 and 4, the phase of
the order parameter changes dramatically as we change U . At
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FIG. 5. Single-particle density of states at the lowest temperature
(T = 0.001 in units of t) as a function of dilution for (a) U = 2 and
(b) U = 8.

large U , even though the amplitudes have acquired reasonably
large values at every site, their phases become uncorrelated
due to thermal fluctuations of these soft degrees of freedom.
This reduces Tc as U increases. The nonmonotonic variation
of δc and Tc as a function of U suggests that the transition from
a metallic to a superconducting ground state cannot be thought
of as entirely due to percolation of amplitude puddles, as noted
in an earlier work [44]. The contrast between the two extreme
ends of weak and strong coupling is striking: There are phase-
coherent patches of relatively small amplitudes at small U and
leads to a percolative transition as the number of attractive
centers increases; however, strong phase fluctuations suppress
the Tc at large U even though the pairing amplitude is quite
strong enough at most of the sites.

IV. ELECTRONIC SPECTRAL FUNCTIONS

In this section, we look at the spectral properties of the sys-
tem, in particular, concentrating on the single-particle density
of states. This is expected to show a bulk superconducting gap
and coherence peaks when the system turns superconducting.
Figure 5(a) shows its variation as a function of δ at the lowest
temperature we have accessed in the weak-coupling regime
with U = 2. There is no gap until about δ ∼ 0.3 and a gap
appears as δ approaches 0.4. A clear spectral gap is seen at

FIG. 6. Single-particle density of states for U = 6 with δ = 0.5
(a) and 0.8 (b) at different temperatures.

larger values of δ, which increases with an increase of δ. Also
visible are the coherence peaks on either side of the gap. These
results match very well with those obtained from the structure
factor in Fig. 1. In fact, this gap vanishes as we increase the
temperature across Tc in this region of parameter space (for
small U ). However, the temperature variation of the spectral
gap changes dramatically as we increase U . The temperature
at which the gap vanishes increases very rapidly with U even
though as mentioned in the previous section, the Tc comes
down drastically. This shows a clear separation of the pairing
scale determined from the spectral gap and superconducting
scale that determines Tc.

We also find that the gap in the density of states is larger
at larger values of U , as expected. However, the effect of
δ is more subtle. While the gap decreases with δ, it exists
even when SC is not present in the system. We show typical
results for a representative value of U = 8 in Fig. 5(b). Even
when very few sites have attractive centers when U is large
enough, local pairing tendencies are stronger. Thus, centers
which have large U become doubly occupied and gain an
energy of the order of −U . In the large U limit, the states
with energy −U will be isolated from the kinetic energy band.
If the average number of particles is nearly half, then one
has to fill up higher energy states above the gap. Density
of states at the Fermi energy(ω = 0) will be nonzero; the
ground state of the system would be a metal as can be seen
for δ = 0.2 and 0.4. Figure 6 shows the behavior of single
particle density of states for two different dilutions δ = 0.5
[Fig. 6(a)] and 0.8 [Fig. 6(b)] at two representative temper-
atures. As expected, sharp coherence peaks are not seen in
the spectral function. What is striking is that at larger δ, the
spectral gap, even though diminished in size, persists at high
temperatures.

V. OPTICAL TRANSPORT

Optical conductivity is expected to be directly correlated
to the spectral features discussed previously and we explore
it in this section. In the superconducting state, σ (ω) has two
contributions; there is a zero-frequency diamagnetic response
that is proportional to the superfluid stiffness. In addition,
there is a ω-dependent regular part arising due to various
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FIG. 7. The real part of the optical conductivity σR (ω) as a func-
tion of frequency ω at the lowest temperature (T = 0.001 in units of
t) for different values of site dilution and interaction strengths U = 2
(a) and U = 8 (b).

effects such as pair breaking, quasiparticle scattering, etc. We
concentrate on the latter in this section. In the superconducting
ground state, in the BCS limit, the latter contributes only
at frequencies larger than twice the superconducting gap. At
nonzero temperatures, there is finite contribution even inside
this frequency window but exponentially suppressed.

For small values of U , the above features appear to be
generic and a representative behavior is shown in Fig. 7(a)
for U = 2. The gapped spectrum results in the vanishing of
the optical conductivity for δ � 0.4. At small δ, the system
remains a metal. However, there is intrinsic disorder present
due to the small number of attractive centers which give rise
to enhanced scattering even at low temperatures and results
in a non-Drude behavior of σ (ω). In the large U limit, optical
conductivity behaves differently as a function δ. Strong optical
response at larger ω arises due to excitations across the SC
gap, while the excitations within the kinetic band, separated
from the lower band at −U , give rise to low frequency non-
Drude-like behavior [See Fig. 7(b)].

We summarize these findings in the next two figures. In
Fig. 8, we give two representative phase diagrams of the
site-diluted attractive Hubbard model as a function of T and
U for two specific values of δ = 0.8 [Fig. 8(a)] and δ = 0.5
[Fig. 8(b)]. At small values of U , the system turns from a

FIG. 8. Two representative phase diagrams of the site-diluted
attractive Hubbard model as a function of temperature T and strength
of the attractive interaction U for (a) δ = 0.8 and for (b) δ = 0.5. SC,
NM, PG, and G represent superconducting, normal metal, pseudogap
phase, and gapped phases.

BCS-like superconducting state to a normal metal above Tc,
which scales with the pairing gap. However, at larger U ,
even though the pairing gap continues to increase, Tc reduces
from the mean-field value due to strong phase fluctuations.
The normal state above Tc has a quasiparticle gap in the
spectrum. However, there is an intervening region where a
hard gap does not appear in the spectrum, but there is a
significant reduction of spectral weight at low frequencies. We

FIG. 9. Phase diagram of the site-diluted attractive Hubbard
model as a function of the superconducting transition temperature
Tc, attractive interaction U , and the average density of attractive
centers δ.
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call this the pseudogap phase. For smaller δ, SC ground state
vanishes above a critical value of U since there is a critical
dilution δc that increases with U . Finally, Fig. 9 shows the
three-dimensional phase diagram of the model as a function
of T , δ, and U , clearly bringing out the variation of δc with
U and the nonmonotonic behavior of Tc as the strength of
interaction changes.

VI. CONCLUSIONS

In this paper, we studied random local attraction driven
metal-superconductor transition in two dimensions using the
random attractive Hubbard model. A real space MC method
was employed after introducing pairing and density fields via
HS transformation. The method is capable of capturing the
physics from weak to strong coupling regimes and gives a real
space picture of the transition, both of which are crucial to the
problem at hand. In particular, the effect of intrinsic disorder
on the BCS-BEC crossover has been studied.

The main results are as follows. As observed in previous
studies, we find that there is a critical concentration of at-
tractive centers needed for the onset of global phase coherent
SC. The critical concentration increases with U and appears
to saturate above some value. For small values of U , the
transition is of percolative nature and the physics is akin to
that of a BCS superconductor. The picture that emerges is
that of superconducting puddles, internally phase coherent,
percolating at a critical concentration of attractive centers to
give a globally superconducting state. However, the scenario
is different at larger strengths of interaction. In this regime,
the zero-temperature pairing gap continues to increase with
U , local pairing tendencies persist even above the transition
temperature, but a dominant role is played by strong spatial
phase fluctuations, resulting in a BCS-BEC crossover. Transi-
tion temperatures are suppressed even though there is a robust
spectral gap due to local pairing and Tc shows a nonmonotonic
behavior as U is varied. The high-temperature normal state
transforms from metal to a gapped phase as U increases and
has pseudogap features in the intermediate region due to the
existence of the short-range order of the amplitude of the
order parameter. Spectral functions and transport properties
corroborate these findings.

Next, we comment on a few shortcomings of our study.
First, we have allowed for numerically exact treatment of
thermal fluctuations of the order parameter (and also, of the
charge field) but neglected their dynamics. Thus, quantum
fluctuations of the order parameter are not taken into account.
This may affect the low-temperature properties, especially
near the critical concentration of impurities. Second, while
the method works very well away from half filling, it is not

expected to capture the charge density wave (CDW) instability
at half filling that competes with SC. One expects that Tc

will reduce to zero at larger values of U and the system will
transform to a CDW phase. The present method allows for
large charge fluctuations at sites as Ui varies. This calls for
caution. In real systems, there will be long-range Coulomb
interaction, which would not allow such charge fluctuations
as it costs Coulomb energy. We wish to address this problem
in the future.

In real two-dimensional systems, there cannot be true finite
temperature phase transitions, in contrast to what is seen here,
since thermal fluctuations prohibit any order at nonzero tem-
peratures. Superconductors and superfluids in two dimensions
go through a phase transition at a finite temperature known as
BKT transition [56]. Correlation length diverges algebraically
instead of exponentially at the transition point. Tc shown here
should be thought of as a sort of crossover scale below which
correlation length increases rapidly. This is driven by the
vortex excitations at low temperature and it develops quasi-
long-range order. At low temperature, vortices with opposite
velocity attract each other while, at high temperature, a large
number of free vortices appear and the system goes into a
disordered phase.

The present work could be extended in many ways, some
of which are currently underway. One could include the
dynamics of the order parameter field in a semiclassical way
after obtaining the equilibrium configurations. This would
allow us to extract some interesting physical properties in the
normal phase having preformed pairs at the moderate-to-large
coupling, reminiscent of the Nernst effect in cuprates, and its
persistence in the BEC regime. One could study the competi-
tion between disorder arising due to site dilution with those
of alternate origin, for example, the presence of magnetic
impurities. The latter is expected to have a detrimental effect
on the BCS state. The effect of site dilution in an insulating
host is an interesting problem where an insulating gap and
SC gap compete with each other [57]; the application of the
present method shows a further suppression of Tc as one
moves toward the clean limit (δ ∼ 1) and a transition to a
charge-modulated insulating phase [58]. A further extension
would be to study the role of site dilution in SC systems
with order parameter symmetry different from the s-wave
considered here as well as in imbalanced lattice fermion sys-
tem [59] that could support breached pair and Fulde-Ferrel-
Larkin-Ovchinnikov states.
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