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Pinch point singularities of tensor spin liquids
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Recently, a new class of three-dimensional spin liquid models have been theoretically discovered, which
feature generalized Coulomb phases of emergent symmetric tensor U (1) gauge theories. These “higher rank”
tensor models are particularly intriguing due to the presence of quasiparticles with restricted mobility, such as
fractons. We investigate universal experimental signatures of tensor Coulomb phases. Most notably, we show that
tensor Coulomb spin liquids (both quantum and classical) feature characteristic pinch point singularities in their
spin-spin correlation functions, accessible via neutron scattering, which can be readily distinguished from pinch
points in conventional U (1) spin liquids. These pinch points can thus serve as a crisp experimental diagnostic
for such phases. We also tabulate the low-temperature heat capacity of various tensor Coulomb phases, which
serves as a useful additional diagnostic in certain cases.
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I. INTRODUCTION

Quantum spin liquids describe exotic, interacting spin
systems, in which quantum fluctuations prevent conventional
magnetic ordering all the way down to zero temperature.
These phases are characterized by a pattern of long-range
quantum entanglement in their ground states and the presence
of exotic fractionalized excitations. Spin liquids are believed
to occur in gapped and gapless varieties [1–6], and are theo-
retically well described as emergent gauge theories [7,8].

The gauge theory description of a spin liquid can take a
number of different forms, ranging from intricate string-net
models [9] to familiar U (1) Maxwell theory. The latter
case has a number of promising experimental candidates in
the form of the “spin-ice” pyrochlore materials, including
the classical spin ices Dy2Ti2O7 and Ho2Ti2O7, as well as
the quantum spin ices Yb2Ti2O7 and Pr2Zr2O7 [7,10–16].
Over a range of low temperatures, these materials exist in
a symmetry-preserving phase consistent with the expected
behavior of a deconfined Coulomb phase of an emergent U (1)
gauge field. It is possible that in some materials, this emergent
electromagnetism may survive down to zero temperature, pro-
viding an example of a U (1) quantum spin liquid. Regardless,
we may conclusively identify these materials as having at least
classical spin liquid behavior: resisting symmetry breaking
down to unusually low temperatures due to frustration be-
tween many energetically equivalent classical configurations.

Conventional U (1) spin liquids exhibits striking exper-
imental signatures. Most notably, the Coulomb phase of
a U (1) gauge theory exhibits characteristic “pinch point”
singularities in its correlation functions; these pinch points
may be observed in spin-spin correlation functions that are
readily measured via neutron scattering experiments, which
have been usefully applied to numerous spin liquid candi-
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dates [3,17–21]. In the quantum spin liquid, these singularities
arise as a direct consequence of the gapless excitations of the
system, corresponding to the emergent photon of the U (1)
gauge theory. Such singularities are absent in gapped quantum
spin liquids.

The conventional U (1) spin liquid, described in terms of an
emergent Maxwell theory, has been a subject of intense the-
oretical and experimental study during the past two decades.
We refer the reader to some reviews for an initial overview
[7,18], and to some selected literature for further details
[8,10,11,17,19,22–37]. Meanwhile, recent theoretical devel-
opments have uncovered a new class of generalized U (1) spin
liquids which we have only just begun to understand [38–41].
Instead of the familiar vector U (1) gauge field of Maxwell
theory, these three-dimensional spin systems are described
by the deconfined “Coulomb” phase of emergent symmetric
tensor U (1) gauge fields. Just like their vector gauge theory
counterparts, such symmetric tensor U (1) gauge theories have
instanton instabilities in two spatial dimensions arising from
issues of compactness, but have stable deconfined phases in
three dimensions (except in certain special cases) [39–41].1

This new class of spin liquids has some properties in com-
mon with the conventional U (1) spin liquid, such as protected
gapless gauge modes. What sets these new tensor gauge theo-
ries apart, however, is the behavior of the emergent, gapped
charge excitations, which have severe restrictions on their
mobility. The gauge charges can be restricted to motion within
one- or two-dimensional subspaces, or in certain models, can
be restricted from moving at all. These immobile, charged
excitations (termed “fractons”), as well as the gapped excita-
tions with reduced mobility, were first obtained in completely
gapped three-dimensional systems with intricate patterns of
long-ranged entanglement, and have since been encountered
in a wide variety of physical systems. We refer the reader to

1Compact antisymmetric U (1) tensor gauge fields tend to not have
deconfined phases in three or fewer dimensions [42–46].
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FIG. 1. The pinch point singularities of a conventional U (1) spin
liquid (left) have a characteristic twofold symmetry. In contrast,
pinch points of the rank-2 tensor spin liquids (right) have a char-
acteristic fourfold symmetry, which should allow for easy distinction
in neutron-scattering data. [The two plots display 〈Ex (q )Ey (−q )〉
(left) and 〈Exx (q )Eyy (−q )〉 (right), with cross sections taken in the
qz = 0 plane.]

a recent review [47] for an overview of fractons, and to the
literature for further details [48–88]. Gapped fracton phases,
such as Haah’s code or the X-cube model, display glassy
quantum dynamics in their approach to equilibrium, which
may serve as a useful diagnostic of these systems [57]. On the
other hand, the “generalized” Hall conductivity predicted for
the two-dimensional chiral gapped tensor gauge theory [56]
has been conjectured to be a manifestation of the torsional
Hall viscosity [77], providing another experimental signature
of fracton physics.

While the gapless tensor U (1) spin liquids have likewise
been a topic of intense recent theoretical study, little is known
about sharp experimental signatures of these systems. In the
present work we will identify certain key signatures which
can be used to diagnose the presence of different types of
emergent tensor U (1) spin liquids in experiments, placing
particular emphasis on the rank-2 spin liquids, i.e., where
the emergent gauge field in the system of interest is a two-
component symmetric tensor. Such experimental metrics may
provide important clues which guide the search for physical
systems realizing tensor Coulomb behavior.

Most notably, we study the behavior of the spin-spin
correlation functions of these new spin liquids. We begin
by studying the ground state correlation functions of the
quantum version of these spin liquids by making use of
their low-energy effective field theory [39–41]. We show that
the spin-spin correlation functions exhibit a new pinch point
singularity due to the tensor nature of the gapless gauge ex-
citations. Certain features of these singularities are universal,
independent of details at the lattice scale, and are applicable
to any microscopic model featuring a tensor Coulomb phase.
These universal features allow the tensor U (1) spin liquids
to be easily distinguished from a conventional U (1) spin
liquid in experiment. For rank-2 tensor models, we show that
the pinch points have a characteristic fourfold symmetry, as
opposed to the twofold symmetry of pinch points in more
conventional spin liquids (see Fig. 1), which will allow for
straightforward detection in experiments. We note that the
singularities generically remain pointlike in these systems,
in contrast with the “pinch line” singularities seen in certain
nongeneric tensor spin liquid models [89]. We then move on

to study the finite-temperature spin-spin correlation functions
of classical tensor Coulomb spin liquids, which we show
have similar pinch point singularities. These pinch points,
both classical and quantum, can be directly accessed via
neutron scattering data. The scattering function for neutrons
impinging on the sample is given directly in terms of the spin-
spin correlation functions of the system, which can thereby be
effectively mapped out in order to see pinch point singularities
[3,18–21]. The detection of such fourfold pinch points would
be an important confirmation of an emergent tensor gauge
structure, and therefore of fracton behavior. Such an exper-
imental detection of fractons would be of broad interest to
the numerous research communities studying these particles,
ranging from quantum information to many-body localization
[47].

In addition to pinch point singularities, we also tabulate the
heat capacities of the various tensor U (1) spin liquids, which
should be readily accessible to experiments. The gapless
modes of these models lead to a power-law contribution to
the heat capacity, distinguishable from that of vector U (1)
models in certain cases. In a conventional U (1) spin liquid,
the linear dispersion of the gauge modes means that their
contribution to the heat capacity cannot be easily separated
from that of phonons, and hence does not serve as a useful
experimental probe. In contrast, some of the tensor U (1)
spin liquids have nonlinearly dispersing gauge modes which
provide a dominant contribution to the low-temperature heat
capacity and should thus serves as a useful diagnostic for the
tensorial nature of the gauge field.

II. REVIEW OF TENSOR GAUGE THEORY

We here review the basic properties of the two simplest
tensor U (1) quantum spin liquids and refer the reader to
previous literature [39–41] for more details. These spin liquids
are described in terms of an emergent, symmetric rank-2
tensor field Aij , where all indices refer to spatial coordinates
i, j = 1, 2, 3. This gauge field possesses a canonical conju-
gate variable Eij , which corresponds to a generalized electric
field. As we discuss below, there is a direct microscopic
mapping from certain quantum rotor models (equivalent to
large-S spin models) onto such tensor gauge theories, with
the gauge invariant observables, such as electric field, directly
corresponding to spin variables. Multiple such tensor gauge
theories may be defined, each of which is uniquely determined
by different chosen forms for Gauss’s law.

A. Scalar charge theory

One simple theory we can write down has a Gauss’s law of
the form

∂i∂jE
ij = ρ, (1)

for a scalar-valued charge ρ. (We use the Einstein summation
convention throughout, with repeated indices summed over.)
Within the low-energy sector, the corresponding gauge trans-
formation is

Aij → Aij + ∂i∂jα, (2)

where α is a scalar function with arbitrary spatial dependence.
This system admits gapless gauge modes, with a low-energy
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Hamiltonian given by

H =
∫

d3x
1

2
(EijEij + BijBij ), (3)

where Bij = εiab∂aA
j

b is the gauge-invariant magnetic field
operator. This Hamiltonian leads to five gapless gauge modes,
each with a linear dispersion ω ∝ q. The existence of five
gauge modes can be understood via a simple counting ar-
gument. A symmetric tensor in three dimensions has six
independent degrees of freedom. The scalar charge represents
a single gapped degree of freedom, which leaves five degrees
of freedom for the gapless gauge modes, as discussed in
Refs. [39–41].

Much more notable than the gauge mode, however, is the
charge sector of the theory, which has properties with no
analog in more conventional gauge theories. In addition to the
conservation of charge∫

d3x ρ = const, (4)

this theory also exhibits conservation of dipole moment∫
d3x (ρxi ) = const. (5)

This conservation law has the severe immediate consequence
that the fundamental charges of the theory are strictly immo-
bile, i.e., are fracton excitations. Only charge-neutral bound
states, such as dipolar bound states, are free to move around
the system.

B. Vector charge theory

It is also possible to consider a slightly modified theory of
a rank-2 tensor, with a different version of Gauss’s law, which
takes the form

∂iE
ij = ρj , (6)

for a vector-valued charge density ρj . The corresponding low-
energy gauge transformation is

Aij → Aij + ∂iαj + ∂jαi, (7)

where αi is a function with arbitrary spatial dependence. The
low-energy Hamiltonian for the gauge sector of this theory
takes the same form as in Eq. (3), but with a modified mag-
netic field operator Bij = εiabεjcd∂a∂cAbd . In this case, the
Hamiltonian leads to three gapless quadratically dispersing
gauge modes ω ∝ q2. This theory also possesses an unusual
set of charge conservation laws, in that the vector charges obey
not only conservation of charge,∫

d3x ρi = const, (8)

but also a second conservation law pertaining to the angular
moment of charge,∫

d3x εijkρjxk = const. (9)

This second conservation law has the unusual consequence
that the vector charges are restricted to motion only in the

FIG. 2. A microscopic model for the tensor gauge theories can
be easily obtained via quantum rotors, with one quantum rotor on
each plaquette of a cubic lattice, and three rotors on each site.

direction of their charge vector, while motion in the perpen-
dicular directions is ruled out by gauge invariance. This causes
the charges to behave like one-dimensional particles, despite
being embedded in three-dimensional space.

C. Microscopic models

We here review some microscopic models, first discussed
in Ref. [38], which naturally give rise to the two theories
discussed above. These theories can be realized in the context
of lattice quantum rotor systems, which has a Hilbert space
equivalent to that of a large-S spin system. In fact, both
the scalar and vector charge theories can be realized with
the same microscopic Hilbert space, with different choices
of Hamiltonian. We here focus on the vector charge theory,
which is slightly simpler to construct. We refer the reader to
Refs. [38,39] for more details.

The Hilbert space can be constructed by placing quantum
rotors on the vertices and plaquettes of a cubic lattice, with
each rotor label by its integer angular momentum quantum
number, which we write as n (Fig. 2). Specifically, we place
one rotor on each plaquette, which we label as nxy , nxz, or nyz,
according to which plane that plaquette is a part of. We place
three rotors on each vertex, which we label as (nxx, nyy, nzz).
This choice of labeling is suggestive, since it shows that the
rotors have been placed in such a way that the components
can transform into each other in a tensorial way under spatial
rotations.

We must now write down a Hamiltonian in such a way as
to mimic the desired Gauss’s law. For the case of the vector
charge theory, the low-energy (i.e., charge-free) Gauss’s law
constraint is just ∂iE

ij = 0. One can naturally regularize this
equation on the cubic lattice by letting the constraint live on
links, taking sums and differences of all the electric tensor
components adjacent to that link. We can begin to mimic this
in rotor language by writing down a term in the Hamiltonian
of the form

H0 = V
∑
links

⎛
⎝∑

adj

n

⎞
⎠

2

, (10)
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where the outer sum runs over all links of the lattice. The
inner sum runs over all rotors adjacent to that link, which
importantly must also share an index in common with its
direction. For example, for an x directed link, the sum will
include nxx , nxy , and nxz terms. As a technical detail, we
note that vertex variables must actually be counted twice in
this sum, as compared to the plaquette variables, for reasons
discussed in Ref. [38]. Note that the form of the Hamiltonian
seen above counts all of the n with positive signs. In order
to obtain the correct behavior of the Gauss’s law, one must
therefore stagger the signs in mapping from n to E. In other
words, we can write Exx = η nxx , where η alternates positive
and negative from one site to the next, and similarly for all
other components.

The Hamiltonian above already captures the Gauss’s law
constraint, which we will see is the most important piece for
understanding the pinch point singularities, to be discussed
next. For a classical spin liquid, at finite temperature, impos-
ing this constraint is sufficient to extract all of the relevant
physics. For a quantum spin liquid, however, one must add
additional terms to the rotor Hamiltonian in order to mimic
the E2 + B2 behavior of the tensor Maxwell Hamiltonians
described above. These terms can be added in straightforward
fashion. We refer the reader to Refs. [38,39] for more details.

III. PINCH POINT SINGULARITIES

We have seen that the physical spin operators of a spin
liquid can be mapped directly onto gauge-invariant field op-
erators of an emergent gauge theory. We here focus on the
case where the spins map onto electric field operators (similar
arguments apply when the spins are mapped onto magnetic
operators.). We calculate the correlation function of a rank-2
electric tensor as

〈Eij (x)Ek�(0)〉 (11)

and similarly for tensors of higher rank. The physical spin
correlators in the long distance limit will be dominated by the
correlation functions of the gapless gauge field, and given by
some linear combination of these tensor correlation functions

〈Sz(x)Sz(0)〉 = Cijk�〈Eij (x)Ek�(0)〉. (12)

Here the separation x is implicitly large, and the structure
factor Cijk� is constrained by the symmetries of the underlying
lattice. In the following, we focus on the universal (long
distance, small wave vector) behavior of these correlation
functions, which should not depend on the precise form of
the structure factors.

A. Conventional U (1) spin liquid

For convenience, we recall the calculation of pinch point
singularities in a conventional U (1) spin liquid, which will
generalize naturally to the tensor case. The appropriate
low-energy Hamiltonian takes the usual Maxwell form,

H =
∫

d3x
1

2
(EiEi + BiBi ), (13)

where Bi = εijk∂jAk , and we implicitly have the gauge
constraint ∂iE

i = 0. In momentum space, the Hamiltonian

decouples into independent harmonic oscillator modes, and
thus by equipartition, the two terms of the Hamiltonian con-
tribute equally to the ground state energy. For Maxwell theory,
the dispersion is linear ω ∝ q, leading to a zero point energy
proportional to q for each mode, from which we conclude that

〈Ei (q )Ei (−q )〉 ∝ q. (14)

We must now restore the full tensor structure. To do this, we
start with the isotropic result δij , as if all modes were present,
and then project out the divergence mode, which is absent
from the low-energy sector. The final electric field correlator
then takes the form

〈Ei (q )Ej (−q )〉 ∝ q

(
δij − qiqj

q2

)
. (15)

The second term, arising due to the projection into the gauge
sector, leads to “pinch point” singularities in the correlation
function, in that the ratio qiqj /q2 has different limits upon
approaching the origin q = 0 from different directions, as
depicted schematically in Fig. 1. These singularities can be
easily detected via neutron scattering, thereby serving as a
powerful tool for diagnosing U (1) spin liquids in experiments.
We note that an important feature of the correlation function
Eq. (15) is its twofold symmetry, illustrated explicitly in, e.g.,
the 〈Ex (q )Ey (−q )〉 correlator shown in Fig. 1.

One can also consider the finite-temperature behavior of
correlation functions in a classical U (1) spin liquid, where
the quantum splitting of degeneracies is unimportant. In this
case, we impose the spin-ice constraint ∂iE

i = 0, but regard
all states within this spin-ice manifold as being roughly ener-
getically equivalent. The free energy of the system is then set
almost entirely by entropic effects F ≈ −T S. By the central
limit theorem, the probability distribution for the emergent
electric field Ei must be Gaussian in the thermodynamic
limit [18], such that

F/T = K

∫
d3x EiEi, (16)

for some constant K , where the spin-ice constraint ∂iE
i = 0

is left implicit. Were it not for this constraint, we could simply
conclude that 〈Ei (q )Ej (−q )〉 ∝ (1/K )δij . After projecting
out the longitudinal component, however, the correct corre-
lation function behaves as

〈Ei (q )Ej (−q )〉c ∝ 1

K

(
δij − qiqj

q2

)
, (17)

where the subscript c denotes “classical,” indicating a simple
thermal correlation function. Note that this classical corre-
lation function has the same singular tensor structure as the
quantum case, but with a different prefactor. Note also that
the pinch point structure comes purely from projection into
the spin-ice manifold, such that the basic result is independent
of the specific model (16) used to derive it.

B. Scalar charge theory

For the scalar charge theory, defined by the Gauss’s law
∂i∂jE

ij = ρ, the low-energy Hamiltonian takes the same
schematic form as in Maxwell theory, as seen in Eq. (3),
with the implicit gauge constraint ∂i∂jE

ij = 0. As in Maxwell
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theory, the dispersion of the gauge modes is linear. By the
same equipartition argument as before, the zero-temperature
quantum correlation function satisfies

〈Eij (q )Eij (−q )〉 ∝ q. (18)

To get the correct tensor structure, we start with the isotropic
symmetric tensor 1

2 (δikδj� + δi�δjk ) and project out the qiqj

component

〈Eij (q )Ek�(−q )〉 ∝ q

(
1

2
(δikδj� + δi�δjk ) − qiqjqkq�

q4

)
,

(19)

which exhibits a pinch point singularity at q = 0, in the sense
of different limiting behavior when approaching the origin
from different directions. Notice, however, that the rank-4 ten-
sor structure of the correlation function (19) manifests itself in
a characteristic fourfold singularity pattern, as opposed to the
twofold symmetry of pinch points in a conventional U (1) spin
liquid. Note also that the fourfold symmetry is present only
in certain components of this rank-4 tensor, e.g., 〈ExxEyy〉,
while others such as 〈ExxExx〉 only possess a twofold symme-
try. However, the presence of a fourfold symmetry in certain
components of the correlator, as depicted in Fig. 1, will allow
for easy distinction between this tensor gauge theory and more
familiar spin-ice models described by vector gauge theories.
Importantly, note that this fourfold symmetry only holds in
the immediate vicinity of the pinch point singularity, while
the overall symmetry of the spin-spin correlation functions
throughout the Brillouin zone is determined by the symmetry
of the underlying lattice.

In close analogy with the conventional U (1) spin liquid,
we can also consider a classical analog of this tensor Coulomb
phase, where only the spin-ice constraint ∂i∂jE

ij = 0 is im-
portant, while the quantum splitting of degeneracies can be
ignored. By the central limit theorem, we can once again
conclude that the probability distribution for Eij takes a
Gaussian form, such that the free energy can be written as

F/T = K

∫
d3x EijEij , (20)

for some constant K . The classical correlation function then
takes the form

〈Eij (q )Ek�(−q )〉c ∝ 1

K

(
1

2
(δikδj� + δi�δjk ) − qiqjqkq�

q4

)
,

(21)

which has the same fourfold behavior as the quantum
correlation function (19), but with a different, nonuniversal
prefactor. Again, the pinch point structure comes purely from
projection into the “higher rank” spin-ice manifold.

C. Vector charge theory

For the vector charge theory, defined by ∂iE
ij = ρj , the

low-energy Hamiltonian leads to gapless gauge modes with
quadratic dispersion ω ∼ q2, unlike the previously studied
theories. The implicit gauge constraint in the low-energy
sector is now ∂iE

ij = 0. By the usual equipartition argument,
the zero-temperature quantum correlation function satisfies

〈Eij (q )Eij (−q )〉 ∝ q2. (22)

In order to restore the tensor structure, we can start with
the isotropic symmetric tensor then add terms to project off
components along the q direction,

〈Eij (q )Ek�(−q )〉 ∝ q2

[
1

2
(δikδj� + δi�δjk ) + qiqjqkq�

q4
− 1

2

(
δik qjq�

q2
+ δjk qiq�

q2
+ δi� qjqk

q2
+ δj� qiqk

q2

)]
. (23)

It can be readily checked that this expression annihilates any rank-2 tensor with a component along q in either index. This
correlation function once again has a pinch point singularity at q = 0 with a characteristic fourfold symmetry, similar to that
of the scalar charge theory. However, the pinch point singularity of the vector charge theory has a different power-law behavior
than that of either the conventional U (1) spin liquid or the scalar charge theory. The exponent with which this correlator diverges
can thus be readily identified in neutron scattering data, making this type of spin liquid particularly simple to distinguish in
experiments.

In close analogy with the previous section, we can also immediately write down the finite-temperature correlation function of
the corresponding classical tensor Coulomb phase as

〈Eij (q )Ek�(−q )〉 ∝ 1

K

[
1

2
(δikδj� + δi�δjk ) + qiqjqkq�

q4
− 1

2

(
δik qjq�

q2
+ δjk qiq�

q2
+ δi� qjqk

q2
+ δj� qiqk

q2

)]
, (24)

which has the same fourfold symmetry as the quantum
case (15).

D. Traceless theories

For completeness, we briefly discuss the pinch point
singularities of the traceless versions of the rank-2 gauge
theories, which will display the same fourfold symmetry
pattern. When the scalar charge theory is given an extra
tracelessness constraint Ei

i = 0, its dispersion remains

linear, and the corresponding pinch points have the same
scaling 〈Eij (q )Ek�(−q )〉 ∝ q, so this theory is not easily
distinguished from its traceful cousin via neutron scattering.
In contrast, when the vector charge theory has tracelessness
imposed, its dispersion becomes cubic ω ∝ q3. In this
case, the scaling of the pinch point singularities changes to
〈Eij (q )Ek�(−q )〉 ∝ q3, which can be clearly distinguished
in experiments from all of the previously studied U (1) spin
liquids.
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TABLE I. Summary of heat capacities for the rank-2 tensor U (1)
spin liquids.

Gauge Heat
Theory dispersion Polarizations capacity

Scalar charge ω ∼ q 5 C ∼ T 3

Traceless scalar ω ∼ q 4 C ∼ T 3

charge
Vector charge ω ∼ q2 3 C ∼ T 3/2

Traceless vector ω ∼ q3 2 C ∼ T

charge

IV. HEAT CAPACITY

Besides the ground state correlation functions, another
useful diagnostic for certain tensor Coulomb spin liquids is the
low-temperature heat capacity. Since all the emergent charges
are gapped excitations, their contribution to heat capacity will
be exponentially suppressed, i.e., follow Arrhenius behavior,
as discussed in Ref. [57]. Hence, the low-temperature heat
capacity will be dominated by the contribution from the
gapless gauge modes, which depends on both the number of
gauge modes and their dispersion.

Let us assume that the gauge mode has np independent
polarizations and that its dispersion is given by ω ∼ qa . Then
the energy density at temperature T is given by

E/V ∼ np

∫
d3q

qa

eqa/T − 1

= 4πnp

a
�

(
3 + a

a

)
ζ

(
3 + a

a

)
T

3+a
a , (25)

where we have set kB = 1. For the usual Maxwell theory in
3+1D, where a = 1 and np = 2, this reproduces the usual
heat capacity

Cv/V = d

dT
(E/V ) = 8π5T 3

15
, (26)

in units where the speed of light c = 1.
For the tensor U (1) spin liquids, the results are tabulated

in Table I. For both the traceful and traceless versions of the
scalar charge theory Cv ∼ T 3, which is indistinguishable from
the usual Maxwell theory (and from phonon contributions)
since only the numerical prefactors are different between
these, reflecting the difference in the number of independent
gauge modes. In principle, one can imagine detecting the
number of gauge modes in the system by deforming it along
different directions by applying stress/strain, which will result
in the gauge modes along that direction gaining a different
dispersion. However, both the traceful and traceless versions

of the vector charge theory display markedly different tem-
perature scaling, which should serve as clear and distinctive
experimental signature of these phases.

V. CONCLUSIONS

In this work we have identified several key signatures
which can be used to diagnose tensor Coulomb spin liquid
phases, which feature an emergent deconfined U (1) symmet-
ric tensor gauge theory. Most notably, these phases exhibit
pinch point singularities in spin-spin correlation functions,
which can be easily observed in neutron scattering data.
These pinch point singularities are qualitatively different from
those of a conventional U (1) spin liquid, which will allow
these systems to easily be distinguished from more familiar
spin-ice materials. Specifically, a rank-2 tensor model has a
characteristic fourfold symmetry pattern, in contrast with the
twofold symmetry of pinch points in conventional U (1) spin
liquids. For tensor U (1) spin liquids with rank higher than
two, similar logic indicates that the pinch point singularity
structure is determined by the properties of the low-energy
gauge modes. For a rank n theory, the resulting pinch point
will have a 2n-fold symmetry.

Additionally, we tabulated the heat capacity of various
tensor Coulomb spin liquids, which provides an additional
metric for diagnosing certain types of these phases. These
signatures may serve to inform the future search for material
realizations of tensor Coulomb spin liquids. Apart from the
diagnostics considered in this work, there remain several
other features of tensor gauge theories which are expected
to display behavior distinct from that of conventional vector
gauge theories. For instance, the linear response coefficients
of a tensor gauge theory should provide another useful ex-
perimental metric for establishing the presence of a tensor
Coulomb phase, as should the dynamical behavior of the
spin correlations (for usual vector gauge theories, this was
discussed in Refs. [90,91]). These additional signatures will
be discussed at length elsewhere [92].
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