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Dirac composite fermions and emergent reflection symmetry
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Motivated by the appearance of a “reflection symmetry” in transport experiments and the absence of statistical
periodicity in relativistic quantum field theories, we propose a series of relativistic composite fermion theories
for the compressible states appearing at filling fractions ν = 1/2n in quantum Hall systems. These theories
consist of electrically neutral Dirac fermions attached to 2n flux quanta via an emergent Chern-Simons gauge
field. While not possessing an explicit particle-hole symmetry, these theories reproduce the known Jain sequence
states proximate to ν = 1/2n, and we show that such states can be related by the observed reflection symmetry,
at least at mean-field level. We further argue that the lowest Landau-level limit requires that the Dirac fermions
be tuned to criticality, whether or not this symmetry extends to the compressible states themselves.
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I. INTRODUCTION

A paradigmatic example of a strongly interacting metallic
state arises in the context of two-dimensional (2D) systems of
electrons in a strong magnetic field when the lowest Landau
level (LLL) is at filling ν = 1/2. However, despite many
years of effort, concrete theoretical understanding of this state
remains elusive. Historically, the most successful approach to
this problem has been that of Halperin, Lee, and Read (HLR)
[1], which utilizes the notion of flux attachment, in which
a theory of nonrelativistic particles is exactly mapped to a
theory of “composite particles” (fermions or bosons) coupled
to an Abelian Chern-Simons gauge field [2]. Such mappings
have been foundational in the theory of the fractional quan-
tum Hall (FQH) effect [3–5], explaining the observed Jain
sequence FQH states as integer quantum Hall (IQH) states of
composite fermions. In the HLR approach, two flux quanta are
attached to each electron, completely screening the magnetic
field and yielding a theory of a Fermi surface of nonrelativistic
composite fermions f , strongly coupled to a Chern-Simons
gauge field aμ = (at , ax, ay ),

LHLR = f †(i∂t + μ + at )f − 1

2m
|(i∂i + ai + Ai )f |2

+ 1

4π

1

2
ada + · · · , (1.1)

where Ai = B
2 (xŷ − yx̂ ) is the background vector potential,

and we use the notation AdB = εμνλAμ∂νBλ. Here we require
that the emergent gauge field cancels the external magnetic
field, i.e., 〈εij ∂iaj 〉 = −εij ∂iAj . The HLR theory has seen
great phenomenological success: it explains the existence of
the observed metallic state [6], and the large cyclotron radii
of the composite fermions near ν = 1/2 lead to quantum
oscillations which have been observed experimentally [7–11].

Nevertheless, the HLR theory suffers from several well-
known problems. First, as a theory of a Fermi surface strongly
coupled to a gauge field, it is plagued by infrared (IR)

divergences, and the random-phase approximation (RPA) is
uncontrolled. Additionally, the HLR theory is not a proper
LLL theory, since a theory of composite fermions which are
charged under electromagnetism will not have holomorphic
wave functions [12]. Finally, while the LLL Hamiltonian at
ν = 1/2 is particle-hole (PH) symmetric [13], and PH sym-
metric response has been observed experimentally [14–16],
the HLR theory does not seem to possess this symmetry: flux
is attached to electrons, rather than holes. This issue has also
found relevance in recent quantum oscillation experiments
[17,18].

A great deal of progress on the latter two problems was
made recently, when Son proposed a Dirac composite fermion
theory of the ν = 1/2 state [19]. This theory is based on
the fact that the LLL limit of a system of electrons with
gyromagnetic ratio g = 2 can be identified with the massless
limit of a Dirac “electron” in a magnetic field,

Le = i�̄ /DA� + 1

8π
AdA, (1.2)

where we have introduced the notation D
μ

A = ∂μ − iAμ and
/D = Dμγμ, and γμ are the Dirac gamma matrices. The term
AdA/8π can be thought of as coming about due to the
presence of a heavy fermion doubler.1 Since Dirac fermions
have Landau levels with both positive and negative energies,
with one sitting at zero energy, the zeroth Landau level is half
filled when the chemical potential is zero. Such a state is au-
tomatically symmetric under PH, which is just the exchange
of empty and filled states. This led Son to conjecture that this
theory is dual to one of Dirac composite fermion vortices ψ at
finite density, strongly coupled to an emergent gauge field aμ

1Throughout this paper, we approximate the Atiyah-Patodi-Singer
η invariant as a level-1/2 Chern-Simons term and include it in the
action.
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without a Chern-Simons term (QED3),

LSon = iψ̄ /Daψ + 1

4π
adA + 1

8π
AdA + · · · , (1.3)

where the PH symmetry of the Dirac electron problem now
manifests as a time reversal (T) symmetry of the composite
fermions. The · · · denote irrelevant operators, such as the
Maxwell term for aμ. This duality between a free Dirac
fermion and QED3 was quickly shown to be a part of a “web
of dualities,” at the center of which is a relativistic flux attach-
ment duality relating a free Dirac fermion to a Wilson-Fisher
boson coupled to a Chern-Simons gauge field [20,21]. This
fermion-vortex duality has also led to progress in other areas
of condensed-matter physics [22–25]. Despite its success in
incorporating PH symmetry, it still remains to understand how
Son’s theory might emerge from microscopics and the extent
to which it can be experimentally distinguished from the HLR
theory, although very interesting arguments have been put for-
ward suggesting that Son’s theory may emerge from the HLR
theory upon incorporating the effect of quenched disorder
[26–28] or as a percolation transition between the HLR theory
and its PH conjugate [29]. Encouragingly, evidence for the
Dirac composite fermion theory has been found in numerical
studies [30,31].

A major open question has been whether Son’s proposal
can be extended to describe the compressible states appearing
at other even denominator filling fractions ν = 1/2n. In the
HLR theory, descriptions of these states arise trivially: one
can simply attach an even number of flux quanta so that the
external field is again completely screened. For nonrelativistic
particles, this transformation should be an identity at the level
of the partition function, implying that all of these theories
lie in the same universality class. On the other hand, in
relativistic theories, flux attachment influences both statistics
and spin, and so this transformation is no longer innocuous.
More saliently, while the LLL Hamiltonian for these states is
not PH symmetric, transport experiments have observed an
analogous “reflection symmetry” in the I -V curves about the
ν = 1/3 FQH to insulator transition, which occurs at ν = 1/4
[15,16,32], suggesting that this state might host its own kind
of PH symmetry, or at least that there is a symmetry relating
the Jain sequence FQH states proximate to it. More precisely,
the observed symmetry maps a longitudinal I -Vxx curve at
a filling fraction ν < 1/2n to a I -Vxx curve at a dual filling
fraction ν ′ > 1/2n in which the roles of current and voltage
are exchanged,

(Ei (ν), Ji (ν)) =
(

h

e2
Ji (ν

′),
e2

h
Ei (ν

′)
)

, (1.4)

and the transverse I -Vxy curves in the observed region are all
linear with slope 3 h

e2 . Surprisingly, the observed longitudinal
I -Vxx curves do not appear to be linear except very close
to ν = 1/4, meaning that the observed symmetry extends to
nonlinear response.

The presence of this symmetry makes sense if we view the
state at ν = 1/2n as a limit of the Jain states ν = p/(2np +
1), where n and p are integers. Such states have reflection
conjugates on either side of the point at ν = 1/2n, and we
thus might expect the composite fermions in these states to
experience the same physics. Indeed, to impressively high

precision, the reflection symmetry observed in experiment
appears identical to the one which relates conjugate Jain
states. However, the HLR theory is incompatible with this
symmetry, since the conjugate states in question correspond
to different IQH states of composite fermions.

In this paper, we propose a series of Dirac composite
fermion theories to describe the compressible states at ν =
1/2n. These theories are obtained by attaching an even num-
ber of fluxes to the composite fermions of Son’s theory (3).
They therefore can be thought of as existing in a unified
framework with Son’s theory of ν = 1/2. Although they lack
an explicit analog of PH symmetry, we argue that they can
explain the reflection symmetry observed in experiments. In
particular, we show that in reflection conjugate Jain states, the
composite fermions fill the same number of Landau levels,
in contrast to HLR. Moreover, our theories are consistent
with the LLL limit: as in Son’s theory, our Dirac composite
fermions are electrically neutral. In fact, we show that the LLL
limit ensures that the Dirac composite fermion is massless,
whether or not a mass is allowed by symmetry. If a mass
is indeed allowed by symmetry, that would suggest that the
states at ν = 1/2n for n > 1 are tuned to a quantum critical
point, rather than constituting a genuine phase.

It is not clear to us whether the reflection symmetry of
the Jain states proximate to ν = 1/2n extends to a full blown
symmetry of the theories at ν = 1/2n for n > 1. The case
of ν = 1/2 is special in this regard, since there the reflection
symmetry is identical to PH symmetry, which manifests
itself as the T symmetry of the composite fermion theory.
While the experiments do strongly hint that the compressible
states at ν = 1/2n have this reflection symmetry, they do not
necessarily imply it. This is because the experiments may
not have truly observed the compressible state, instead seeing
the signatures of the phases asymptotically close to ν = 1/4.
However, it is entirely possible that our composite fermion
theories flow to fixed points hosting an enhanced T sym-
metry which is the continuation of the reflection symmetry
of the Jain states. The presence of such a symmetry would
also ensure the masslessness of the Dirac fermions, and it
would imply that our theories display “self-dual” transport at
ν = 1/2n [32].

We finally note that other descriptions of the ν = 1/2n

states have been proposed in Refs. [33,34] using semiclassical
arguments.2 These theories are variants of HLR involving
Fermi surfaces with nonvanishing Berry phases, which are re-
lated to an “anomalous velocity” term associated with the non-
commutative geometry of the LLL [35]. The effect of these
Berry phases is to generate anomalous Hall conductivities that
completely cancel the Chern-Simons terms of HLR. However,
it is not clear whether this cancellation truly occurs beyond
ν = 1/2: without PH symmetry, the Berry phase can run.
These theories also do not seem compatible with the reflection
symmetry of the Jain states. Our expectation is that the same
kind of anomalous velocity that is associated with the Berry
phase can be equally well explained via interactions with a
Chern-Simons gauge field. Evidence for this comes from the

2We thank Y. You for very enlightening discussions about these
theories and their relationship to those presented in this paper.
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fact that our theories lead to the same set of magnetoresistance
minima as the theories of Fermi surfaces with π/n Berry
phases. However, it is difficult to make these connections
precise because band theory intuition cannot be applied to
our strongly interacting problem. In future work, we hope to
elucidate the connections between these theories and the ones
presented here.

We proceed as follows. In Sec. II, we present our proposed
effective-field theories for the ν = 1/2n states. In Sec. III, we
describe how these theories can explain the reflection symme-
try of the Jain states proximate to ν = 1/2n. In Sec. IV, we
argue that the Dirac composite fermions should be massless
by viewing the state at, e.g., ν = 1/4 as the LLL limit of
the HLR theory when the nonrelativistic composite fermions
are placed at half filling. We then discuss some additional
observables in Sec. V, in particular describing how to couple
our theories to background geometry. We conclude in Sec. VI.

II. PROPOSED EFFECTIVE-FIELD THEORIES

We conjecture that the ν = 1/2n state can be described as
a theory of 2n flux quanta attached to a free Dirac fermion.
This flux attachment transformation can be implemented on
the Lagrangian (2) by making the background gauge field
dynamical, A → a, and introducing a new auxiliary gauge
field c at level 2n that couples to a and the background vector
potential A = B

2 (xŷ − yx̂) through BF terms. For a review of
such flux attachment transformations, see Ref. [36];

iψ̄ /Daψ − 1

8π
ada + 1

2π
adc − 2n

4π
cdc + 1

2π
cdA. (2.1)

We note that these transformations are the elements ST −2nS
of the modular group PSL(2,Z), described in condensed-
matter and high-energy contexts by Kivelson, Lee, and Zhang
[37] and Witten [38] respectively. This theory is gauge invari-
ant with all of the gauge fields satisfying the Dirac flux quanti-
zation condition. If we loosen this requirement (an innocuous
thing if our interest is in local properties) and integrate out the
auxiliary gauge field c, we arrive at the theory3

L1/2n = iψ̄ /Daψ − 1

4π

(
1

2
− 1

2n

)
ada

+ 1

2π

1

2n
Ada + 1

4π

1

2n
AdA. (2.2)

Notice that we recover Son’s theory (3) for n = 1. For n > 1,
this theory breaks PH, T, and parity (P) due to the presence
of the nonvanishing Chern-Simons term for a. Thus, naïvely, a
Dirac mass is allowed by symmetry, unless this theory harbors
an enhanced symmetry which prohibits a mass. In the absence
of such a symmetry, these theories are taken to be tuned to a
quantum critical point.

The ν = 1/2n state corresponds to the case where the
composite fermions ψ are at finite density but see a vanishing
magnetic field. If we denote the physical electron density as
ρe = 〈 δL1/2n

δAt
〉 and the magnetic field seen by the composite

3In the remainder of this paper, we will work exclusively with
theories having improperly quantized Chern-Simons levels.

fermions as b∗ = 〈εij ∂iaj 〉, then

ν = 2π
ρe

B
= 1

2n

(
1 + b∗

B

)
, (2.3)

meaning that, indeed, ν = 1/2n implies b∗ = 0. Thus, the
composite fermions form a strongly interacting metallic state.

In the sections that follow, we will see that there are
several reasons to believe that this theory correctly describes
the physics of the ν = 1/2n state. First, we will check that
the IQH states of composite fermions reproduce the Jain
sequences, ν = p/(2np + 1), where p and n are integers.
We will then introduce a PH-like reflection transformation
which maps between Jain states on either side of ν = 1/2n,
and we will see that conjugate Jain states correspond to the
same IQH state of composite fermions, up to a T trans-
formation (ν �→ −ν). This transformation can be related to
boson-vortex exchange upon invoking boson-fermion duality
to obtain theories of composite bosons at ν = 1. This goes a
long way toward explaining the reflection symmetry observed
in experiments.

The theories (2.2) are also consistent with the LLL limit.
Not only is the composite fermion charge neutral, but we will
use Son’s particle-vortex duality to argue that the dual theory
to Eq. (2.2), given by

L̃1/2n = iχ̄ /Dbχ+ 1

8π
bdb+ 1

4π

1

2(n − 1)
(b + A)d(b + A),

(2.4)

where b is another emergent gauge field (note the difference
with b∗), reproduces the same LLL physics as a theory of
nonrelativistic electrons with 2(n − 1) flux quanta attached,
at least at mean-field level. This leads to an explanation for
why ψ and χ are massless, despite the fact that a mass may
be allowed by symmetry. Moreover, it is easy to see that the
ν = 1/2n state corresponds to a half filled zeroth Landau level
of χ particles.

III. REFLECTION SYMMETRY OF THE JAIN SEQUENCES

A. Reproducing the Jain sequences

We now show that the theories (2.2) reproduce the Jain
sequences. We will see that the presence of the Chern-Simons
term is crucial in making this work out. For simplicity, we
will work with the version of the theory with improperly
quantized Chern-Simons levels, although the computations
for the properly quantized theory are similar. We start by
considering the equation of motion for at ,

0 = 〈ψ†ψ〉 − 1

2π

(
1

2
− 1

2n

)
b∗ + 1

2π

1

2n
B, (3.1)

meaning, if we define the composite fermion filling fraction
as νψ = 2πρψ/b∗, where ρψ = 〈ψ†ψ〉, then

νψ = 1

2
− 1

2n
− 1

2n

B

b∗
. (3.2)

Notice that for n = 1, the first two terms on the right-hand side
cancel, as the density of composite fermions is proportional
to the background magnetic field in that case. For n �= 1, the
noncancellation of the first two terms reflects the fact that
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the Chern-Simons level is nonvanishing: the density of the
composite fermions depends on the external magnetic field
and the emergent magnetic field b∗.

To produce the Jain sequences, we first fill p Landau
levels of the composite fermions, leading to an incompressible
integer quantum Hall state,

νψ = p + 1

2
. (3.3)

Equation (3.2) is now

2np + 1 = − B

b∗
. (3.4)

We know B/b∗ in terms of the physical electron filling frac-
tion ν from Eq. (2.3). Plugging this in, we have

2np + 1 = − 1

2nν − 1
. (3.5)

Solving for ν, we finally obtain

ν = p

2np + 1
. (3.6)

This is the Jain sequence.

B. Reflection symmetry

Having shown that the theories (2.2) reproduce the Jain
sequences, our goal now is to determine if they can repro-
duce “reflection” symmetry indicated by experiments, which
relates the (nonlinear) response of conjugate Jain states prox-
imate to ν = 1/2n. For us, this amounts to showing that for
each Jain state proximate ν = 1/2n, there is a conjugate Jain
state where the composite fermions fill the same number of
Landau levels but are T conjugated. At least at mean-field
level, the composite fermion response of such states should
be essentially identical. Note that while this symmetry of the
incompressible plateau states can give us intuition that there
is an emergent reflection symmetry at the compressible state
ν = 1/2n, such a symmetry is not implied. It is interesting
enough that the theory (2.2) explains the symmetry of the
plateau states.

Each state on the Jain sequence (3.6) with filling ν < 1/2n

(p � 0) has a reflection conjugate with filling ν ′ > 1/2n

given by

ν ′ = 1 + p

2n(1 + p) − 1
. (3.7)

This can be written as the following transformation of the
filling fraction ν,

ν ′ = −(2n − 1)ν + 1

[1 − (2n − 1)2]ν + (2n − 1)
. (3.8)

Notice that for n = 1, this relation is none other than the PH
transformation ν ′ = 1 − ν.

The statement of the reflection symmetry between the
conjugate Jain states is that they correspond to composite
fermion IQH states with ν ′

ψ = −νψ = −(p + 1/2). In other
words, an IQH state of composite fermions is mapped to the
same IQH state up to a T transformation (i.e., with magnetic
field pointing in the opposite direction). To see that this is the

case, we start by rewriting Eqs. (2.3) and (3.2) as a relation
between Dirac and electron filling fractions,

νψ − 1

2
= ν

1 − 2nν
. (3.9)

Plugging Eq. (3.7) into Eq. (3.9), the dependence on the
compressible state index n cancels, and we obtain

ν ′
ψ = −

(
p + 1

2

)
. (3.10)

Thus, the conjugate state can be thought of as filling p Landau
levels with the magnetic field pointing in the opposite direc-
tion! This is related to the more general fact that reflection
symmetry acts as T on the composite fermion filling fraction:
Eq. (3.9) implies that mapping ν �→ ν ′ is the same as T :
νψ �→ −νψ . Note that in the language of the dual theory,
Eq. (2.4), this T symmetry can be interpreted as a particle-hole
symmetry CT (we reserve PH for the electron particle-hole
symmetry ν �→ 1 − ν).

The above results go a long way toward explaining the
reflection symmetry observed experimentally. However, it is
important to note that since the composite fermion theories
under consideration do not appear to be T symmetric at
ν = 1/2n, the physics of the Jain state at filling factor ν

might differ from that at its conjugate ν ′ due to the effect
of fluctuations of the emergent gauge field. This being said,
since these states are gapped, we expect the effect of such
fluctuations to be small and essentially unobservable, and
we believe that this mean-field argument should suffice to
explain what is observed in experiments. As the compress-
ible state is approached, however, gauge field fluctuations
will become important, and the reflection symmetry may be
broken. Whether the symmetry persists to the compressible
state ultimately requires an understanding of the interplay of
disorder and the strong interactions with the Chern-Simons
gauge field. In the next subsection, we will consider the
implications of this reflection symmetry for transport in more
detail and discuss what the experimental observations can tell
us about whether this symmetry emerges at the compressible
states at ν = 1/2n.

We can develop a complementary interpretation of the
transformation (3.8) in the language of composite bosons
as an exchange symmetry between composite bosons and
vortices, or “self-duality.” A similar interpretation was also
introduced in the previous, nonrelativistic approaches to this
problem [16,32,37]. It will also be a particularly useful lan-
guage for writing down constraints on transport, which is
the topic of the next subsection. We can obtain a compos-
ite boson theory by invoking the duality between a gauged
Wilson-Fisher boson and a free Dirac fermion described in
Refs. [20,21],

i�̄ /DA� + 1

8π
AdA←→|Daφ|2 − |φ|4 − 1

4π
ada + 1

2π
adA,

(3.11)

where ←→ denotes duality and we use the notation “ −|φ|4 ”
to indicate tuning to the Wilson-Fisher fixed point. It is not
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difficult to see that the theories (2.2) have bosonic duals,

|Dg−Aφ|2 − |φ|4 + 1

4π

1

2n − 1
gdg. (3.12)

Here g is another fluctuating emergent gauge field. For A =
B
2 (xŷ − yx̂ ), these bosons find themselves at finite density
and magnetic field. Differentiating with respect to gt and At

gives

〈
j t
φ

〉 = −ρe = − 1

2n − 1

〈εij ∂igj 〉
2π

, (3.13)

where j
μ
φ is the gauged U (1) current of the bosons. If we

define the filling of the bosons to be νφ = 2π
〈j t

φ〉
〈εij ∂i (gj −Aj )〉 , then

νφ = −[2n − 1 − ν−1]−1. (3.14)

Thus, for ν = 1
2n

, we have

νφ = 1. (3.15)

Thus, we now are facing a problem of gauged Wilson-Fisher
bosons at νφ = 1. Interestingly, the filling of the bosons in this
theory is independent of n.

The theory (3.12) can be shown to be dual to a theory of
bosonic vortices [39,40] with action4

|Dhφ̃|2 − |φ̃|4 − 2n − 1

4π
hdh + 1

2π
hdA, (3.16)

where g is a new emergent gauge field. Notice that, in the
composite boson language, the lack of explicit T symmetry
in the fermionic theory manifests itself as an apparent lack of
symmetry between bosons and vortices: they are interacting
with Chern-Simons gauge fields having different levels. Simi-
lar manipulations to those for the φ theory imply a relationship
between the filling fractions of the dual theories,

νφ = − 1

νφ̃

, (3.17)

which is the modular S transformation of Refs. [37,38]. Con-
jugate filling fractions are those for which the roles of bosons
and vortices have been exchanged, i.e., νφ (ν) = −νφ̃ (ν ′).
Thus,

ν−1 − (2n − 1) = 1

ν ′−1 − (2n − 1)
. (3.18)

Solving for ν ′ leads to Eq. (3.10). Thus, reflection symmetry
can be interpreted equivalently as a T (or CT) symmetry
of composite fermions and as a composite boson-vortex ex-
change symmetry, or “self-duality.”

C. Constraints on transport and connections to experiment

We now describe the implications of the reflection sym-
metry introduced above for transport and relate them to the
experimental observations of Refs. [15,16]. For convenience,
we start by working with the composite boson description of
Eqs. (3.12) and (3.16) since the experiments are most easily

4For explicit derivations of the particular boson-vortex duality
discussed here, see Refs. [41,42].

interpreted in that language, although we describe how to
translate these results into the composite fermion language at
the end of this section. Note that the arguments in this section
are essentially the same as those for nonrelativistic composite
boson theories given in Ref. [32]. However, we emphasize
that in our case we are starting with theories which naturally
manifest the reflection symmetry of the Jain states proximate
to ν = 1/2n (as is evident in the Dirac composite fermion
language). In the previous nonrelativistic work, this symmetry
had to be postulated.

1. Composite boson language: Self-duality

We start by defining the conductivity of the composite
bosons of Eq. (3.12), which respond to both the background
probe electric field Ei and the emergent electric field due to
the Chern-Simons gauge field g, 〈ei (g)〉 = 〈fit (g)〉,

〈jφ,i〉 = σ CB
ij [〈ej (g)〉 − Ej ]. (3.19)

Note that, in this section, all conductivities (resistivities) are
in units of e2/h̄ (h̄/e2).

In the composite vortex theory (3.16), the roles of charge
and flux are exchanged. Consequently, σ CB

ij is the resistivity
tensor of the vortices. To see this, we plug the charge-flux
mappings jφ = dh/2π and jφ̃ = d(g − A)/2π , i.e., j i

φ =
εij (∂jht − ∂thj )/2π ≡ εij ẽj /2π and j i

φ̃
= εij (ej − Ej )/2π ,

into Eq. (3.20) to obtain the transport dictionary,

σ CB
ij = 1

(2π )2
εikεjl ρ̃CB

kl . (3.20)

In a rotationally invariant system, this simply reduces to
σ CB

ij = ρ̃CB
ij /(2π )2. Because the dictionary (3.20) is a con-

sequence of particle-vortex duality, it is valid at finite wave
vector and frequency, as well as in the presence of disorder.
Moreover, since we never explicitly required linear response
in its derivation, we also expect the dictionary to hold beyond
the linear regime. This last point is necessary if our wish
is to understand the experiments of Refs. [15,16], since the
symmetry observed there was one of nonlinear response.

The equality between composite boson conductivity and
vortex resistivity is the reason why the reflection symmetry
described above exchanges the role of current and voltage
about ν = 1/2n. In the bosonic language, the reflection sym-
metry is the statement that composite bosons at electron filling
fraction ν have identical transport to the composite vortices at
conjugate electron filling fraction ν ′, so

ρCB
ij (ν) = ρ̃CB

ji (ν ′) = (2π )2σ CB
ji (ν ′). (3.21)

From the analysis of the Dirac composite fermion theories
earlier in this section, we saw that this symmetry holds for
FQH states proximate to ν = 1/2n, at least at mean-field
level.

We can connect ρCB
ij to the observable electron resistivity

ρij as follows. If J i = −j i
φ is the electron current, then we

define ρij via

Ei = ρij 〈J j 〉. (3.22)

The difference between ρij and ρCB
ij comes from a shift in the

Hall resistivity due to the Chern-Simons gauge field, which
enforces flux attachment, 〈ei〉 = 2π (2n − 1)εij 〈j j

φ 〉. Plugging
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this into the definition of σ CB
ij , (3.19), and rearranging, one

finds

ρij = ρCB
ij − (2n − 1) 2πεij . (3.23)

Thus, the observed resistivity is just the composite boson
resistivity with shifted Hall components.

If the reflection symmetry persists to ν = 1/2n (which is
mapped to itself), then Eq. (3.21) implies that the composite
boson resistivity must satisfy the “self-duality” condition,[

ρCB
xx (1/2n)

]2 + [
ρCB

xy (1/2n)
]2 = (2π )2. (3.24)

For n = 1, or ν = 1/2, this constraint and the relation
(3.23), implies the PH-symmetric Hall response σxy = 1

4π
For

n �= 1, however, the constraint is weaker: σxy depends on the
composite boson conductivity.

We are now prepared to interpret the experimental results
of Refs. [15,16], which correspond to the case of ν = 1/4, or
n = 2. Throughout the observed region of ν values, the Hall
response was observed to be linear, with resistivity taking the
value

ρxy = −3(2π ), (3.25)

meaning that, by Eq. (3.23), the Hall resistivity of the com-
posite bosons vanishes,

ρCB
xy = 0. (3.26)

This constraint is surprising, since there does not appear to
be any symmetry in the problem which requires this. Under-
standing the mechanism by which the composite boson Hall
resistivity vanishes continues to be an open question. Plugging
this into Eq. (3.21), the reflection symmetry can be expressed
in terms of the electron longitudinal resistivities as

ρxx (ν) = (2π )2

ρxx (ν ′)
, (3.27)

since ρCB
xx = ρxx . This is consistent with what was observed in

the longitudinal I -Vxx curves, assuming that Eqs. (3.20) and
(3.23) are valid in the nonlinear regime. It was also observed
that, as ν approaches 1/4, ρxx seems to become linear and
approaches the “self-dual” value ρxx = 2π . This constitutes
fairly compelling evidence that reflection symmetry emerges
at the compressible states at ν = 1/2n, but we emphasize that
this is not necessary. In the next section, we will show that the
LLL limit can suffice to tune the Dirac composite fermions to
criticality, whether or not the states at ν = 1/2n truly host an
emergent reflection symmetry themselves.

2. Composite fermion language: T symmetry

We close this section by considering the implications of
reflection symmetry for the transport of the composite fermion
theory (2.2), for which the reflection symmetry is a T symme-
try. If we define the composite fermion conductivity σ CF

ij via

〈jψ,i〉 = σ CF
ij 〈ej (a)〉, (3.28)

where ei (a) = fit (a) and j
μ
ψ = ψ̄γ μψ , then reflection sym-

metry implies

σ CF
ij (ν) = σ CF

ji (ν ′). (3.29)

Thus, if the reflection symmetry persists to ν = 1/2n, this
means

σ CF
xy = 0. (3.30)

Indeed, we will quickly see that, with the duality between
the composite fermion theory (2.2) and the composite boson
theory (3.12), this T symmetry implies self-duality of the
bosons and vice versa.

We can relate the composite fermion conductivity to the
measured electron conductivity as follows. Differentiating the
Lagrangian (2.2) with respect to Aj and aj gives the electron
and composite fermion currents respectively,

〈Ji〉 = 1

2π

1

2n
εij (〈ej 〉 + Ej ),

〈jψ,i〉 = 1

2π

(
1

2
− 1

2n

)
εij 〈ej 〉 − 1

2π

1

2n
εijE

j ; (3.31)

plugging in the definitions of the electron and composite
fermion resistivities ρCF

ij = (σ CF
ij )−1 (assuming rotation in-

variance) and solving the system of equations, one finds that
the electron and composite fermion resistivities are related by

ρxx = (2π )2 4ρCF
xx(

ρCF
xx

)2 + [
ρCF

xy + 2(2π )
]2 , (3.32)

ρxy = 2π

[
−2(n − 1) − 8π

2(2π ) + ρCF
xy(

ρCF
xx

)2 + [
ρCF

xy + 2(2π )
]2

]
.

(3.33)

There are several things to note about these expressions. First,
reflection symmetry (3.29) along with the observed Hall resis-
tivity ρxy = −3(2π ) again imply the observed I -Vxx reflec-
tion symmetry, Eq. (3.27). Moreover, plugging T symmetry
of the composite fermions (ρCF

xy = 0) into these equations and
combining them with Eq. (3.23) immediately leads to the self-
duality of the composite bosons, Eq. (3.24). Finally, assuming
that T symmetry extends to the compressible state at ν =
1/2n and plugging in the observed ρxy = −3(2π ) implies

σ CF
xx (1/2n) = 1

4π
= 1

2

e2

h
. (3.34)

Thus, the problem of understanding the physical origin of the
observed Hall resistivity at the ν = 1/3–insulator transition
may in fact be identical to the problem of understanding
why σ CF

xx = 1/4π . Intriguingly, this value is the same as that
obtained in Pruisken’s two-parameter scaling theory of IQH
plateau transitions [43,44].

IV. MASSLESS COMPOSITE FERMIONS
FROM THE LLL LIMIT

We now argue that the LLL limit requires that our theories
(2.2) be tuned so that the Dirac composite fermions are mass-
less. This argument essentially follows the logic of Son’s argu-
ment that the LLL limit of nonrelativistic fermions with g = 2
can be identified with that of a massless Dirac fermion [19],
provided that the effect of transitions between Landau levels is
neglected. The difference here will be that instead of starting
with a noninteracting theory of nonrelativistic fermions in
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a magnetic field, we consider nonrelativistic fermions in a
magnetic field with 2(n − 1) flux quanta attached via a Chern-
Simons gauge field,

if †Da,tf − 1

2m
|Da,if |2 + εij ∂iaj

2m
f †f

+ 1

4π

1

2(n − 1)
(a + A)d(a + A), (4.1)

where again Ai = B
2 (xŷ − yx̂) is the magnetic vector po-

tential, and At = μ. Here we work in a regime where b =
〈εij ∂iaj 〉 �= 0, i.e., the fermions experience a net (uniform)
magnetic field, organizing themselves into Landau levels. Our
ultimate interest will be in the case where the nonrelativistic
composite fermions are at half filling, which corresponds to a
physical electron filling fraction ν = 1/2n.

The LLL limit of this theory m → 0 can be understood
to be finite by introducing a Hubbard-Stratonovich field c as
follows:

if †Da,tf + ic†(Da,x + iDa,y )f − if †(Da,x − iDa,y )c

+ 2mc†c + 1

4π

1

2(n − 1)
(a + A)d(a + A), (4.2)

Upon taking the limit m → 0, we see that c becomes a
Lagrange multiplier which implements the LLL constraint
(Da,x + iDa,y )f = 0.

We now argue that the theory (4.2) is identical to that which
would be obtained by taking the LLL limit of a Dirac fermion
coupled to a Chern-Simons gauge field with Lagrangian,

iχ̄ /Daχ + 1

8π
ada + 1

4π

1

2(n − 1)
(a + A)d(a + A). (4.3)

Notice that this theory is none other than the particle-vortex
dual of our composite fermion theory for the ν = 1/2n state
(2.2). Writing χ = (f, c) and choosing γ t = σ z, γ x = iσ y,

γ y = −iσ x , we obtain

if †Da,tf + ic†Da,t c + ic†(Da,x + iDa,y )f

− if †(Da,x − iDa,y )c + 1

8π
ada

+ 1

4π

1

2(n − 1)
(a + A)d(a + A). (4.4)

This looks almost identical to our nonrelativistic Lagrangian
(4.2), with two differences. The first is the presence of a time
derivative term for c. However, this term is negligible upon
taking the LLL limit, which for a Dirac fermion is the limit5

of infinite fermion velocity, v → ∞. The second difference
is the appearance of the parity anomaly term ada/8π , which
can be thought of as implementing the effect of the Dirac sea
of filled negative energy states. At mean-field level, where
a is not dynamical, then this term would simply lead to a

5Here we have written the theory with Dirac fermion velocity
v = 1 (in units of the speed of light; v is not to be confused with
the Fermi velocity, vF = ∂kε(k)|kF

, where ε(k) is the dispersion).
Reintroducing v and rescaling c �→ c′ = vc, one sees that the term
in question becomes ic′†Dt,ac

′/v2, which vanishes as v → ∞.

constant shift in the filling fraction and Hall conductivity with
respect to the nonrelativistic case, i.e.,

νf = νχ + 1
2 . (4.5)

However, the equivalence between the LLL physics of the
Dirac and nonrelativistic theories may be spoiled upon taking
into account fluctuations of a, although it is reasonable to
expect that fluctuations of a about its mean-field value do not
contribute large corrections.

Thus, the LLL limits of the nonrelativistic, flux attached
theory (4.2) and the massless Dirac fermion theory (4.3)
match, at least at mean-field level, meaning that a proper
description of the LLL requires tuning (4.3) to criticality.
In other words, if we view the problem of nonrelativistic
electrons at filling ν = 1/2n as the ν = 1/2 state of of non-
relativistic electrons attached to 2(n − 1) units of flux (which
should be an exact rewriting of the original problem), then
the LLL limit connects the problem to one of massless Dirac
fermions coupled to a Chern-Simons gauge field with its
zeroth Landau level half filled, Eq. (4.3). We then obtain
our Dirac composite fermion theory (2.2) upon invoking
particle-vortex duality. The beauty of this approach is that we
can leverage the flux attachment invariance of the underly-
ing nonrelativistic problem to obtain a relativistic composite
fermion description of the states at ν = 1/2n, even though
relativistic theories are not invariant under flux attachment (for
an extended discussion of this point, see Ref. [41]).

The analysis of this section leads to an interesting interpre-
tation of the theories (2.2). Unlike in HLR, where, e.g., the
composite fermion for the ν = 1/2n state is related to that of
the ν = 1/2(n − 1) state by attachment of two flux quanta,
here the Dirac composite fermion of the ν = 1/2n state is the
dual vortex of that at ν = 1/2(n − 1), placed at filling 3/2.
The reason the filling is 3/2 instead of 1/2 is related to the fact
that the composite fermion Lagrangian (2.2) and its dual (4.3)
differ by a filled Landau level, 1

4π
ada. This actually makes

sense from the perspective of Son’s original duality, in which
the state at ν = 1/4 is the ν = 3/2 state of the composite
fermions.

V. FURTHER OBSERVABLES

A. Shift and Hall viscosity

1. Jain states

We now describe how to couple our Dirac composite
fermion theories (2.2) to background geometry and show that
it is possible to reproduce the remaining universal data asso-
ciated with the Jain states: the total orbital spin per particle s

[45,46], which determines the shift of the Jain states on the
sphere S = 2s, as well as the Hall viscosity [47],

ηH = sρe

2
. (5.1)

The Hall viscosity measures the response to external shear
deformations, and is associated with stress tensor correlation
functions. In Galilean invariant systems, it also determines the
leading contribution to the Hall conductivity at finite wave
vector [48,49].
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In order to obtain s, we need to understand how to couple
our Dirac composite fermions to the Abelian6 spin connection
ωμ. The strength of this coupling is the orbital spin of the
Dirac composite fermions, Sz, which is not restricted to be
1/2. This is because flux attachment generally leads to a
Berry phase which depends on the geometry. The presence of
this Berry phase means that composite particles behave like
they have an emergent “fractional spin” due to their strong
interactions with the Chern-Simons gauge field.7 The orbital
spin of the composite fermions, Sz, which determines the
coupling to ωμ, can be identified with this fractional spin [51].
This can be seen explicitly by rewriting the partition function
of the theory (2.2) as a path integral over composite fermion

world lines, as described in detail in Ref. [41]. For the sake
of brevity, however, we instead argue for the value of Sz by
analogy with the nonrelativistic case, where attaching 2n flux
quanta to a spinless fermion leads to an orbital spin Sz = −n

(the sign flip comes from integrating out the Chern-Simons
gauge field). Since the Dirac fermion starts with spin 1/2, we
expect

Sz = 1
2 − n. (5.2)

We thus claim that our Dirac composite fermion theories
can be coupled to geometry by using the covariant deriva-
tive Dμ(a, ω) = ∂μ − iaμ + i

2γ 0ωμ and shifting A → A +
(2n − 1)ω/2,

L1/2n[ψ, a,A,ω] = i ψ̄ γ μ

(
∂μ − iaμ + i

2
γ 0ωμ

)
ψ − 1

4π

(
1

2
− 1

2n

)
ada − 1

2π

1

2n

(
A + 2n − 1

2
ω

)
da

+ 1

4π

1

2n

(
A + 2n − 1

2
ω

)
d

(
A + 2n − 1

2
ω

)
+ · · · , (5.3)

where the · · · refer to additional purely gravitational contact
terms which we will neglect and which are discussed in detail
in Ref. [52]. Note that in this section we conjugate the sign
of the BF term relative to the rest of the paper so that the
Wen-Zee terms we obtain have positive sign.

Equipped with the Lagrangian (5.3), we now proceed to
calculate the shift of the Jain states on the sphere, from which
we can extract the orbital spin s as the coefficient of the
Wen-Zee ( 1

2π
Adω) term when all of the dynamical fields have

been integrated out. The degeneracy of the pth Dirac fermion
Landau level on the sphere is

dp =
∫

d2x
b∗
2π

+ 2|p| ≡ Nφ + 2|p|. (5.4)

This means that the number of composite fermions required
to fill up to the pth Landau level is

Nψ = Nφ

(
p + 1

2

)
+ p (p + 1). (5.5)

The shift S of the electron filling fractions on the Jain se-
quence is defined via

Ne = νe(Nφ + S). (5.6)

To calculate S, we start by integrating out the composite
fermions. This generates new Chern-Simons and Wen-Zee
terms, which are (for b∗ > 0)

p + 1
2

4π
ada + p (p + 1)

4π
adω. (5.7)

6The presence of an Abelian spin connection breaks Lorentz in-
variance, but this is not problematic here since Lorentz invariance is
already broken explicitly by the external magnetic field.

7This can be thought of as a manifestation of the framing anomaly
[50].

So now we have a Lagrangian

1

4π

(
p + 1

2n

)
ada + 1

4π

[
p(p + 1) − 2n − 1

2n

]
adω

− 1

2π

1

2n
adA + 1

4π

2n − 1

2n
Adω + 1

4π

1

2n
AdA + · · · .

(5.8)

Notice that the contribution of the parity anomaly of the Dirac
composite fermion has been canceled, so we can already
expect that this will yield the same answer that we would have
obtained from HLR. We now integrate out a, which has the
equation of motion,

da = 1

2np + 1

[
dA + 1

2
[2n − 1 − 2np(p + 1)]dω

]
. (5.9)

Thus, suppressing purely gravitational terms, we obtain

1

4π

p

2np + 1
Ad[A + (p + 2n)ω] = ν

4π
Ad(A + Sω).

(5.10)

Thus, the shift is

S = p + 2n, (5.11)

which is precisely the known result for the Jain states [46,51]!
The orbital spin s and Hall viscosity ηH are therefore

s = S

2
= p

2
+ n, ηH = 1

2

(
p

2
+ n

)
ρe, (5.12)

again consistent with previously known results.

2. Some speculation about the compressible states

We take this opportunity to speculate about the geometric
response of the theories (2.2) at the compressible filling
fractions ν = 1/2n. In the case of the state at ν = 1/2, this has
been seen as a source of disagreement between Son’s Dirac
composite fermion theory and HLR, essentially because the
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composite fermion appears to have different orbital spin in the
two approaches [53]. Moreover, it is not even clear if the Hall
viscosity should be viewed as universal in the HLR theory
[54]. However, recent results seem to indicate consistency
between the Dirac composite fermion approach and a nonrel-
ativistic “bimetric theory” of FQH states near ν = 1/2 [55],
and it appears likely that an approach starting from HLR with
quenched disorder can match these results as well [26–28].

A naïve approach to obtaining the Hall viscosity for the
compressible states might involve considering the result for
the Jain states and taking the limit p → ∞. Unfortunately,
this clearly leads to a divergent result given Eq. (5.12).
However, we have already argued that the fractional spin
of the composite Dirac fermions is given by (5.2). Since
the composite fermions feel a vanishing magnetic field, this
should be the only contribution to the total orbital spin s. Thus
we expect at mean-field level

ηH (ν = 1/2n) = −1

2
Szρe = 1

2

(
n − 1

2

)
ρe. (5.13)

This result should not receive large quantum corrections so
long as the composite fermions remain massless, which we
argued can be guaranteed both by the LLL limit as well as
the reflection symmetry (assuming that it can be continued to
ν = 1/2n). As already mentioned above, this quantity can be
measured [56] from the finite wave vector part of the Hall
response [48,49], and so it may be possible to use this to
distinguish our theories from HLR as well as the HLR-like
theories with π/n Berry phase discussed in the Introduction.

B. Quantum oscillations

Classic signatures of composite fermions are the quantum
oscillations in magnetoresistance which occur as the filling
is tuned away from ν = 1/2n, meaning that the composite
fermions feel a small magnetic field. It is known that mag-
netoresistance minima occur along the Jain sequences ν =

p

2np+1 , where the composite fermions feel a magnetic field b∗
which can be obtained from Eq. (3.4),

1

b∗
= −p + 1

2n

B
2n

. (5.14)

Up to the overall sign [which comes from the sign of the
BF term in Eq. (2.2) and is a matter of convention], this
is precisely the same result that would have been obtained
from a theory of a Fermi surface with π/n Berry phase, as
in Refs. [33,34]. In those references, the shift from an integer
value in the numerator was seen as a consequence of the Berry
phase. However, this shift can equally well be obtained by
attaching flux to Dirac fermions.

VI. DISCUSSION

In this paper, we have proposed a series of Dirac composite
fermion theories to describe the metallic states appearing at
filling fraction ν = 1/2n in quantum Hall systems. These
theories are related to Son’s theory of ν = 1/2 by attachment
of 2n flux quanta. A major advantage of our theories is that
they explain the PH-like reflection symmetry observed in
transport experiments, which relates Jain sequence states on

either side of ν = 1/2n, since the composite fermions at con-
jugate filling fractions experience the same physics. No other
theory presented thus far has been shown to accommodate
these observations. In addition, we showed that at mean-field
level our theories are consistent with the LLL limit, provided
that we view the state at, e.g., ν = 1/4 as a half-filled Landau
level of the (nonrelativistic) composite fermions at ν = 1/2.

Many open questions remain. Foremost is the question of
whether the reflection symmetry emerges at the compress-
ible states at ν = 1/2n, rather than just being a property of
their proximate phases. Answering this question conclusively
from a theoretical point of view requires an understanding
of the interplay of disorder and strong interactions in the
Chern-Simons-matter theories we have presented here: even
if reflection symmetry does not emerge in the clean limit,
it may appear when disorder is introduced. Such problems
are poorly understood at charge neutrality, let alone in the
presence of a Fermi surface. Moreover, a potentially related
issue is the problem of explaining the observed Hall resistivity
at the ν = 1/3 FQH–insulator transition (3.25) (and also the
ν = 1 IQH-insulator transition), which does not appear to
be set by any symmetry of the problem. Progress on both
of these issues can be made by studying the (uncontrolled)
mean-field problem with disorder [26–28], exploiting new
or existing dualities [24], or by searching for perturbative
approaches which can capture the effects of both disorder
and interactions—a direction which has been fruitful at least
in the zero density limit and which can give us hints about
general principles that can extend beyond the perturbative
regime [57,58]. We intend to pursue all of these directions in
the future.

It also remains to understand the precise relationship be-
tween the theories presented here and the theories of Fermi
surfaces with π/n Berry phases coupled to gauge fields (with
no Chern-Simons term) introduced in Refs. [33,34]. These
theories are argued to emerge as a result of the noncom-
mutative guiding center geometry of the LLL. However, as
mentioned in the Introduction, it seems likely that our theories
are also consistent with the geometry of the LLL, with the
Chern-Simons term playing a similar role to the Berry phase.
This is borne out by the fact that observables which naïvely
appear to probe the Fermi-surface Berry phase are the same
in our theory. For example, quantum oscillation minima for
the two theories are identical, and, in a ν = 1/2n and ν =
1 − 1/2n bilayer system, we expect that the π Berry phase
of our Dirac composite fermions should lead to the same
suppression of 2kF backscattering as seen in the π/n Berry
phase theories. Of course, a major distinguishing feature of
our theories from the Berry phase theories is the reflection
symmetry of the Jain sequence states.

Note added. After this manuscript was prepared, we
became aware of new work by J. Wang [59], which overlaps
somewhat with our work and considers the same types of
theories from a different but complementary perspective.
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