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Critical behavior of the QED3-Gross-Neveu-Yukawa model at four loops
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We study the universal critical properties of the QED3-Gross-Neveu-Yukawa model with N flavors of four-
component Dirac fermions coupled to a real scalar order parameter at four-loop order in the ε expansion below
four dimensions. For N = 1, the model is conjectured to be infrared dual to the SU(2)-symmetric noncompact
CP1 model, which describes the deconfined quantum critical point of the Néel-valence-bond-solid transition
of spin-1/2 quantum antiferromagnets on the two-dimensional square lattice. For N = 2, the model describes
a quantum phase transition between an algebraic spin liquid and a chiral spin liquid in the spin-1/2 kagome
antiferromagnet. For general N we determine the order-parameter anomalous dimension, the correlation length
exponent, the stability critical exponent, as well as the scaling dimensions of SU(N ) singlet and adjoint fermion
mass bilinears at the critical point. We use Padé approximants to obtain estimates of critical properties in 2+1
dimensions.
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I. INTRODUCTION

The study of critical phenomena represents one of the
cornerstones of modern condensed-matter physics, and the
systematic understanding of such phenomena by renormal-
ization group (RG) methods is widely acknowledged as one
of the great triumphs of theoretical physics in the twentieth
century [1]. The best-known examples of critical phenomena
are phase transitions in systems with an n-component vec-
tor order parameter, such as Ising (n = 1), XY (n = 2), or
Heisenberg (n = 3) magnets, which are typically described
by the Wilson-Fisher fixed point of the bosonic O(n) vector
model [2]. Critical exponents for this model have been deter-
mined in successive refinements over the years, culminating
in the recent tour-de-force calculation of critical exponents at
six-loop order [3–5]. Combined with Padé or Borel resum-
mation techniques, the ε expansion below the upper critical
dimension of 4 is known to yield precise values for the critical
exponents [6].

While the O(n) vector model provides a satisfactory de-
scription of phase transitions obeying the Landau-Ginzburg-
Wilson (LGW) paradigm, that is, transitions at which bosonic
order-parameter fluctuations are the only relevant long-
wavelength degrees of freedom, much attention has been
drawn in recent years to two classes of continuous quantum
phase transitions at which the purely bosonic LGW approach
fails. The first, fermionic quantum critical points, comprises
phase transitions at which gapless fermionic degrees of free-
dom couple to order-parameter fluctuations via a Yukawa-type
coupling. In cases of interest this fermion-boson coupling is
relevant at the purely bosonic (e.g., Wilson-Fisher) critical
point and drives the system towards a new universality class
with coexisting, and in many cases strongly coupled, bosonic
and fermionic degrees of freedom. The prime example in this
category is systems with Dirac fermion excitations at low

energies, such as graphene or the surface of three-dimensional
(3D) topological insulators, coupled with real [7,8], com-
plex [8–15], or vectorial [7,16–18] order parameters. The cor-
responding critical points are described by the Gross-Neveu-
Yukawa (GNY) model [19], which can be studied by pertur-
bative RG in d = 4 − ε dimensions, or its purely fermionic
equivalent, the Gross-Neveu (GN) model [20], which can be
studied in d = 2 + ε dimensions. The critical exponents of the
GNY model have recently been calculated at three-loop [21]
and four-loop [22] orders, and those of the GN model have
been determined at four-loop order [23]. Interesting critical
phenomena outside the reach of the purely bosonic O(n)
vector model include the emergence of N = 1 [8,24] and
N = 2 [8,9,12,25,26] space-time supersymmetry in the real
(chiral Ising) and complex (chiral XY ) GNY universality
classes, respectively.

The second category of critical phenomena not captured
by the standard O(n) universality classes are phase transitions
involving dynamical gauge fields. In the condensed-matter
context these occur as a result of the fractionalization of
microscopic degrees of freedom, under the influence of strong
correlations, into slave particles with fractional quantum num-
bers. The paradigmatic example is the fractionalization of
bosonic local moments into neutral fermionic spinons [27].
One may further distinguish two subclasses of critical points
in this category: those for which the gauge field deconfines
only at the critical point itself, dubbed deconfined quantum
critical points [28,29], and those for which the gauge field
deconfines in at least one of the two phases separated by
the critical point. While the former subclass corresponds to
(LGW-forbidden) transitions between conventional ordered
phases, the latter describes transitions involving at least one
fractionalized phase. When fermionic spinons acquire a Dirac
dispersion [30], one obtains a theory of Dirac fermions
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interacting with a U(1) gauge field as well as with a bosonic
order parameter. The transitions of interest take place in 2+1
dimensions, and thus we will refer to such models as QED3-
GNY models, since the fermion-gauge sector is described
by massless quantum electrodynamics (QED). Examples of
transitions recently studied in this way include transitions
from an algebraic spin liquid to either a chiral spin liq-
uid [31,32], a Z2 spin liquid [33], or a Néel antiferromag-
net [34], which are described by the chiral Ising, XY , or
Heisenberg QED3-GNY models, respectively. Interestingly,
it was recently conjectured [35] that a critical point in the
first subclass, the deconfined quantum critical point between
a Néel antiferromagnet and a valence bond solid on the 2D
square lattice [28,29], is dual to a critical point in the second
subclass, that of the chiral Ising QED3-GNY model with two
flavors of two-component Dirac fermions [32]. By varying the
number of flavors of Dirac fermions in the theory, one may
obtain an infinite family of new universality classes, distinct
from both the purely bosonic O(n) and GN/GNY universality
classes.

Motivated by these recent developments, in this paper we
study the critical properties of the chiral Ising QED3-GNY
model as a function of the number N of flavors of four-
component Dirac fermions. The study of the critical properties
of this model in d = 4 − ε dimensions via the ε expansion
was initiated in Ref. [32], where calculations at leading (one-
loop) order were performed; here we study this model up to
four-loop order. The paper is structured as follows. In Sec. II
we define the model. In Sec. III we discuss basic aspects of
the RG procedure and give our results for the beta functions
and anomalous dimensions. Results up to three-loop order
are given in the main text; four-loop contributions are given
separately in Appendices B and C. In Secs. IV and V we
present our ε-expansion results up to O(ε4) for the usual
thermodynamic critical exponents as well as the scaling di-
mensions of certain fermion bilinear operators; Padé approx-
imants are then used to obtain rough estimates in d = 3. The
procedure for the calculation of the stability critical exponent
ω is briefly explained in Appendix E. In addition to our results
for the chiral Ising QED3-GNY model, we also compute the
scaling dimension of fermion bilinears at the pure QED3 (see
Appendix D) and GNY fixed points. In Sec. VI we discuss
the application of our results to the duality mentioned above.
In Sec. VII we discuss technical aspects of the automated
procedure employed for the determination of renormalization
constants at four-loop order. A brief conclusion is presented
in Sec. VIII.

II. MODEL

We study the chiral Ising QED3-GNY model with N

flavors of four-component Dirac fermions �i , i = 1, . . . , N ,
with Lagrangian given by

L =
N∑

i=1

�̄iγμ(∂μ − ieAμ)�i + 1

4
F 2

μν + 1

2ξ
(∂μAμ)2

+ 1

2
(∂μφ)2 + 1

2
m2φ2 + λ2φ4 + gφ

N∑
i=1

�̄i�i , (1)

where the γμ are 4 × 4 Euclidean gamma matrices, Fμν =
∂μAν − ∂νAμ is the field-strength tensor, ξ is a gauge-fixing
parameter, and φ is a real scalar field. In the rest of the paper
we will simply refer to this model as the QED3-GNY model.
The model has a global discrete Z2 chiral symmetry,

�i → γ5�i , �̄i = �
†
i γ0 → −�̄iγ5, φ → −φ, (2)

where γ 2
5 = 1 and {γ5, γμ} = 0, under which the fermion

mass bilinear �̄� ≡ ∑N
i=1 �̄i�i changes sign. The scalar

mass squared m2 tunes a quantum phase transition from a
symmetric phase (m2 > 0) with massive scalars and massless
fermions, described for momenta p2 � m2 by pure massless
QED, to a phase with spontaneously broken Z2 symmetry
(m2 < 0) where the scalar acquires a vacuum expectation
value and a fermion mass is dynamically generated.

As mentioned in Sec. I, when extrapolated to d = 3 dimen-
sions this model has been argued to be relevant to two prob-
lems of current interest in quantum magnetism. For N = 1, it
has been suggested as a possible fermionic dual [35] to the
bosonic SU(2)-symmetric noncompact CP1 (NCCP1) model,
which describes a deconfined quantum critical point between
a Néel antiferromagnet and a valence bond solid on the 2D
square lattice [28,29]. For N = 2, it describes a putative
time-reversal breaking quantum phase transition between an
algebraic spin liquid and a chiral spin liquid in a spin-1/2
kagome antiferromagnet [31,36].

III. RENORMALIZATION-GROUP ANALYSIS

To perform an RG analysis of the model (1) we use the
standard field-theoretic approach with dimensional regulariza-
tion and modified minimal subtraction (MS) [37]. Comparing
the bare Lagrangian

L0 =
N∑

i=1

�̄0
i γμ

(
∂μ − ie0A

0
μ

)
�0

i + 1

4

(
F 0

μν

)2 + 1

2ξ0

(
∂μA0

μ

)2

+ 1

2
(∂μφ0)2 + 1

2
m2

0φ
2
0 + λ2

0φ
4
0 + g0φ0

N∑
i=1

�̄0
i �

0
i , (3)

and the renormalized Lagrangian

LR =
N∑

i=1

Z��̄iγμ(∂μ − ieμε/2Aμ)�i + 1

4
ZAF 2

μν

+ 1

2ξ
(∂μAμ)2 + 1

2
Zφ (∂μφ)2 + 1

2
Zφ2m2μ2φ2

+Zλ2λ2μεφ4 + Zggμε/2φ

N∑
i=1

�̄i�i , (4)

where μ is a renormalization scale, we find that the bare and
renormalized fields are related by

�0
i =

√
Z��i , φ0 = √

Zφφ, A0
μ =

√
ZAAμ, (5)

implying that the bare and (dimensionless) renormalized
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couplings are related by

e2 = e2
0μ

−εZA, (6)

g2 = g2
0μ

−εZ2
�ZφZ−2

g , (7)

λ2 = λ2
0μ

−εZ2
φZ−1

λ2 . (8)

The quantum critical point is found by tuning the renor-
malized scalar mass squared m2 to zero. To calculate the
correlation length exponent, however, one must determine the
RG eigenvalue of the scalar mass squared at the critical point,
for which we need the relation between bare and renormalized
masses,

m2 = m2
0μ

−2ZφZ−1
φ2 . (9)

Finally, one must also track the flow of the gauge-fixing
parameter ξ , which for the choice of gauge-fixing term in
Eq. (1) is controlled by the relation

ξ = ξ0Z
−1
A . (10)

The calculation of the renormalization constants ZX, X ∈
{�, φ, φ2, A, g, λ2} at four-loop order is done using an auto-
mated setup; the main technical steps of the computation are
explained in Sec. VII.

A. Beta functions

The beta functions are defined as

βe2 = de2

d ln μ
, βg2 = dg2

d ln μ
, βλ2 = dλ2

d ln μ
, (11)

and we work with rescaled couplings α2/(4π )2 → α2 for α =
e, g, λ. Using Eq. (6) and the fact that the bare couplings are
independent of μ, we have

βe2 = (−ε + γA)e2, (12)

βg2 = (−ε + 2γ� + γφ − 2γg )g2, (13)

βλ2 = (−ε + 2γφ − γλ2 )λ2, (14)

where we define the anomalous dimension

γX = d ln ZX

d ln μ
, (15)

associated to the renormalization constant ZX. We express the
four-loop beta functions as

βe2 = −εe2 + β
(1L)
e2 + β

(2L)
e2 + β

(3L)
e2 + β

(4L)
e2 , (16)

βg2 = −εg2 + β
(1L)
g2 + β

(2L)
g2 + β

(3L)
g2 + β

(4L)
g2 , (17)

βλ2 = −ελ2 + β
(1L)
λ2 + β

(2L)
λ2 + β

(3L)
λ2 + β

(4L)
λ2 . (18)

Here we display our result up to and including three-loop
order; the four-loop contributions are lengthy and given in
Appendix B and also in Ref. [38]. The beta function βe2 for
the gauge coupling is given by

β
(1L)
e2 = 8N

3
e4, (19)

β
(2L)
e2 = 8Ne6 − 4Ne4g2, (20)

β
(3L)
e2 = −6Ne6g2 + 2N (7N + 6)e4g4 − 4N

9 (22N + 9)e8.

(21)

Likewise, the beta function βg2 for the Yukawa coupling is
specified by

β
(1L)
g2 = −12e2g2 + 2(2N + 3)g4, (22)

β
(2L)
g2 = −

(
24N + 9

2

)
g6 +

(
40N

3
− 6

)
e4g2

+ 4(5N + 12)e2g4 − 96g4λ2 + 96g2λ4, (23)

β
(3L)
g2 =

[
−32N2 + N (49 − 432ζ3) + 327

2
− 504ζ3

]
e4g4

+
[

560N2

27
+ 8N (23 − 24ζ3) − 258

]
e6g2

+
[

28N2 + N

(
67

4
+ 108ζ3

)
− 697

8
+ 114ζ3

]
g8

+ 144(5N + 7)g6λ2 + 24(−30N + 91)g4λ4

− 1728g2λ6 + [2N (−79 + 48ζ3) − 348 + 72ζ3]e2g6

+ 96e2g4λ2, (24)

where ζz is the Riemann zeta function, with ζ3 = 1.202 . . .

Apéry’s constant. Finally, the contributions to the beta func-
tion βλ2 for the quartic scalar coupling are

β
(1L)
λ2 = −2Ng4 + 8Ng2λ2 + 72λ4, (25)

β
(2L)
λ2 = 16Ng6 + 28Ng4λ2 − 288Ng2λ4 − 3264λ6

− 8Ne2g4 + 40Ne2g2λ2, (26)

β
(3L)
λ2 = −N

4
(628N − 5 + 384ζ3)g8

+ N

2
(1736N − 4395 − 1872ζ3)g6λ2

+ 12N (−72N + 361 + 648ζ3)g4λ4

+ 12384Ng2λ6 + 1728(145 + 96ζ3)λ8

+N (116N + 131 − 96ζ3)e4g4

− 2N (32N + 119 − 144ζ3)e4g2λ2

+ 2N (−11 + 96ζ3)e2g6 + 6N (217 − 304ζ3)e2g4λ2

+ 216N (−17 + 16ζ3)e2g2λ4. (27)

The beta functions (16)–(18) can be checked against
known results in various limits. Setting e = 0 and g = 0,
the model reduces to the bosonic Ising universality class;
our result for βλ2 in that limit agrees with the known four-
loop result [39]. Setting g = 0 and λ = 0, βe2 reproduces the
four-loop QED beta function [40]. Setting e = 0 only, our
expressions for βg2 and βλ2 agree with those for the pure GNY
model in the chiral Ising class, which were recently computed
at four-loop order [22]. Finally, for the full QED3-GNY theory
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with all three couplings nonzero we recover the one-loop beta
functions recently obtained in Ref. [32].

B. Anomalous dimensions

The anomalous dimensions of the fields φ, φ2, Aμ, evalu-
ated at the quantum critical point,

ηφ ≡ γφ (e2
∗, g

2
∗, λ

2
∗), (28)

ηφ2 ≡ γφ2 (e2
∗, g

2
∗, λ

2
∗), (29)

ηA ≡ γA(e2
∗, g

2
∗, λ

2
∗), (30)

are universal, gauge-invariant quantities. Considering ηA first,
from Eq. (12) we see that at a fixed point with nonzero
gauge coupling e2

∗ �= 0 one must have the exact relation ηA =
ε [41]. This is a consequence of gauge invariance, since
Eq. (12) follows from the fact that the gauge coupling and
gauge-field wave function renormalizations are related by a
Ward identity. As shown at one-loop order in Ref. [32], and
confirmed at four-loop order in Sec. IV, the QED3-GNY
critical point indeed has e2

∗ �= 0, implying that ηA = 1 exactly
in d = 3 dimensions. In this section we give expressions at
four-loop order for γφ and γφ2 , which will then be evaluated
at the quantum critical point in Sec. IV to yield the universal
exponents ηφ and ηφ2 . As for the beta functions, we express
the anomalous dimensions as a sum of contributions at fixed
loop order,

γφ = γ
(1L)
φ + γ

(2L)
φ + γ

(3L)
φ + γ

(4L)
φ , (31)

γφ2 = γ
(1L)
φ2 + γ

(2L)
φ2 + γ

(3L)
φ2 + γ

(4L)
φ2 . (32)

To calculate the anomalous dimensions, we make use of
the chain rule when taking the derivative with respect to ln μ,
as well as of the fact that the renormalization constants Zφ

and Zφ2 have no ξ dependence since the associated fields are
gauge invariant [37],

γX = 1

ZX

∑
α=e,g,λ

∂ZX

∂α2
βα2 , (33)

for X ∈ {φ, φ2}. As for the beta functions, here we list the
contributions only up to three-loop order and provide the
four-loop contributions in Appendix C and Ref. [38]. The
anomalous dimension of the scalar field φ is given by

γ
(1L)
φ = 4Ng2, (34)

γ
(2L)
φ = 20Ne2g2 − 10Ng4 + 96λ4, (35)

γ
(3L)
φ = −3N (7 + 16ζ3)e2g4 + N

4
(200N + 21 + 48ζ3)g6

+N (−32N − 119 + 144ζ3)e4g2 + 240Ng4λ2

− 720Ng2λ4 − 1728λ6, (36)

while for the scalar mass operator φ2, we find

γ
(1L)
φ2 = −24λ2, (37)

γ
(2L)
φ2 = −8Ng4 + 96Ng2λ2 + 576λ4, (38)

γ
(3L)
φ2 = −32N (4N − 9 + 3ζ3)g6

+ 12N (24N − 11 − 120ζ3)g4λ2 − 2304Ng2λ4

− 50112λ6 + 32N (−7 + 9ζ3)e2g4

+ 72N (17 − 16ζ3)e2g2λ2. (39)

Our expressions for γφ and γφ2 can be checked in two
limits. Setting e = 0 and g = 0, our results agree at four-loop
order with those for the Ising universality class [39]. Setting
e = 0 only, our results agree at that same order with those for
the chiral Ising GNY model [22].

C. Fermion bilinears

Besides φ and φ2, another class of gauge-invariant opera-
tors one can consider are fermion bilinears. Restricting our-
selves to Lorentz scalars, i.e., mass terms, a generic fermion
bilinear can be expressed as a linear combination of an SU(N )
flavor-singlet mass �̄�, which appears in the Yukawa inter-
action in Eq. (1), and an SU(N ) flavor-adjoint mass

�̄TA� ≡
N∑

i,j=1

�̄iT
ij

A �j , A = 1, . . . , N2 − 1, (40)

where the generators TA of SU(N ) are linearly independent
traceless Hermitian N × N matrices. The scaling dimensions
of the singlet and adjoint bilinears are in general different. To
calculate the scaling dimension ��̄�� of a fermion bilinear
�̄�� where � ∈ {1, TA}, we add it to the bare and renormal-
ized Lagrangians,

δL0 = M̂0�̄
0��0, δLR = ZM̂M̂μ�̄��, (41)

where we use the shorthand M̂ = M� ∈ {M1,MTA
} ≡

{M, M̃}. This implies the relations

M̂ = M̂0μ
−1Z−1

M̂
Z�, (42)

and thus the beta functions

βM̂ = dM̂

d ln μ
= (−1 − γM̂ + γ� )M̂, (43)

where γM̂ = d ln ZM̂/d ln μ. Note that γ� and γM̂ are not
separately gauge invariant, i.e., they depend on the gauge-
fixing parameter ξ , but all the gauge-dependent terms must
cancel out in Eq. (43), since the fermion bilinears are gauge-
invariant operators. Taking into account its gauge dependence,
the fermion field anomalous dimension is given by

γ� = 1

Z�

∑
α=e,g,λ

(
∂Z�

∂α2
− ξ

∂Z�

∂ξ

∂ ln ZA

∂α2

)
βα2 , (44)

where we have used Eq. (10) to express dξ/d ln μ = −γAξ .
We find that up to four-loop order γ� depends on ξ only in the
one-loop term, as in pure QED [42,43].

To calculate ZM̂ we compute the fermion two-point func-
tion at four-loop order with all possible single fermion bi-
linear and fermion bilinear counterterm insertions. Flavor-
adjoint bilinear insertions preserve the Z2 chiral symmetry
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of the massless theory (for a proof of this statement, see
Appendix A). In this case the scaling dimension of the bilinear
is simply determined by the slope of the beta function (43)
evaluated at the M̃ = 0 fixed point,

d − ��̄TA� = 1 + ηM̃ − η�, (45)

where η� and ηM̃ are the anomalous dimensions of the
fermion field and adjoint bilinear evaluated at the quantum
critical point,

ηM̃ ≡ γM̃ (e2
∗, g

2
∗, λ

2
∗), (46)

η� ≡ γ� (e2
∗, g

2
∗, λ

2
∗). (47)

Accounting for the ξ dependence of γM̃ , one has

γM̃ = 1

ZM̃

∑
α=e,g,λ

(
∂ZM̃

∂α2
− ξ

∂ZM̃

∂ξ

∂ ln ZA

∂α2

)
βα2 . (48)

At four-loop order, we obtain

γM̃ − γ� ≡ γ�̄TA� = γ
(1L)
�̄TA�

+ γ
(2L)
�̄TA�

+ γ
(3L)
�̄TA�

+ γ
(4L)
�̄TA�

,

(49)

with

γ
(1L)
�̄TA�

= 6e2 − 3g2, (50)

γ
(2L)
�̄TA�

= −
(

20N

3
− 3

)
e4 − 24e2g2 +

(
28N + 9

4

)
g4,

(51)

γ
(3L)
�̄TA�

=
(

11N2 − 151N

4
+ 697

16
− 57ζ3

)
g6

+ 1

2
[N (137 − 144ζ3) + 348 − 72ζ3]e2g4

+ 3

4
(80N − 109 + 336ζ3)e4g2

+
(

−280N2

27
+ N (−92 + 96ζ3) + 129

)
e6

− 240g4λ2 + 348g2λ4. (52)

The four-loop contribution γ
(4L)
�̄TA�

is given in Eq. (C3) of Ap-
pendix C. The absence of gauge dependence up to four-loop
order is an additional consistency check on the calculation.
Furthermore, we checked that our result for γ�̄TA� agrees
with the results available in the literature in the pure QED
limit [44–47], using the fact (discussed in Sec. V A) that in
the pure QED limit the singlet and adjoint bilinear scaling
dimensions are identical.

By contrast with adjoint bilinear insertions, singlet bilinear
insertions explicitly break the Z2 chiral symmetry and thus
symmetry-breaking interactions will be radiatively induced.
The only relevant (or marginal) such interaction below four
dimensions is a φ3 interaction, which must be kept to preserve
renormalizability of the theory. We must therefore addition-
ally include the bare h0φ

3
0 and renormalized Zhhμ1+ε/2φ3

couplings in the Lagrangian, with Zh a new renormalization

+

δZhh

M

FIG. 1. A subdivergence coming from the fermion loop with an
SU(N ) singlet mass insertion M in the first diagram is canceled
by a counterterm insertion δZhh of the cubic scalar vertex, where
δZh = Zh − 1.

constant. This implies the additional relation

h = h0μ
−1−ε/2Z−1

h Z
3/2
φ , (53)

and the corresponding beta function,

βh = dh

d ln μ
=

(
−1 − ε

2
− γh + 3

2
γφ

)
h, (54)

with γh = d ln Zh/d ln μ. Note that one has to introduce this
extra coupling in order to obtain a finite/local result for γM

starting at three-loop order. This is because radiative cor-
rections to the cubic scalar vertex arise for the first time in
the fermion two-point function with single mass insertions in
three-loop diagrams (first diagram of Fig. 1). To calculate γM

we use an equation analogous to Eq. (48), but the sum over α2

must additionally include the couplings M and h.
In fact, as soon as a flavor-singlet fermion bilinear insertion

is present, the theory is already nonrenormalizable at one-
loop order without a cubic scalar vertex, because the scalar
three-point function becomes divergent through fermion loop
diagrams containing a single flavor-singlet bilinear insertion.
Exactly these diagrams reappear as subdiagrams at three-loop
order (first diagram in Fig. 1) and carry a subdivergence which
renders the corresponding mass renormalization constant non-
local (containing logarithms of μ), if one does not subtract
their subdivergence via a corresponding φ3 vertex counterterm
insertion (second diagram in Fig. 1).

Moreover, even the scalar one-point function becomes di-
vergent at the same loop order, when one allows for a φ2 oper-
ator insertion. So one has to introduce a tadpole counterterm ∼
t0φ0 into the Lagrangian in order to be able to render the one-
point function finite. In our case we renormalize the parameter
t in a full subtraction scheme, meaning we have t = 0 to all
orders. This means effectively we do not need to consider any
diagrams containing a φ-tadpole insertion, because for each
such diagram there is a corresponding counterterm diagram
which exactly cancels its contribution.

Since we are interested in the scaling dimension of �̄�

in the massless, symmetric theory, it is sufficient to calculate
ZM and Zh up to linear order in M and h. Note that ZM will
contain the singular ratio h/M as a Z2 symmetry-breaking
mass term can be radiatively generated at two-loop order by
the cubic scalar vertex (i.e., the second diagram of Fig. 1 but
with the counterterm insertion replaced by the cubic scalar
vertex h itself). Likewise, Zh will contain the ratio M/h as the
cubic scalar vertex can be radiatively generated at one-loop
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order by a closed fermion loop with a single SU(N ) singlet
mass insertion and three external scalar legs (i.e., the fermion
loop subdiagram in the first diagram of Fig. 1). These singular
ratios lead to terms linear in h in βM and terms linear in M in
βh, i.e., mixing between the operators �̄� and φ3. To linear
order one thus obtains the linear system

βM = K11M + K12h, (55)

βh = K21M + K22h. (56)

As in Sec. III A we find full cancellation of the gauge de-
pendence in those beta functions [38], which is a strong
consistency check of the calculation. The scaling dimensions
of the new eigenoperators are given by �± = d + �± where

�± = K11 + K22

2
±

√(
K11 − K22

2

)2

+ K12K21, (57)

are the eigenvalues of the matrix K , evaluated at the quantum
critical point. By inspecting the corresponding eigenvectors
we find that �− can be associated with ��̄� , and likewise
�+ = �φ3 .

IV. CRITICAL EXPONENTS

From the knowledge of the beta functions [Eqs. (16)–(18)]
and anomalous dimensions [Eqs. (31) and (32)] one can cal-
culate the usual critical exponents. We begin by searching for
fixed points with couplings (e2

∗, g
2
∗, λ

2
∗) at one-loop order [32].

At that order one finds eight fixed points: the Gaussian fixed
point (0,0,0), the conformal QED [48] fixed point ( 3ε

8N
, 0, 0),

the Wilson-Fisher fixed point (0, 0, ε
72 ), a conformal QED

× Wilson-Fisher fixed point ( 3ε
8N

, 0, ε
72 ), two GNY-type fixed

points with e2
∗ = 0 and g2

∗ �= 0, λ2
∗ �= 0, and two fixed points

with all three couplings nonzero. In agreement with Ref. [32],
of all those fixed points only one of the latter two is stable, the
so-called QED3-GNY fixed point:

e2
∗ = 3

8N
ε + O(ε2), (58)

g2
∗ = 2N + 9

4N (2N + 3)
ε + O(ε2), (59)

λ2
∗ = −2N − 15 + X

144N (2N + 3)
ε + O(ε2), (60)

defining

X ≡
√

4N4 + 204N3 + 1521N2 + 2916N. (61)

Furthermore, all three couplings are positive for all N . In the
following we study this fixed point at four-loop order, looking
for a zero of the beta functions in the form

e2
∗ =

4∑
n=1

enε
n, g2

∗ =
4∑

n=1

gnε
n, λ2

∗ =
4∑

n=1

λnε
n, (62)

with the one-loop coefficients e1, g1, λ1 given in
Eqs. (58)–(60).

Besides the previously determined exponent ηA, the critical
exponents we compute here are the scalar field anomalous
dimension ηφ , the inverse correlation length exponent ν−1,
and the stability critical exponent ω. The exponent ν−1 is

defined as the RG eigenvalue associated with the (relevant)
scalar mass term,

dm2

d ln μ

∣∣∣∣
(e2∗,g2∗ ,λ2∗ )

= −ν−1m2. (63)

From Eqs. (9) and (28), one obtains [37]

ν−1 = 2 + ηφ2 − ηφ. (64)

The exponent ω is defined as the RG eigenvalue associated
with the least irrelevant operator in the basin of attraction of
the fixed point (i.e., the critical hypersurface m2 = 0), and
controls the leading corrections to scaling. In practical terms,
it is given by the smallest eigenvalue of the Jacobian (stability)
matrix

J =

⎛
⎜⎜⎜⎝

∂βe2

∂e2
∂βe2

∂g2
∂βe2

∂λ2

∂βg2

∂e2

∂βg2

∂g2

∂βg2

∂λ2

∂βλ2

∂e2
∂βλ2

∂g2
∂βλ2

∂λ2

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣
(e2∗,g2∗ ,λ2∗ )

. (65)

The approach utilized to diagonalize J order by order in ε

is tantamount to ordinary quantum-mechanical perturbation
theory, and is briefly summarized in Appendix E.

At one-loop order, we find

ηφ = 2N + 9

2N + 3
ε + O(ε2), (66)

ν−1 = 2 − 10N2 + 39N + X

6N (2N + 3)
ε + O(ε2), (67)

ω = ε + O(ε2), (68)

with ηφ and ν−1 in agreement with Ref. [32]. At higher
loop order, analytical expressions for the critical exponents
with general N can be obtained but are extremely cum-
bersome [38]. As a nontrivial check on the calculation, we
have verified that our four-loop result for ηφ , when expanded
in inverse powers of N to O(1/N ), agrees with the corre-
sponding 1/N expansion result for the QED3-Gross-Neveu
(QED3-GN) model in d dimensions, when expanded to O(ε4)
[49,50]. Here we only give explicit expressions for the critical
exponents for the N = 1 case, relevant for the conjectured
duality with the SU(2) NCCP1 model,

ηφ ≈ 2.2ε − 0.2227ε2 + 16.88ε3 − 205.1ε4, (69)

ν−1 ≈ 2 − 3.905ε + 7.471ε2 − 90.6ε3 + 1154ε4, (70)

ω ≈ ε + 0.3ε2 + 4.294ε3 − 119.1ε4, (71)

and for the N = 2 case, appropriate for the spin-1/2 kagome
antiferromagnet:

ηφ ≈ 1.857ε − 0.039 89ε2 + 4.142ε3 − 22.28ε4, (72)

ν−1 ≈ 2 − 2.794ε + 2.444ε2 − 16.11ε3 + 98.75ε4, (73)

ω ≈ ε + 0.2143ε2 + 0.9148ε3 − 16.76ε4. (74)

In both cases coefficients are given numerically to four signif-
icant digits.
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Padé approximants

To obtain approximate values of the critical exponents
in physical d = 3 dimensions, corresponding to ε = 1, we
employ standard one-sided Padé approximants (see, e.g.,
Ref. [51]), defined as

[m/n](ε) ≡
∑m

i=0 aiε
i

1 + ∑n
j=1 bj εj

, (75)

with m + n = L, where L is the desired loop order. They
reproduce the ε-expansion results when expanded to O(εL)
and constitute an extrapolation from d = 4 down to d = 3.
We have also attempted to use two-sided approximants (see,
e.g., Ref. [26]) by combining information from the 4 − ε

expansion of the QED3-GNY model and the 2 + ε expansion
of the fermionic QED3-GN model,

L̃ =
2N∑
i=1

ψ̄iγ
′
μ(∂μ − ieAμ)ψi + 1

4
F 2

μν + 1

2ξ
(∂μAμ)2

+u

(
2N∑
i=1

ψ̄iψi

)2

+ v

(
2N∑
i=1

ψ̄iγ
′
μψi

)2

, (76)

where ψi are two-component spinors and the γ ′
μ are 2 × 2

gamma matrices. Just like the standard GNY fixed point in
4 − ε dimensions is believed to be in the same universality
class as the fixed point of the purely fermionic GN model in
2 + ε dimensions [19] when extrapolating ε → 1, so too is
the QED3-GNY fixed point in 4 − ε dimensions believed to
extrapolate to the same universality class as one of the two
charged critical points of Eq. (76) [32,52]. Two-sided Padé
extrapolation indeed appears to give accurate results for the
pure GNY/GN fixed point [26]. However, since the gauge
coupling in Eq. (76) is strongly relevant near two dimensions,
the charged critical point of interest, the QED3-GN fixed
point, is not perturbatively accessible at finite N in a strict
2 + ε expansion, by contrast with the neutral fixed point of
the pure GN theory [19]. Thus one is forced to proceed in
a combined 1/N and 2 + ε expansion [32,52], which is not
expected to be very accurate for small N . Unsurprisingly, we
have found that two-sided Padé approximants that take into
account the leading, i.e., O(1/N0, ε) term in the combined
1/N and 2 + ε expansion—the only term known so far [32]—
produce a large spread of extrapolated values for the critical
exponents at small N . We thus do not expect the estimates
obtained this way to be reliable, and discuss only the one-
sided approximants (75) in the rest of the paper.

The results of one-sided Padé extrapolation for the critical
exponents are shown as a function of N in Figs. 2–4 at two-
loop (blue), three-loop (green), and four-loop (red) orders.
We use only Padé approximants that do not contain poles
in the extrapolation region 0 < ε < 1. We observe sizable
variations in the extrapolated exponents for small N ; such
variations have also been seen in the Padé extrapolation of
operator scaling dimensions in conformal QED3 [51]. Smaller
variations seen at large N are expected as the theory becomes
weakly coupled in the large-N limit for all 2 < d < 4. For
ηφ and ω the [1/3] approximant appears to be an outlier;
reasonably good agreement is obtained between the other
approximants except at small N . A much larger spread of

FIG. 2. Two-loop (blue), three-loop (green), and four-loop (red)
Padé approximants to the scalar field anomalous dimension ηφ in
d = 3, as a function of the number N of flavors of four-component
Dirac fermions.

extrapolated values is obtained for ν−1, even at relatively large
N ; again the [1/3] approximant deviates significantly from
the two other pole-free approximants at four loops, [2/2] and
[3/1].

The results of Padé extrapolation can be compared with
unitarity bounds in conformal field theory [53,54]. The scaling
dimension � of a Lorentz scalar should obey � � d

2 − 1;
since �φ = (d − 2 + ηφ )/2 and �φ2 = d − ν−1 this implies
that ηφ � 0 and ν−1 � 5/2 in three dimensions. Additionally,
by definition ν−1 and ω should be positive. In Fig. 3 the
three-loop [2/1] and four-loop [2/2], [3/1] approximants,
in close agreement with each other, violate those bounds
for N � 3. While these results suggest the possible loss of
conformal invariance for sufficiently small N—due either to
the loss of conformal invariance in pure QED3 itself, or to the
phase transition becoming first order—they should be taken
with caution, given the large variations between different
approximants at small N .

V. SCALING DIMENSIONS OF FERMION BILINEARS

The scaling dimensions ��̄� and ��̄TA� of the SU(N ) sin-
glet/adjoint fermion bilinears are obtained from the analysis in
Sec. III C. At one-loop order we obtain

��̄�� = 3 −
(

2N + 6

2N + 3

)
ε + O(ε2), (77)

for both singlet and adjoint bilinears, the latter in agreement
with Ref. [32]. Starting at two-loop order the two scaling
dimensions differ due to mixing of the singlet bilinear with the

FIG. 3. Padé approximants to the inverse correlation length ex-
ponent 1/ν in d = 3, as a function of N (color scheme as in Fig. 2).
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FIG. 4. Padé approximants to the stability critical exponent ω in
d = 3, as a function of N (color scheme as in Fig. 2).

φ3 operator. The full expressions at four-loop order for general
N are extremely cumbersome [38]; here we give expressions
for N = 1 only,

��̄� ≈ 3 − 1.6ε + 0.1114ε2 − 8.442ε3 + 102.5ε4, (78)

��̄TA� ≈ 3 − 1.6ε + 1.987ε2 − 17.46ε3 + 215.7ε4, (79)

and N = 2:

��̄� ≈ 3 − 1.429ε + 0.019 95ε2 − 2.071ε3 + 11.14ε4,

(80)

��̄TA� ≈ 3 − 1.429ε + 0.4548ε2 − 2.069ε3 + 11.33ε4.

(81)

Strictly speaking, the adjoint bilinear only exists for N � 2,
since SU(1) is trivial. However, since the scaling dimension
obtained for N � 2 is an analytic function of N , one can
analytically continue the result to N = 1. We note that in the
large-N limit, our four-loop result for ��̄TA� agrees with the
corresponding quantity for the QED3-GN model computed in
the 1/N expansion at O(1/N2) [55].

As in Sec. IV we perform both one-sided and two-sided
Padé extrapolation, but discard the two-sided approximants
due to their large spread in numerical values, which itself
stems from the additional large-N approximation required
near the lower critical dimension. The results of Padé ex-
trapolation for pole-free approximants are given in Figs. 5
and 6. As for the critical exponents there is a relatively
large spread in the extrapolated values for small N , which

FIG. 5. Padé approximants to the scaling dimension of the sin-
glet fermion bilinear �̄� in d = 3, as a function of N (color scheme
as in Fig. 2).

FIG. 6. Padé approximants to the scaling dimension of the ad-
joint fermion bilinear �̄TA� in d = 3, as a function of N (color
scheme as in Fig. 2).

was also seen in the Padé extrapolation of fermion bilinear
and quadrilinear operators in conformal QED3 [51]. Unitarity
bounds require ��̄�� � 1/2. This is satisfied for all N by all
approximants except the three-loop [0/3] approximant, which
predicts the breakdown of conformal invariance at N = 1
with ��̄TA� ≈ 0.467. By contrast with the thermodynamic
exponents ηφ, ν−1, and ω in Figs. 2–4, a better convergence
of the approximants with increasing loop order seems to
be achieved for the fermion bilinear scaling dimensions. In
particular, in Fig. 6 the four-loop result for the adjoint bilinear
is sandwiched between the two-loop and three-loop results at
small N , and the three four-loop approximants (red lines) are
in close agreement with each other. Taking the mean of the
three four-loop approximants, we arrive at the estimates

��̄TA� ≈ 1.98 ± 0.08 for N = 1, (82)

��̄TA� ≈ 1.74 ± 0.06 for N = 2, (83)

where the indicated uncertainties correspond to one standard
deviation on either side of the mean. For both the singlet and
adjoint bilinears, the [1/3] approximant deviates noticeably
from the other two four-loop approximants ([2/2] and [3/1]).
This deviation is similar to, but less significant than that
observed for the critical exponents in Sec. IV.

A. Conformal QED3

When setting g = 0, the Lagrangian (1) reduces to decou-
pled copies of massless QED and scalar φ4 theory. In the loop
expansion of the fermion two-point function, one important
difference between the singlet and adjoint bilinears comes
from closed fermion loops with a single bilinear insertion,
which vanish for the adjoint bilinear due to the tracelessness
of the flavor matrix TA but are generically nonzero for the
singlet bilinear. In pure QED such closed fermion loops with
bilinear insertions always involve a trace over an odd number
of gamma matrices, and vanish regardless of the choice of
flavor matrix �. Since the issue of mixing with the φ3 operator
is absent in pure QED, the difference in ZM̂ for the singlet and
adjoint bilinears only comes from closed fermion loops, and
thus those two bilinears have the same scaling dimension in
QED3 [51]. Evaluating the adjoint anomalous dimension (49)
at the QED3 fixed point g2

∗ = λ2
∗ = 0, e2

∗ = e2
∗,QED3

, where
e2
∗,QED3

can be determined to O(ε4) from the beta function
(12) in the QED limit g → 0, we can obtain ��̄�� at that
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FIG. 7. Padé approximants to the scaling dimension of the (sin-
glet or adjoint) fermion bilinear �̄�� at the conformal QED3 fixed
point in d = 3, as a function of N (color scheme as in Fig. 2, with
five-loop approximants in cyan).

fixed point. In fact, using the known five-loop QED/quantum
chromodynamics (QCD) results [56–68] for βe2 and γ�̄� we
can calculate ��̄�� at five-loop order (see Appendix D and
Ref. [38]), which agrees at three-loop order with Ref. [51].
As another nontrivial check on the calculation, we have also
verified that the large-N expansion of Eq. (D1) to O(1/N2)
precisely matches the result of the large-N expansion in
fixed 2 < d < 4 carried out to O(1/N2) in Ref. [69], when
expanded to O(ε5) in d = 4 − ε dimensions.

One-sided Padé approximants up to five-loop order are
shown in Fig. 7. We plot the results only up to N = 9, as the
four-loop [2/2] approximant has a pole in the extrapolation re-
gion at N = 10. Excluding the [1/3] and [0/5] approximants,
relatively good convergence is obtained with increasing loop
order. The unitarity bound ��̄�� � 1/2 is violated at N = 1
by the three-loop [0/3], [2/1], four-loop [2/2], [3/1], and
five-loop [3/2], [4/1] approximants (see Table I, from which
we have excluded [0/5] which strongly deviates from the
other approximants). One can thus use the approximants to
extract a critical value Nc of the fermion flavor number
below which conformal invariance is lost, presumably due
to the dynamical generation of an SU(N ) singlet fermion
mass 〈�̄�〉 �= 0, which translates in d = 3 to the spontaneous
breaking of chiral symmetry SU(2N ) → SU(N ) × SU(N ) ×
U(1) [70]. The estimates obtained this way (Table I) are
relatively close to the estimate Nc ≈ 1.02 obtained from an
entirely different condition, that of unitary bound violation for
monopole operators [71]. The implied breakdown of chiral
symmetry for N = 1 but not for N � 2 is consistent with
lattice gauge theory results [72–74], except the most recent
ones [75–77] which predict the absence of chiral symmetry
breaking even at N = 1.

B. Chiral Ising GNY model

Finally, when setting e = 0 in Eq. (1) the model reduces
to the pure GNY model in the chiral Ising universality class,

TABLE I. Padé estimates for unitarity bound violations in QED3.

[0/3] [2/1] [2/2] [3/1] [3/2] [4/1]

�
QED3
�̄��

(N = 1) 0.452 0.238 0.265 0.266 0.238 −0.960
Nc 1.05 1.16 1.12 1.12 1.16 1.36

FIG. 8. Padé approximants to the scaling dimension of the sin-
glet fermion bilinear �̄� at the chiral Ising GNY fixed point in
d = 3, as a function of N (color scheme as in Fig. 2).

and thus we can also calculate the scaling dimensions of
the singlet and adjoint bilinears at the GNY fixed point at
four-loop order. At one-loop order we obtain the same scaling
dimension for the singlet and adjoint bilinears,

�GNY
�̄��

= 3 −
(

4N + 3

4N + 6

)
ε + O(ε2). (84)

Starting at two-loop order, ��̄� differs from ��̄TA� due to
mixing between the �̄� and φ3 operators. At one-loop order,
our result for the singlet dimension disagrees with Ref. [26],
while the adjoint dimension agrees with Ref. [78]. However,
our full four-loop results [38] agree with the corresponding
large-N results at O(1/N2) for both the singlet [79] and
adjoint [55] mass dimensions in the GN model. Furthermore,
the dimension �φ3 of the φ3 operator [38], determined from
the other eigenvalue of the mixing matrix K in Sec. III C,
agrees at one-loop order with Ref. [26], and at four-loop order
with the corresponding large-N result in the GN model, which
has been determined at O(1/N2) only recently [80].

We show the results of one-sided Padé extrapolation in
Figs. 8 and 9; the spread of values is significantly smaller than
for the QED3-GNY model, suggesting that gauge fluctuations
tend to worsen the convergence of the ε expansion. In particu-
lar, for the adjoint bilinear all four approximants at four loops
agree closely with each other.

VI. DISCUSSION

We now discuss some applications of our results. We have
already mentioned the N = 2 case, which describes a putative
quantum phase transition between a gapless Dirac spin liquid

FIG. 9. Padé approximants to the scaling dimension of the ad-
joint fermion bilinear �̄TA� at the chiral Ising GNY fixed point in
d = 3, as a function of N (color scheme as in Fig. 2).
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FIG. 10. Padé extrapolation of the adjoint bilinear scaling dimen-
sion for N = 1 (color scheme as in Fig. 2).

and a gapped chiral spin liquid in a spin-1/2 kagome antiferro-
magnet [31,36]. The N = 1 case corresponds in d = 3 to the
QED3-GNY model with two flavors of two-component Dirac
fermions, which has been proposed to be dual to the critical
point of the SU(2)-symmetric NCCP1 model [35]. According
to this conjectured duality, the parity-even, flavor-symmetry-
breaking bilinear ψ̄σ zψ = ψ̄1ψ1 − ψ̄2ψ2 in the QED3-GNY
theory should be dual to the mass term z†z for the bosonic CP1

field z = (z1, z2) in the SU(2) NCCP1 model. Furthermore,
the duality requires an emergent SO(5) symmetry in the
infrared under which ψ̄σ zψ and the QED3-GNY scalar mass
operator φ2 are predicted to transform as different components
of the same traceless symmetric tensor X

(2)
ab , a, b,= 1, . . . , 5.

As a result, the duality implies that in three dimensions ψ̄σ zψ

and φ2 should have the same scaling dimension. But which
bilinear in the four-dimensional theory should one use for
this comparison? Since σ z is traceless in SU(2) flavor space,
in fixed d = 3 the loop expansion with single ψ̄σ zψ inser-
tions leads to a vanishing contribution of bilinear insertions
into closed fermion loops. Therefore, the d = 4 − ε bilinear
whose loop expansion behaves like that of the d = 3 flavor-
symmetry-breaking bilinear, in the sense that closed fermion
loops with bilinear insertions do not contribute, is the adjoint
bilinear �̄TA�, analytically continued to N = 1. With this
prescription one is thus led to compare ��̄TA� with the scaling
dimension of the φ2 operator, which equals 3 − ν−1.

While the four-loop Padé approximants give a reasonably
consistent extrapolated value for ��̄TA� [see Fig. 10 and
Eq. (82)], a much higher degree of uncertainty remains for
ν−1 (Fig. 11), preventing an unambiguous verification of the
duality. The same can be said for the value of ν−1 itself which,

FIG. 11. Padé extrapolation of the inverse correlation length
exponent for N = 1 (color scheme as in Fig. 2); the [2/2] and [3/1]
curves are essentially superimposed.

FIG. 12. Padé extrapolation of the scalar field anomalous dimen-
sion for N = 1 (color scheme as in Fig. 2).

according to the duality, should be the same as that at the Néel-
valence-bond-solid transition. The latter has been studied
numerically in lattice spin systems by Monte Carlo methods
[81–83], with estimates for ν−1 ranging from 1.3 to 2.0. As
another prediction of the duality, the scalar field φ should be
dual to the CP1 bilinear z†σ zz = |z1|2 − |z2|2, an element of
the Néel order parameter N = z†σz, which itself is predicted
to form a vector under the emergent SO(5) symmetry when
combined with the CP1 monopole operator, a complex scalar
that has the physical interpretation of a valence-bond-solid
order parameter. As a result, the scalar field anomalous di-
mension ηφ should be equal to that of the Néel and valence-
bond-solid order parameters. These order-parameter anoma-
lous dimensions have also been determined numerically, with
values ranging from 0.25 to 0.35 [81–83]. Apart from the
[1/3] approximant, our simple one-sided Padé estimates yield
extrapolated values of ηφ an order of magnitude larger than
this (Fig. 12). One can also attempt to improve the naive
Padé estimates by the Padé-Borel method [84], in which Padé
extrapolation is applied to the Borel sum B�(ε) of a critical
exponent �(ε) = ∑

k �kε
k known in the ε expansion,

B�(ε) ≡
∑

k

�k

k!
εk, (85)

rather than to the exponent itself. An estimate for the exponent
is then obtained by computing the Borel transform,∫ ∞

0
dt e−tB�(εt ) = �(ε). (86)

Padé-Borel estimates for the N = 1 exponents 1/ν, ηφ , and
��̄TA� are given in Table II, alongside with the ordinary Padé
estimates for comparison; a significant spread of extrapolated
values remains even with this method.

VII. CALCULATION OF THE RENORMALIZATION
CONSTANTS: TECHNICAL ASPECTS

In order to extract the renormalization constants ZX for
the QED3-GNY model up to and including four loops we
use a highly automated setup that has gone through sev-
eral nontrivial checks. It has already been used to obtain
the renormalization constants for the pure chiral Ising, XY ,
and Heisenberg GNY models in Ref. [22], and was able
to reproduce the four-loop QCD beta function [46,47,85].
Furthermore, because the QED3-GNY model is an Abelian
gauge theory we were able to keep the full dependence of the
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TABLE II. Padé and Padé-Borel resummed estimates of the
inverse correlation length 1/ν, the boson anomalous dimension ηφ ,
and the adjoint bilinear scaling dimension ��̄TA� to three significant
digits, for d = 3 and N = 1. The values for which the approximant
either has a pole in the domain ε ∈ [0, 1], is undefined, or is negative,
are denoted by ×.

N = 1 1/ν ηφ ��̄TA�

[0/2] 0.660 × 2.60
[0/2]PB 0.748 × 2.20
[1/1] 0.660 2.00 2.29
[1/1]PB 0.387 2.01 2.19
[0/3] 0.0486 × 0.467
[0/3]PB 0.597 × 1.69
[1/2] 0.677 × 1.99
[1/2]PB × × 2.14
[2/1] × 2.20 1.60
[2/1]PB × 2.20 1.67
[0/4] × × ×
[0/4]PB 0.584 × ×
[1/3] 0.320 0.0259 1.94
[1/3]PB 0.580 0.494 1.97
[2/2] × 4.32 1.94
[2/2]PB × × 1.74
[3/1] × 3.26 2.08
[3/1]PB × 3.59 1.75

amplitudes on the gauge parameter ξ , in order to explicitly
verify the cancellation of the ξ dependence in gauge-invariant
quantities.

Our setup uses QGRAF [86] to automatically generate all
diagrams, and further uses Q2E and EXP [87,88] to transform
the output of QGRAF into FORM-readable source files. The
amplitude reduction of each one-particle irreducible Green’s
function—including traces over Dirac gamma matrices—is
then performed within FORM [89,90]. A listing of the numbers
of Feynman diagrams computed for each specific Green’s
function and at a given loop order can be found in Table III.
All numbers are given for a vanishing φ3 coupling.

In order to be able to reduce all appearing integrals to
tadpole integrals only, we treat all relevant external momenta
as being small and keep a much larger common regulator mass
in all propagators in order to avoid infrared singularities. This
then allows one to expand naively in any external momen-
tum that appears. The systematic treatment of the unphysical
regulator mass is called infrared rearrangement [91,92] and
is based on an exact decomposition of a massless propagator
into massive ones. It requires an immediate cancellation of all
subdivergences, and thus one has to perform renormalization
via explicit counterterm insertions. The infrared rearrange-
ment method has been recently applied to the computation
of the five-loop QCD beta function and anomalous dimen-
sions [62,63] and is in full agreement with the results of
completely different approaches [61,64].

All appearing tadpole integrals are reduced to a well-
known finite set of master integrals (see the Appendix of
Ref. [47]) employing an integral reduction table. The latter
was created with the program CRUSHER [93], which first
generates integration-by-parts identities for all appearing in-
tegrals in order to obtain a coupled system of linear equations

TABLE III. List of all relevant n-point functions and the as-
sociated number of Feynman diagrams evaluated for vanishing φ3

coupling, as a function of the number of loops (A: gauge field, φ:
scalar field, �: Dirac fermion).

Loops 1 2 3 4

1 6 83 1610

2 9 99 1808

2 13 177 3387

2 37 844 22818

2 38 876 23767

9 153 4248 138849

for them. This system of equations is then solved by an
implementation of Laporta’s algorithm [94]. The solutions of
this system yield a decomposition of all appearing integrals
in terms of master integrals. The reduction table itself has
been conveniently implemented using FORM’s TableBase
functionality.

Because we kept the full ξ dependence, it turned out that
the most involved n-point function at four-loop order was the
photon polarization function. Here the coefficient ∼Ng8 alone
generated about 53 million terms at maximum expression size
which made FORM use approximately 261 GB of RAM.

In order to extract the renormalization constants from
all bare subdivergence-subtracted amplitudes, we rely on a
generic renormalization program written in FORM. It performs
the renormalization order by order and ensures the correct
insertions of all relevant counterterm combinations.

VIII. CONCLUSION

In summary, we have studied the critical properties of
the QED3-GNY model in the ε expansion below four di-
mensions at four-loop order, expanding upon the existing
results at one-loop order. Besides the usual thermodynamic
critical exponents ηφ, ν−1, and ω, we have also calculated
the scaling dimensions of SU(N ) flavor singlet and adjoint
fermion bilinears. The latter calculations were also performed
in the pure QED3 and GNY limits, expanding upon existing
results at lower loop orders. Agreement was found with
all available large-N results for the corresponding GN-type
models. In an effort to access the critical properties of the
corresponding d = 3 theories we performed Padé (and Padé-
Borel, for N = 1) extrapolation. While substantial uncertain-
ties remained at small N , reasonably good convergence with
increasing loop order was achieved at sufficiently large N .
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However, due to the large spread of the Padé extrapolated
values for the inverse correlation length exponent ν−1 at
small N , a sharp statement concerning the validity of the
conjectured duality at N = 1 could not be made.

It is conceivable that computing higher-order 1/N correc-
tions to critical exponents in the d = 2 + ε QED3-GN model
might improve the quality of two-sided Padé approximants
even at small N , and perhaps yield a narrower range of
extrapolated values than the one-sided approximants. More
sophisticated methods such as the use of conformal map-
pings in Borel resummation [37,84], which has recently been
applied to the GN and GNY models [95], could also be
employed here, and would benefit from a careful study of
the large-order behavior of the ε-expansion coefficients in
Yukawa-type theories, which is not currently known. Finally,
calculations of critical exponents in the 1/N expansion in

fixed d = 3 dimensions would provide an alternative test of
the proposed duality.

Note added. During the preparation of this manuscript we
became aware of Ref. [96], where an analysis similar to ours
was performed at three-loop order. Our results agree wherever
they overlap.
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APPENDIX A: CHIRAL Z2 SYMMETRY AND FERMION BILINEAR OPERATORS

In order to see that an SU(N ) flavor adjoint fermion bilinear operator is even under a chiral Z2 transformation, first note that
an arbitrary matrix � in the Lie algebra g of SU(N ) can always be brought to diagonal form by an SU(N ) transformation on
�, �̄, and can thus be expanded as � = λ · H where Hi, i = 1, . . . , N − 1 are generators of the Cartan subalgebra. Modulo an
overall prefactor to be absorbed in M , the expansion coefficients (λ1, . . . , λN−1) ≡ λ can be normalized such that λ2 = 1. Since
the action of the orthogonal group O(N − 1) is transitive on the unit sphere in RN−1, one can always perform a change of basis
of the Cartan subalgebra Hi → RijHj , R ∈ O(N − 1) such that � = α · H where α is a simple root of g. We further note that
the discrete chiral symmetry in Eq. (2) can be more generally defined as involving an SU(N ) transformation on the fermions,

� → e−iW γ5�, �̄ → −�̄γ5e
iW , φ → −φ, (A1)

with W an element of g. Under this generalized transformation the flavor singlet bilinear remains odd, but the flavor adjoint
bilinear transforms as

�̄α · H� → −�̄eiWα · He−iW�. (A2)

Defining the non-Cartan generators T 1
α = (Eα + E

†
α )/

√
2, T 2

α = −i(Eα − E
†
α )/

√
2, where Eα (E†

α) is the raising (lowering)
operator for the SU(2) subalgebra associated with the simple root α, one can show that

eiθT 1
α α · He−iθT 1

α = cos θ α · H + sin θ T 2
α . (A3)

Thus if one chooses W = πT 1
α in Eq. (A1), the adjoint bilinear preserves a generalized Z2 chiral symmetry, because the

additional minus sign is absorbed due to cos π = −1.

APPENDIX B: FOUR-LOOP CONTRIBUTIONS TO THE BETA FUNCTIONS

The four-loop contributions to the beta functions in Sec. III A are given here explicitly (see also Ref. [38]). For the gauge
coupling, we have

β
(4L)
e2 = 2N

3
[N (267 − 432ζ3) + 43 − 336ζ3]e6g4 + 2N

9
(322N − 27 + 648ζ3)e8g2 − 240Ne4g4λ2 + 576Ne4g2λ4

− 4N

243
[616N2 + 36N (−95 + 312ζ3) + 5589]e10 − 4N

9
[27N2 + N (299 − 24ζ3) + 105 + 9ζ3]e4g6. (B1)

For the Yukawa coupling, we have

β
(4L)
g2 =

[
88N3

3
− 2N2

3
(899 + 1500ζ3 − 324ζ4) + N

(
9907

4
− 2648ζ3 + 552ζ4 − 1680ζ5

)
+ 30 529

32
+ 10ζ3 + 342ζ4

− 1720ζ5

]
g10 +

[
32N3

81
(83 − 144ζ3) + 64N2

27
(−19 + 270ζ3 − 162ζ4) + N

(
352

3
− 288ζ3 + 1920ζ5

)
+ 1261

2

+ 1344ζ3

]
e8g2 +

[
16N3

243
(−1625 + 1296ζ3) + 4N2

81
(−27739 + 35 856ζ3 − 7776ζ4)

+N

(
35

3
− 9856ζ3

3
+ 912ζ4 + 10 080ζ5

)
+ 9899

2
− 7464ζ3 + 1512ζ4 + 10 800ζ5

]
e6g4
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+ 2[96N2 − 8N (683 + 648ζ3) − 3(943 + 1008ζ3)]g8λ2 − 8[24N2 + 4N (635 − 324ζ3) + 135(33 + 40ζ3)]g6λ4

+ 576(8N − 455 + 144ζ3)g4λ6 + 224 640g2λ8 +
[
N2

(
−1022

9
+ 928ζ3 + 64ζ4 − 640ζ5

)

+N

(
−38 065

9
+ 22 264ζ3

3
− 528ζ4 + 1920ζ5

)
− 16 949

4
+ 6024ζ3 − 432ζ4 + 2640ζ5

]
e4g6

+
(

14 944N

3
− 456 + 5760ζ3

)
e4g4λ2 +

[
N2(216 − 640ζ3 + 96ζ4) + N

(
27 133

12
+ 2056ζ3 − 756ζ4 − 1400ζ5

)

+ 19 659

8
+ 3386ζ3 − 918ζ4 − 1460ζ5

]
e2g8 + 16[N (250 − 432ζ3) + 291 + 360ζ3]e2g6λ2

+ 24[6N (−67 + 48ζ3) − 815]e2g4λ4. (B2)

Finally, for the quartic scalar coupling we have

β
(4L)
λ2 = N

24
[64N2(−193 + 252ζ3) − 32N (−1289 + 540ζ3 − 288ζ4 − 1920ζ5) + 3(−4473 + 8864ζ3 − 3696ζ4 + 10 400ζ5)]

× g10 − N

3
[4N2(−1685 + 2736ζ3) + N (−69 220 − 49 872ζ3 + 32 400ζ4 + 40 320ζ5) − 3(9745 + 18 708ζ3 − 984ζ4

+ 12 560ζ5)]g8λ2 + N [2304N2(−1 + 2ζ3) − 8N (15 649 + 8784ζ3 − 3888ζ4) + 211 565 + 7296ζ3 + 40 176ζ4

+ 167 040ζ5]g6λ4 + 64N [6N (263 + 72ζ3) − 14521 − 7452ζ3 − 5184ζ4 − 17 280ζ5]g4λ6

− 576N (1355 + 3456ζ3 − 1728ζ4)g2λ8 − 6912(3499 + 3744ζ3 − 864ζ4 + 5760ζ5)λ10

− 4N

243
[16N2(−125 + 324ζ3) − 81N (185 + 16ζ3 − 240ζ4) − 81(−1471 + 72ζ3 + 432ζ4 + 240ζ5)]e6g4

+N

[
32N2

243
(−1625 + 1296ζ3) + 8N (−125 + 16ζ3 + 96ζ4) + 9302

3
+ 1856ζ3 − 864ζ4 − 2880ζ5

]
e6g2λ2

− N

6
[8N (−275 + 680ζ3 + 336ζ4 + 1920ζ5) + 3(1747 − 8928ζ3 + 5040ζ4 + 3680ζ5)]e4g6

+ 2N

9
[2N (−26 873 + 18 912ζ3 − 144ζ4 + 5760ζ5) − 9(7459 + 15 272ζ3 − 7920ζ4 − 12 000ζ5)]e4g4λ2

− 12N [4N (−155 + 64ζ3 − 48ζ4) + 3(−479 − 1056ζ3 + 432ζ4 + 960ζ5)]e4g2λ4

− N

3
[3N (335 + 2464ζ3 − 1200ζ4) + 4(845 + 3246ζ3 − 1566ζ4 + 2220ζ5)]e2g8

+ N

6
[16N (2725 + 5376ζ3 − 2736ζ4) + 30 419 + 138 720ζ3 − 24 624ζ4 − 30 240ζ5]e2g6λ2

− 8N [9N (199 + 288ζ3 − 144ζ4) + 19 661 − 27 216ζ3 + 1080ζ4 + 6480ζ5]e2g4λ4

+ 288N (1109 − 1104ζ3)e2g2λ6. (B3)

APPENDIX C: FOUR-LOOP CONTRIBUTIONS TO THE ANOMALOUS DIMENSIONS

In this Appendix we give the four-loop contributions to the anomalous dimensions γφ, γφ2 [Eqs. (31) and (32)], and γ�̄TA�

[Eq. (49)]; see also Ref. [38]. For the scalar field φ, we have

γ
(4L)
φ = N

243
[16N2(−1625 + 1296ζ3) + 972N (−125 + 16ζ3 + 96ζ4) + 81(4651 + 2784ζ3 − 1296ζ4 − 4320ζ5)]e6g2

− 2N

3
[N2(−101 + 144ζ3) + N (−211 + 636ζ3 + 108ζ4) − 435 + 369ζ3 + 90ζ4 + 120ζ5]g8

+ N

9
[N (−4570 + 3264ζ3 + 4896ζ4 − 5760ζ5) − 9(673 + 1064ζ3 − 1008ζ4 + 480ζ5)]e4g4

− 16N (76N + 249 − 48ζ3)g6λ2 − 64N (3N + 182 − 162ζ3)g4λ4 + 4608Ng2λ6 + 224 640λ8

+ N

12
[32N (161 + 96ζ3 − 72ζ4) + 11 363 + 2784ζ3 − 3888ζ4 − 1440ζ5]e2g6 − 944Ne2g4λ2

+ 144N (−67 + 48ζ3)e2g2λ4, (C1)

165125-13



ZERF, MARQUARD, BOYACK, AND MACIEJKO PHYSICAL REVIEW B 98, 165125 (2018)

and for the scalar mass operator φ2 we obtain

γ
(4L)
φ2 = N

2
[64N2(−11 + 18ζ3) + 8N (−651 + 40ζ3 + 108ζ4 + 560ζ5) − 1423 − 2688ζ3 − 2016ζ4 + 5040ζ5]g8

− 3N [256N2(−1 + 2ζ3) − 8N (809 + 336ζ3 − 240ζ4) + 12 989 − 5120ζ3 + 3312ζ4 − 5760ζ5]g6λ2

− 96N [16N (11 + 3ζ3) − 949 − 1440ζ3 − 216ζ4]g4λ4 + 576N (313 + 96ζ3)g2λ6 + 27 648(187 + 18ζ3 + 36ζ4)λ8

− 2N

3
[4N (−683 + 480ζ3 − 72ζ4 + 240ζ5) − 3393 − 7104ζ3 + 3456ζ4 + 6240ζ5]e4g4

+ 4N [4N (−155 + 64ζ3 − 48ζ4) + 3(−479 − 1056ζ3 + 432ζ4 + 960ζ5)]e4g2λ2

− 4N [3N (89 + 192ζ3 − 96ζ4) − 177 + 1808ζ3 − 720ζ4 − 200ζ5]e2g6

+ 8N [N (597 + 864ζ3 − 432ζ4) + 3019 − 2928ζ3 − 504ζ4 + 1200ζ5]e2g4λ2 + 1152N (−49 + 48ζ3)e2g2λ4. (C2)

For the SU(N ) adjoint bilinear �̄TA� we obtain

γ
(4L)
�̄TA�

=
[

4N2

81
(2183 − 1728ζ3) + 4N

3
(457 − 868ζ3 + 144ζ4) + 1

4
(−9899 + 14 928ζ3 − 3024ζ4 − 21 600ζ5)

]
e6g2

+
[

2N2

9
(−983 + 456ζ3 − 216ζ4) + 4N

9
(1013 − 5586ζ3 + 756ζ4 + 900ζ5)

+ 1

8
(16 949 − 24 096ζ3 + 1728ζ4 − 10 560ζ5)

]
e4g4 +

[
16N3

81
(−83 + 144ζ3) + 32N2

27
(19 − 270ζ3 + 162ζ4)

+ 16N

3
(−11 + 27ζ3 − 180ζ5) − 1

4
(1261 + 2688ζ3)

]
e8 +

[
N3(19 − 48ζ3) + 98N2

+N

(
−2475

8
+ 689ζ3 − 90ζ4 + 160ζ5

)
− 30 529

64
− 5ζ3 − 171ζ4 + 860ζ5

]
g8 +

[
16N2

3
(20 + 84ζ3 − 27ζ4)

+N

(
−9805

12
+ 496ζ3 − 216ζ4

)
− 19 659

16
− 1693ζ3 + 459ζ4 + 730ζ5

]
e2g6 + (2456N + 2046 + 1440ζ3)g6λ2

+ (−3344N + 11 484 − 6048ζ3)g4λ4 − 13 536g2λ6 − 192(2 + 9ζ3)e2g4λ2 − 588e2g2λ4. (C3)

APPENDIX D: SCALING DIMENSION OF FERMION BILINEAR IN CONFORMAL QED3 AT FIVE-LOOP ORDER

The scaling dimension of the SU(N ) singlet/adjoint fermion mass bilinear �̄�� at the QED3 fixed point is [38]

�
QED3

�̄��
= 3 − ε − 9

4N
ε + 15(4N + 9)

64N2
ε2 + 140N2 + 81N (5 − 16ζ3) − 3078

256N3
ε3 + 1

16 384N4

× [64N3(83 − 144ζ3) − 288N2(101 − 360ζ3 + 216ζ4) − 432N (11 − 228ζ3 − 720ζ5) + 567(1183 + 384ζ3)]ε4

+ 1

65 536N5
[192N4(65 + 80ζ3 − 144ζ4) + 32N3(−3607 + 1944ζ3 + 9720ζ4 − 5184ζ5)

− 1728N2(56 − 663ζ3 + 504ζ 2
3 − 171ζ4 + 1620ζ5 − 900ζ6) − 972(14 087 + 4592ζ3 + 2080ζ5)

− 27N (55 915 + 140 256ζ3 − 24 192ζ4 − 30 720ζ5 + 241 920ζ7)]ε5 + O(ε6). (D1)

APPENDIX E: CALCULATION OF THE STABILITY
CRITICAL EXPONENT ω

Here we explain the procedure used to calculate the sta-
bility critical exponent ω, defined as the smallest eigenvalue
of the stability matrix J defined in Eq. (65). For a generic
number N of fermion flavors the matrix elements of J at
four-loop order are extremely lengthy, and direct diagonal-
ization, which involves analytically finding the roots of a
cubic secular equation involving those matrix elements, is
needlessly complicated. Since ω must be computed only to
order ε4, one can simply proceed as in ordinary (Rayleigh-
Schrödinger) perturbation theory. We expand the eigenvalues

ωi, i = 1, 2, 3 and corresponding eigenvectors ui of J , as
well as J itself, in powers of ε:

J =
4∑

L=1

J (L)εL, (E1)

ωi =
4∑

L=1

ω
(L)
i εL, (E2)

ui =
4∑

L=1

u(L)
i εL−1. (E3)
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Solving the (right) eigenvalue problem J · ui = ωiui order
by order in ε, one obtains the equation∑

n+n′=L+1

J (n) · u(n′ )
i =

∑
n+n′=L+1

ω
(n)
i u(n′ )

i , (E4)

at each loop order L = 1, . . . , 4, where n, n′ = 1, . . . , 4.
At one-loop order, ω(1)

i are simply given by the eigenvalues
of J (1); one can check that this matrix is (lower) triangular,
thus its right and left eigenvalues are equal. However, it
is not symmetric, thus its right eigenvectors u(1)

i and left
eigenvectors ũ(1)

i , defined by

ũ(1)
i · J (1) = ũ(1)

i ω
(1)
i , (E5)

are not equal. At two-loop order, left-multiplying the L = 2
equation in Eq. (E4) by the left eigenvector ũ(1)

i , one obtains

ω
(2)
i = Ĵ (2)

ii

Sii

, (E6)

where we define the matrix elements Ĵ (L)
ij at loop order L and

the overlap matrix Sij by

Ĵ (L)
ij = ũ(1)

i · J (L) · u(1)
j , Sij = ũ(1)

i · u(1)
j . (E7)

One can check that S is in fact diagonal, Sij = Siiδij . At loop
orders 3 and 4, one proceeds as in second- and third-order
perturbation theory, respectively, expanding the eigenvector
contributions for L = 2 and L = 3 on the basis of one-loop

eigenvectors,

u(2,3)
i =

∑
k �=i

c
(2,3)
ik u(1)

k . (E8)

One can check that the eigenvalues ω
(1)
i of J (1) are distinct

for all (finite) N , thus the eigenvectors u(1)
i are linearly

independent. As in ordinary perturbation theory, the diagonal
coefficients c

(2,3)
ii are arbitrary and can be set to zero. Substi-

tuting the expansion (E8) into the L = 2 and L = 3 equations
in Eq. (E4), and left-multiplying by ũ(1)

j with j �= i, one can
solve for the expansion coefficients:

c
(2)
ij = Ĵ (2)

ji

Sjj

(
ω

(1)
i − ω

(1)
j

) , (E9)

c
(3)
ij = Ĵ (3)

ji + ũ(1)
j · J (2) · u(2)

i − ω
(2)
i ũ(1)

j · u(2)
i

Sjj

(
ω

(1)
i − ω

(1)
j

) . (E10)

Finally, substituting Eq. (E8) into the L = 3 and L = 4 equa-
tions in Eq. (E4), we obtain

ω
(3)
i = 1

Sii

⎛
⎝Ĵ (3)

ii +
∑
j �=i

c
(2)
ij Ĵ (2)

ij

⎞
⎠, (E11)

ω
(4)
i = 1

Sii

⎡
⎣Ĵ (4)

ii +
∑
j �=i

(
c

(3)
ij Ĵ (2)

ij + c
(2)
ij Ĵ (3)

ij

)⎤⎦. (E12)

[1] M. E. Fisher, Rev. Mod. Phys. 46, 597 (1974).
[2] K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28, 240 (1972).
[3] D. V. Batkovich, K. G. Chetyrkin, and M. V. Kompaniets, Nucl.

Phys. B 906, 147 (2016).
[4] M. V. Kompaniets and E. Panzer, Phys. Rev. D 96, 036016

(2017).
[5] O. Schnetz, Phys. Rev. D 97, 085018 (2018).
[6] R. Guida and J. Zinn-Justin, J. Phys. A 31, 8103 (1998).
[7] I. F. Herbut, Phys. Rev. Lett. 97, 146401 (2006).
[8] T. Grover, D. N. Sheng, and A. Vishwanath, Science 344, 280

(2014).
[9] S.-S. Lee, Phys. Rev. B 76, 075103 (2007).
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