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Collective dynamics of Fermi surface fluctuations in an interacting Weyl metal phase
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Instabilities in a Landau’s Fermi-liquid state occur, increasing the strength of interaction parameters in the
Landau’s Fermi-liquid theory. Introducing both the Berry curvature and chiral anomaly into this theoretical
framework, we investigate collective dynamics of Fermi surface fluctuations and reveal their instabilities in an
interacting Weyl metal phase with broken time reversal symmetry. Recently, a topological Fermi-liquid theory
has been proposed to describe this interacting Weyl metal phase, where not only the Berry curvature but also the
chiral anomaly is introduced into the Landau’s Fermi-liquid theory [Phys. Rev. B 95, 205113 (2017)]. Based on
the Boltzmann-equation framework, we find criteria for the stability of the topological Fermi-liquid state as a
function of forward-scattering Landau’s interaction parameters and the distance of a pair of Weyl points given
by an external magnetic field. In addition to these instability criteria for general angular momentum channels,
we investigate the dispersion relation of the zero-sound mode as the simplest example of such Fermi surface
fluctuations. Zero-sound modes are well-defined collective excitations in a Landau’s Fermi-liquid state, given by
the collective dynamics of Fermi surface deformations in the spin-singlet channel with zero angular momentum,
where their instability is related with phase separation. We find that the role of the Berry curvature changes
the instability criteria of the Landau’s Fermi-liquid state. Even if the zero-sound mode is stable in the region
of the forward-scattering amplitude, the Berry curvature gives rise to Landau damping beyond the Landau’s
Fermi-liquid theory. Based on the instability criterion of the zero-sound mode, we propose a phase diagram for
a topological Fermi-liquid state against the phase separation in the plane of Landau’s interaction parameter and
effective Berry curvature, which generalizes the one-dimensional phase diagram of the Landau’s Fermi-liquid
theory.
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I. INTRODUCTION

Electron correlations can give rise to fractionalized excita-
tions in the presence of a topological structure [1]. It has been
well established that a spin-1/2 chain shows gapless spectra,
the nature of which is given by spin-fractionalized excitations,
referred to as spinons and allowed by the topological θ = π

term [2]. This mathematical structure was generalized [3] and
applied to a two-dimensional spin-1/2 system with SU (2)
symmetry, where an emergent topological term may allow
spinon excitations at a quantum critical point between an
antiferromagnetic ordered state and a valence bond solid
phase [4–7]. This so-called deconfined quantum critical point
is forbidden in the Landau-Ginzburg theoretical framework.

It is natural to ask whether such fractionalized excitations
can occur in quantum phase transitions of metals. However,
symmetry breaking in a Landau’s Fermi-liquid state is de-
scribed by the Landau-Ginzburg effective field theory for
local order parameter fields, which may not have quantum
number fractionalization. Applying the mechanism discussed
above into quantum phase transitions of metals, we need a
topological term. Such a topological term, more precisely a
topological-in-origin θ term [8–11], appears in a Weyl metal
phase [12–15], which can be realized by applying external
magnetic fields into a spin-orbit coupled Dirac band structure
and splitting the fourfold degeneracy into a chiral pair of
twofold degeneracy [16–18]. If symmetry breaking occurs in
this Weyl metal state, an effective Landau-Ginzburg theory

of the corresponding local order parameter field may have
a topological-in-origin term, reflecting the chiral anomaly of
the Weyl band structure and referred to as ’t Hooft anomaly
matching [19].

In the present study, we examine instabilities in a Weyl
metal phase with broken time reversal symmetry as the first
step for this research perspective. We consider collective
dynamics of a pair of chiral Fermi surfaces. In the Landau’s
Fermi-liquid state, it is well known that such collective defor-
mations of Fermi surfaces give rise to zero-sound modes in the
spin-singlet channel with zero angular momentum, well de-
fined out of particle-hole continuum in the dispersion relation,
where their instability is related with phase separation [20,21].
To investigate the zero-sound mode in an interacting Weyl
metal phase, we need to generalize the Landau’s Fermi-liquid
theory, taking into account both the Berry curvature and chiral
anomaly. Recently, we proposed a topological Fermi-liquid
theory to describe an interacting Weyl metal phase with a
pair of chiral Fermi surfaces in the absence of time reversal
symmetry, where not only the topological information but also
marginal forward-scattering interactions are introduced [22].
The term of “topological Fermi-liquid theory” was originally
coined by F. D. M. Haldane [12]. We point out that Berry
Fermi liquid theory has been developed based on the canoni-
cal quantization approach [23], similar to the original proposal
for the Landau’s Fermi-liquid theory [20], while our approach
is based on the path integral formulation, parallel with the
Shankar’s renormalization group analysis [24].
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Following the Boltzmann transport theory in the Landau’s
Fermi-liquid state [20,21], we investigate collective dynamics
of Fermi surface fluctuations and study their instabilities as
a function of the external magnetic field and the forward-
scattering amplitude in a topological Fermi-liquid phase
[22,23]. In addition to these stability criteria of the topological
Fermi-liquid phase for general angular momentum channels,
we examine the dispersion relation of the zero-sound mode as
the simplest dynamics of the pair of chiral Fermi surfaces. We
find that the role of the Berry curvature changes the instability
criteria of the Landau’s Fermi-liquid state. In particular, we
reveal that even if the zero-sound mode is stable in the
region of the forward-scattering amplitude, the Berry curva-
ture causes Landau damping beyond the description of the
Landau’s Fermi-liquid theory. Based on the instability criteria
of the zero-sound mode, we propose a phase diagram for a
topological Fermi-liquid state against the phase separation,
which generalizes the one-dimensional (Landau’s interaction
parameter) phase diagram of the Landau’s Fermi-liquid state
[20,21] into a two-dimensional (Landau’s interaction parame-
ter and effective Berry curvature) one of a topological Fermi-
liquid phase.

II. INSTABILITIES IN A LANDAU’S FERMI LIQUID STATE
BASED ON THE BOLTZMANN TRANSPORT THEORY

In this section we review the Landau’s Fermi-liquid the-
ory based on the Boltzmann equation framework [20,21],
applied and generalized into a topological Fermi-liquid theory
[22,23]. We start from the Boltzmann transport equation

∂n p(r, t )

∂t
+ ṙ · ∂n p(r, t )

∂ r
+ ṗ · ∂n p(r, t )

∂ p

= I [δn p(r, t )]. (1)

Here, n p(r, t ) = n0
p + δn p(r, t ) is the distribution func-

tion, where n0
p is the equilibrium distribution function and

δn p(r, t ) is its variation. During the evolution between suc-
cessive collisions, the motion of electron quasiparticles on
a Fermi surface obeys the Hamiltonian dynamics but with
an additional interaction energy from other quasiparticles,
described by

ṙ = ∂ε̃ p(r, t )

∂ p
, (2)

ṗ = −∂ε̃ p(r, t )

∂ r
. (3)

Here, the quasiparticle energy ε̃ p(r, t ) is given by

ε̃ p(r, t ) = ε0
p + δε p(r, t ), (4)

where the variation δε p(r, t ) results from renormalized
forward-scattering interactions, given by

δε p(r, t ) =
∑

p′
f p p′δn p′ (r, t ). (5)

f p p′ is a Landau’s parameter indicating the interaction
strength of forward scattering between quasiparticles. It turns
out that these effective interactions are marginal in the renor-
malization group analysis [24]. In other words, quasiparticles

are still interacting in the Landau’s Fermi-liquid state, iden-
tifying such a state with an interacting fixed point instead of
a noninteracting one. As a result, such effective interactions
give rise to an effective potential field for a quasiparticle,
described by δε p(r, t ). I [δn p(r, t )] is an effective collision
term. This collision integral can be approximated within the
relaxation time approximation denoted by τ . If one is inter-
ested in the regime of ω � τ−1, which corresponds to the
collisionless regime, the collision integral can be neglected.

Linearizing the Boltzmann equation with respect to
δn p(r, t ) in the absence of external fields and performing the
Fourier transformation, we obtain

(ω − q · v p)δn p(q, ω)

−q · v p

(
−∂n0

p

∂εp

)∑
p′

f p p′δn p′ (q, ω) = 0. (6)

To solve this Boltzmann equation, we take an ansatz

δn p(q, ω) = −∂n0
p

∂εp

∂εp

∂ p
· δ p ≡ −∂n0

p

∂εp

vpu(θ, φ). (7)

Here, the group velocity v p = ∂εp

∂ p is parallel with δ p near
the Fermi surface. u(θ, φ) = |δ p| is an eigenvector, where our
coordinate system assigns the direction of q with the z axis.
Inserting this ansatz into Eq. (6), we obtain

(ω − q · v p)

(
−∂n0

p

∂εp

)
vpu(θ, φ) − q · v p

×
(

−∂n0
p

∂εp

)∑
p′

f p p′

(
−∂n0

p′

∂εp′

)
vp′u(θ ′, φ′) = 0. (8)

Performing the radial integration for the unprimed coordi-
nate, we obtain

(ω − qvF cos θ )u(θ, φ)

− qvF cos θ
∑

p′
f p p′

(
−∂n0

p′

∂εp′

)
u(θ ′, φ′) = 0, (9)

where we utilized − ∂n0
p

∂εp
≈ δ(εp − εF ). Performing the radial

integration also in the primed coordinate and introducing
dimensionless parameters s = ω

vF q
and F (θ p p′ ) = ν(εF )f p p′ ,

where ν(εF ) is the density of states at the Fermi surface, we
reach the following expression:

(s − cos θ )u(θ, φ)

− cos θ

∫
d�′

4π
F (θ p p′ )u(θ ′, φ′) = 0. (10)

Here,
∫

d�′
4π

means an angular integral for the momentum p′.
Considering the spherical symmetry of our Fermi surface,

we expand the eigenvector u(θ, φ) and the interaction strength
F (θ p p′ ) in the spherical harmonics and the Legendre polyno-
mials, respectively, as follows:

u(θ, φ) =
∑
lm

Ylm(θ, φ)ulm, (11)

F (θ p p′ ) =
∑

l

Pl (θ p p′ )Fl. (12)
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As a result, we obtain∑
lm

Ylm(θ, φ)ulm

[
(s − cos θ ) − cos θ

Fl

2l + 1

]
= 0. (13)

An instability condition of this Fermi-liquid state is given
by s = 0 and ulm �= 0, which means that Fermi surface de-
formations ulm in the angular-momentum channel of l with
m can occur without any energy cost given by s = 0. Here,
we focus on the instability which preserves the translational
symmetry. These instabilities arise when the dimensionless
forward-scattering parameter is given by [20,21]

Fl � −(2l + 1). (14)

Given Fl , one can find the dispersion relation for Fermi
surface deformations in the angular momentum channel of l

and m. It is not straightforward to solve Eq. (13), generally,
since various collective modes are correlated to result in
coupled equations for Fermi surface deformations. Here, we
focus on the simplest case where only F0 exists. Then, the
calculation becomes straightforward to result in

s

2
ln

(
s + 1

s − 1

)
− 1 = 1

F0
. (15)

Solving this equation, we find the dispersion relation of
the zero-sound mode, which corresponds to the pole of the
density-density correlation function in the Landau’s Fermi-
liquid state [20,21]. This dispersion relation will be revisited
below in comparison with that in a topological Fermi liquid
state.

III. INSTABILITIES IN A TOPOLOGICAL FERMI LIQUID
STATE BASED ON THE BOLTZMANN

EQUATION FRAMEWORK

A. Boltzmann transport theory for a topological
Fermi liquid state

A minimal model for a Weyl metal phase with broken time
reversal symmetry consists of a pair of chiral Fermi surfaces
at a finite chemical potential [12–18]. Here, the term “chiral”
means that the chirality + (–) is assigned to quasiparticles
on one (the other) Fermi surface as a good quantum number.
This Weyl band structure is realized, applying magnetic fields
into a spin-orbit coupled Dirac metal state. Then, the Zeeman
energy contribution splits the fourfold degeneracy into a pair
of twofold degeneracy, as discussed before. As a result, we
write down our coupled Boltzmann equations as follows:

∂n
χ
p(r, t )

∂t
+ ṙχ · ∂n

χ
p(r, t )

∂ r
+ ṗχ · ∂n

χ
p(r, t )

∂ p

= I [δn+
p (r, t ), δn−

p (r, t )]. (16)

Here, the superscript χ = ± denotes the chirality of each
Fermi surface. We emphasize that these coupled Boltzmann
equations assume the limit of large effective spin-orbit inter-
actions. This means that spin degrees of freedom are locked
on the pair of chiral Fermi surfaces. As a result, we have
effectively spinless fermions on the pair of chiral Fermi sur-
faces, where the role of spin degrees of freedom in scattering
events appears as matrix elements for low-energy spinless
chiral fermions. These effects are nothing but the Berry phase

for spinless chiral fermions. In this respect an essential point
is that the Hamiltonian dynamics of these chiral fermions are
modified to incorporate such Berry-curvature effects. The pair
of Weyl points given by twofold degeneracy is mathematically
described by a pair of magnetic monopoles in momentum
space, responsible for the Berry curvature in the dynamics of
chiral fermions [16–18].

Their Hamiltonian dynamics are generalized in the pres-
ence of external electric E and magnetic B fields as follows
[22,23,25–36]:

Gχ ṙχ =
{
vχ

p + e Ẽ × �χ
p + e

c

(
�χ

p · vχ
p

)
B
}
, (17)

Gχ ṗχ =
{
e Ẽ + e

c

(
vχ

p × B
) + e2

c
( Ẽ · B)�χ

p

}
. (18)

Here, Gχ = 1 + e
c

B · �χ
p is a modification factor for the

phase-space volume, which originates from the magnetic-
monopole singularity in the phase space. �χ

p is the Berry
curvature, given by

∇ p · �χ
p = χδ(3)( p − pχ ), (19)

where pχ is the position of the magnetic monopole in mo-

mentum space. vχ
p = ∂ε̃

χ
p

∂ p is the group velocity of quasiparticle

excitations on the chiral Fermi surface, where ε̃
χ
p = ε

χ
p + δε

χ
p

is the quasiparticle spectrum. εχ
p is the bare dispersion relation

without interaction effects, given by

εχ
p =

(
1 − e

c
B · �χ

p

)
| p|, (20)

where the group velocity is renormalized to depend on
the Berry curvature and to reflect the Lorentz invariance
[27,28,30,32,34,35]. The force equation should be modified
due to interaction effects. Effective electric fields are given by

Ẽ = E − 1

e

∂δε
χ
p

∂ r
, (21)

where

δεχ
p =

∑
χ ′=±

∑
p′

f
χχ ′
p p′ δn

χ ′
p′ ≈

∑
p′

f p p′δn
χ

p′ (22)

is an interaction correction due to backflow contributions
as that of the Landau’s Fermi-liquid theory except for the
presence of the pair of Fermi surfaces. Recently, one of
the authors proved that these forward-scattering interactions
are marginal as those in the Landau’s Fermi-liquid theory
[22]. This interacting fixed point with a pair of chiral Fermi
surfaces was coined as a topological Fermi-liquid state and
described by a topological Fermi-liquid theory, following
Haldane’s naming. In the present study we simplify these
effective forward-scattering interactions further. We consider
interactions within the same chiral Fermi surface, where the
chirality quantum number is preserved. In this respect one
chiral Fermi surface does not communicate with the other.
But, this zeroth-order approximation can be improved to take
effective interactions between inter chiral Fermi surfaces.

Following the previous section, we focus on the collision-
less regime to neglect the collision integral. Performing the
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Fourier transformation as follows:

δnχ
p(r, t ) = δnχ

p(q, ω)ei(q·r−ωt ),

ϕ = ϕ(q, ω)ei(q·r−ωt ),

∂

∂ r
→ iq,

∂

∂t
→ −iω,

and linearizing the Boltzmann equation in δn
χ
p(q, ω) as be-

fore, we obtain{
ω − G−1

χ

[
vχ

p · q + e

c

(
�χ

p · vχ
p

)
(B · q )

]}
δnχ

p(q, ω)

+G−1
χ

{
vχ

p · q + e

c

(
�χ

p · vχ
p

)
(B · q )

}∂n0
χ

∂ε
χ
p

×
∑

p′
f p p′δn

χ

p′ (q, ω) + eϕ(q, ω)

×G−1
χ

{
vχ

p · q + e

c

(
�χ

p · vχ
p

)
(B · q )

}∂n0
χ

∂ε
χ
p

= 0. (23)

Here, the longitudinal electric field is given by E =
−∇rϕ(r, t ).

Turning off the external electric field, we obtain{
ω − G−1

χ

[
vχ

p · q + e

c

(
�χ

p · vχ
p

)
(B · q )

]}
δnχ

p(q, ω)

+G−1
χ

{
vχ

p · q + e

c

(
�χ

p · vχ
p

)
(B · q )

}

× ∂n0
χ

∂ε
χ
p

∑
p′

f p p′δn
χ

p′ (q, ω) = 0. (24)

Solving this equation is the main subject of this study.

B. Instabilities in a topological Fermi liquid state

Following the previous section, we introduce

δnχ
p = −∂n0

χ

∂ε
χ
p
vχ

p · δ p (25)

to describe Fermi surface deformations in the topological
Fermi-liquid state. Since it is rather complex to consider a
general situation, we focus on the case of B ‖ ẑ ‖ q, i.e.,
B = B ẑ and q = q ẑ, which corresponds to the case that the
role of the Berry curvature is maximized. If the situation of
B · q = 0 is taken into account, Eq. (24) is reduced into the
Landau’s Fermi liquid theory.

In this ansatz, the group velocity is given by

vχ
p = ∇ p

[(
1 − e

c
�χ

p · B
)
| p|

]
=

(
1 + 2

e

c
B · �χ

p

)
p̂ − e

c

(
p̂ · �χ

p

)
B, (26)

and renormalized by the Berry curvature. Inserting Eq. (26)
into Eq. (25), we obtain

δnχ
p = −∂n0

χ

∂ε
χ
p

{(
1 + 2

e

c
B · �χ

p

)
p̂ − e

c

(
p̂ · �χ

p

)
B
}

· δ p.

(27)

The forward-scattering part in Eq. (24) is∫
d3p′

(2π )3
Gχf p p′

(
− ∂n0

χ

∂ε
χ

p′

)
v

χ

p′ · δ p′

=
∫

d3p′

(2π )3
Gχf p p′

(
− ∂n0

χ

∂ε
χ

p′

)

×
{(

1 + 2
e

c
B · �

χ

p′

)
p̂′ − e

c

(
p̂′ · �

χ

p′
)
B
}

· δ p′. (28)

Inserting

− ∂n0
χ

∂ε
χ

p′
≈

(
1 − χ

e

2c

B · p̂′

μ2

)
δ(p′ − μ)

−χ
e

2c

B · p̂′

μ

d

dp′ δ(p′ − μ) (29)

into the above expression, where μ is the chemical potential,
we obtain∫

d3p′

(2π )3
Gχf p p′

(
− ∂n0

χ

∂ε
χ

p′

)
v

χ

p′ · δ p′

=
∫

d3p′

(2π )3
f p p′

{
δ(p′ − μ) p̂′ · δ p′

−
(

χ
e

2c

B · p̂′

μ

d

dp′ δ(p′ − μ)

)
p̂′ · δ p′

+ δ(p′ − μ)
[
2
e

c

(
B · �

χ

p′

)
p̂′ · δ p′

− e

c

(
p̂′ · �

χ

p′
)
(B · δ p′)

]}
. (30)

To describe collective dynamics of chiral Fermi surface
deformations, we expand the eigenvector u(θ p, φ p) and the
interaction strength F (θ p p′ ) in the spherical harmonics and
the Legendre polynomials, respectively, as follows:

δp ≡ u(θ p, φ p) =
∑
lm

Ylm(θ p, φ p)ulm, (31)

F p p′ ≡ 4πμ2f p p′

(2π )3
=

∑
l

FlPl (θ p p′ ). (32)

Here, we take further simplification that the collective dynam-
ics does not depend on the azimuthal angle φ, which fixes m

to be m = 0, given by

δp = u(θ p) =
∑

l

Yl0(θ p)ul0. (33)

This approximation has been performed in the Landau’s Fermi
liquid theory.

Inserting Eqs. (27) and (30) into Eq. (24) and keeping the
expression up to the first order in the applied magnetic field,
we reformulate the resulting equation in terms of Eqs. (31)
or (33) and (32). During these calculations, we resort to the
addition theorem [37]

Pl′ (cos θ p p′ ) = 4π

2l′ + 1

l′∑
m′=−l′

Yl′m′ (�)Y ∗
l′m′ (�′), (34)
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with Y ∗
l′m′ (�′) = (−1)m

′
Yl′−m′ (�′) and the following identities of Ref. [37]:∫

d� p′

4π
Pl′ (θ p p′ )Ylm(θ p′ , φ p′ ) = δll′

1

2l′ + 1
Yl′m(θ p, φ p) (35)

and ∫
d�Ylm(�)Yl′m′ (�)Yl′′m′′ (�) =

√
(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

(
l l′ l′′
m m′ m′′

)(
l l′ l′′
0 0 0

)
. (36)

Here, ( l l′ l′′
m m′ m′′) is the Wigner 3-j symbols [37]. An essential step is shown in the Appendix.

Performing the radial integration in the unprimed coordinate and both radial and angular integrations in the primed coordinate,
we reach the following expression:

μ2

(2π )3

∑
l

⎧⎨
⎩

[
−ω − 3ω

e

c
B�F cos θ + q cos θ + 4q

e

c
B�F cos2 θ

]
ul0Yl0(θ ) +

[
q cos θ + 3q

e

c
B�F cos2 θ

] Fl

2l + 1
ul0Yl0(θ )

+
[
3q

e

c
B�F cos θ

]
ul0

∑
|l−1|�l′�l+1

Fl′

2l′ + 1
Yl′0(θ )[

√
(2l + 1)(2l′ + 1)(Cll′1)2]

⎫⎬
⎭ = 0. (37)

Here, Cl′l1 = (l
′ l 1

0 0 0) denotes the Wigner 3-j symbol and �F is the Berry curvature at the Fermi surface.
Previously, we considered that the forward-scattering interaction does not depend on the Berry curvature as the zeroth-order

approximation. However, there are matrix elements in the scattering amplitudes, which results from the spin-momentum locking.
Actually, the forward-scattering amplitude has been proposed as

f p p′ → f p p′ + e

c
B · (� p + � p′ )f B

p p′ , (38)

where f B
p p′ is the scattering amplitude to depend on the Berry curvature [27]. Accordingly, we have

Fl → Fl + e

c
B�F cos θFB

l , (39)

3
e

c
B�F Fl′ → 3

e

c
B�F

(
Fl′ + 1

3
FB

l′

)
. (40)

As a result, we find our equation to describe instabilities in a topological Fermi-liquid state, given by∑
l

{
− ω − 3ω

e

c
B�F cos θ + q cos θ + 4q

e

c
B�F cos2 θ

}
ul0Yl0(θ )

+
∑

l

{[
q cos θ + 3q

e

c
B�F cos2 θ

] Fl

2l + 1
+

[
q

e

c
B�F cos2 θ

] FB
l

2l + 1

}
ul0Yl0(θ )

+
∑

l

{
3q

e

c
B�F cos θ

}
ul0

∑
|l−1|�l′�l+1

Fl′ + 1
3FB

l′

2l′ + 1
Yl′0(θ )

√
(2l + 1)(2l′ + 1)(Cll′1)2 = 0. (41)

To find the instability condition, we set ω = 0 and rewrite the above expression as follows:∑
l

cos θul0

{(
1 + Fl

2l + 1

)
Yl0(�) + e

c
B�μ

∑
|l−1|�l′�l+1

√
(2l′ + 1)(2l + 1)(C1ll′ )

2

×
[

4 + 3

(
Fl

2l + 1
+ Fl′

2l′ + 1

)
+

(
FB

l

2l + 1
+ FB

l′

2l′ + 1

)]
Yl′0(�)

}
= 0. (42)

It is easy to read the instability condition given by

Fl = −(2l + 1), FB
l = 2l + 1. (43)

Although the instability criteria for Fl look the same as
those of the Landau’s Fermi-liquid state, this occurs from the
introduction of the Berry-curvature-dependent interaction FB

l .
If we do not take into account FB

l for forward scattering,

Eq. (37) for the dispersion of the zero-sound mode does not
give the conventional instability condition. In other words,
Fl = −(2l + 1) does not fulfill Eq. (37) at ω = 0. Instead,
the instability condition of Fl should depend on the external
magnetic field or the effective Berry curvature, which can
be extracted from Eq. (37). However, introduction of FB

l

[Eqs. (39) and (40)] modifies Eq. (37) into Eq. (41). As a
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result, the conventional instability condition of Fl = −(2l +
1) satisfies Eq. (41) at ω = 0, i.e., Eq. (42) with FB

l = −(2l +
1). This will be clarified in the discussion of the zero-sound
mode.

C. Zero-sound modes with F0 and F B
0 only

Now, we investigate the dispersion relation of the zero-
sound mode in our topological Fermi-liquid state. Following
the strategy of the Landau’s Fermi-liquid theory, we consider
only F0 and FB

0 forward-scattering amplitudes. Then, we find
the equation of motion for the zero-sound mode,

(s + 3sb cos θ − cos θ − 4b cos2 θ )u(θ )

= cos θF0u00Y00 +
√

3b cos θ
(
F0 + 1

3FB
0

)
u10Y00

+ 3b cos2 θ
(
F0 + 1

3FB
0

)
u00Y00, (44)

where s = ω/q and b = e
c
B�F . This expression is rewritten

as

u(θ ) = F0√
4π

cos θ (u00 + √
3bu10) + 3b cos2 θu00

s + (3sb − 1) cos θ − 4b cos2 θ

+ bFB
0√

4π

1√
3

cos θu10 + cos2 θu00

s + (3sb − 1) cos θ − 4b cos2 θ
, (45)

where Y00 = 1√
4π

.

Recalling u(θ ) = ∑
l Yl0(θ )ul0, it is straightforward to find

self-consistent equations for u00 and u10, given by

u00 = F0

∫ 1

−1

dx

2

(u00 + √
3bu10)x + 3bu00x

2

s + (3bs − 1)x − 4bx2

+ bFB
0

∫ 1

−1

dx

2

1√
3
u10x + u00x

2

s + (3bs − 1)x − 4bx2
, (46)

u10 = F0

∫ 1

−1

dx

2

(
√

3u00 + 3bu10)x2 + 3
√

3bu00x
3

s + (3bs − 1)x − 4bx2

+ bFB
0

∫ 1

−1

dx

2

u10x
2 + √

3u00x
3

s + (3bs − 1)x − 4bx2
. (47)

To simplify these self-consistent equations, we introduce

In(s; b) ≡
∫ 1

−1

dx

2s

xn

1 + (3b − 1/s)x − 4bx2/s

≈
∫ 1

−1

dx

2

[
xn

s − x
− 3bsxn+1

(s − x)2
+ 4bxn+2

(s − x)2

]
, (48)

where the integral expression has been expanded up to the first
order in the effective Berry curvature b. Then, we obtain

I1(s; b) = (1 − 6bs)D(s) + bs

s2 − 1
, (49)

I2(s; b) = s(1 − 7bs)D(s) + 7

3
b + b

s2 − 1
, (50)

I3(s; b) = s2(1 − 8bs)D(s) − 1

3
+ 8

3
bs + bs

s2 − 1
, (51)

where we have

D(s) =
∫ 1

−1

dx

2

x

s − x
= s

2
ln

(
s + 1

s − 1

)
− 1. (52)

Based on these expressions, we rewrite the self-consistent
equations as follows:

u00 = F0[(u00 +
√

3bu10)I1 + 3bu00I2]

+ bFB
0

(
1√
3
u10I1 + u00I2

)

=
[(

(1 − 3bs)D(s) + bs

s2 − 1

)
F0 + bsD(s)FB

0

]
u00

+
√

3

[
bD(s)F0 + 1

3
bD(s)FB

0

]
u10, (53)

and

u10 = F0((
√

3u00 + 3bu10)I2 + 3
√

3bu00I3) + bFB
0 (u10I2 +

√
3u00I3)

=
√

3

[(
s(1 − 4bs)D(s) + 4

3
b + b

s2 − 1

)
F0 +

(
bs2D(s) − b

3

)
FB

0

]
u00 + 3

[
bsD(s)F0 + 1

3
bsD(s)FB

0

]
u10. (54)

The dispersion relation of the zero-sound mode is given by the following secular equation:∣∣∣∣∣
[
(1 − 3bs)D(s) + bs

s2−1

]
F0 + bsD(s)FB

0 − 1
√

3bD(s)
(
F0 + 1

3FB
0

)
√

3
[
s(1 − 4bs)D(s) + 4

3b + b
s2−1

]
F0 + √

3
[
bs2D(s) − b

3

]
FB

0 3bsD(s)
(
F0 + 1

3FB
0

) − 1

∣∣∣∣∣ = 0. (55)

Discarding terms proportional to b2 explicitly, the secular
equation leads to

s

2
ln

(
s + 1

s − 1

)
− 1 = 1 − bs F0

s2−1

F0 + 2bsFB
0

, (56)

which determines the instability condition for the zero-sound
mode in our topological Fermi-liquid state.

To find the instability criteria, we expand the right-hand
side up to the first order of the dimensionless magnetic field

b. Then, we obtain

s

2
ln

(
s + 1

s − 1

)
− 1 = 1

F0
− bs

( 1

s2 − 1
+ 2FB

0

F 2
0

)
. (57)

We consider

s = s0 + δs, (58)
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in the above equation, where s0 satisfies the equation of the
zero-sound mode in the Landau’s Fermi-liquid state, given by

s0

2
ln

(
s0 + 1

s0 − 1

)
− 1 = 1

F0
. (59)

Inserting Eq. (58) into Eq. (57) and keeping the resulting
expression up to the linear order for δs, we find

δs

s0
=

−b
(

1
s2

0 −1
+ 2FB

0

F 2
0

)
1
s0

(
1 + 1

F0

) − s0

s2
0 −1

− b
[ 2s2

0

(s2
0 −1)2 − (

1
s2

0 −1
+ 2FB

0

F 2
0

)] .
(60)

Equation (59) gives rise to F0 = −1 as the instability condi-
tion, which is nothing but that of the zero-sound mode in the
Landau’s Fermi-liquid state [20,21]. It is easy to see s0 = 0

when F0 = −1. Taking into account δs/s0 → 0, we find

1

s2
0 − 1

+ 2FB
0

F 2
0

= 0. (61)

Inserting s0 = 0 into the above, we obtain FB
0 = 1/2. As

a result, we find the instability condition of the zero-sound
mode in our topological Fermi-liquid state, given by F0 = −1
and FB

0 = 1/2 [38]. But, we point out that the instability of
the zero-sound mode is driven by F0, where F0 = −1 results
in δs = 0 at the same time. The condition of FB

0 = 1/2 may
be regarded as consistency for our approximation.

To investigate nature of the zero-sound mode, we consider
both real and imaginary parts as

s = s1 − is2. (62)

Inserting Eq. (62) into Eq. (56), we obtain

Re: + s1

2
ln

⎡
⎣

√(
s2

1 + s2
2 − 1

)2 + 4s2
2

(s1 − 1)2 + s2
2

⎤
⎦ + s2

2
arctan

(
2s2

s2
1 + s2

2 − 1

)
= 1 +

F0 + b
[
2FB

0 s1 − F 2
0

s1(s2
1 +s2

2 −1)
(s2

1 −s2
2 −1)2+4s2

1 s2
2

]
F 2

0 + 4bF0F
B
0 s1

Im: − s2

2
ln

⎡
⎣

√(
s2

1 + s2
2 − 1

)2 + 4s2
2

(s1 − 1)2 + s2
2

⎤
⎦ + s1

2
arctan

(
2s2

s2
1 + s2

2 − 1

)
=

b
[
2FB

0 s2 − F 2
0

s2(s2
1 +s2

2 +1)
(s2

1 −s2
2 −1)2+4s2

1 s2
2

]
F 2

0 + 4bF0F
B
0 s1

. (63)

Neglecting FB
0 in this expression [39], we obtain

Re: + s1

2
ln

⎡
⎣

√(
s2

1 + s2
2 − 1

)2 + 4s2
2

(s1 − 1)2 + s2
2

⎤
⎦ + s2

2
arctan

(
2s2

s2
1 + s2

2 − 1

)
= 1 + 1

F0
− b

s1
(
s2

1 + s2
2 − 1

)
(
s2

1 − s2
2 − 1

)2 + 4s2
1s2

2

Im: − s2

2
ln

⎡
⎣

√(
s2

1 + s2
2 − 1

)2 + 4s2
2

(s1 − 1)2 + s2
2

⎤
⎦ + s1

2
arctan

(
2s2

s2
1 + s2

2 − 1

)
= −b

s2
(
s2

1 + s2
2 + 1

)
(
s2

1 − s2
2 − 1

)2 + 4s2
1s2

2

. (64)

Furthermore, this equation is reduced into that of the zero-sound mode in the Landau’s Fermi-liquid state, setting b = 0 as
follows:

Re: + s
(0)
1

2
ln

⎡
⎣

√(
s

(0)2
1 + s

(0)2
2 − 1

)2 + 4s
(0)2
2(

s
(0)
1 − 1

)2 + s
(0)2
2

⎤
⎦ + s

(0)
2

2
arctan

(
2s

(0)
2

s
(0)2
1 + s

(0)2
2 − 1

)
= 1 + 1

F0

Im: − s
(0)
2

2
ln

⎡
⎣

√(
s

(0)2
1 + s

(0)2
2 − 1

)2 + 4s
(0)2
2(

s
(0)
1 − 1

)2 + s
(0)2
2

⎤
⎦ + s

(0)
1

2
arctan

(
2s

(0)
2

s
(0)2
1 + s

(0)2
2 − 1

)
= 0. (65)

Considering s1 = 0 in Eq. (63), we obtain

Re:
s2

2
arctan

(
2s2

s2
2 − 1

)
= 1 + 1

F0

Im: bs2

(
2FB

0 − F 2
0

1

s2
2 + 1

)
= 0. (66)

These equations give rise to the same instability condition as
Eqs. (59) and (60). In other words, F0 = −1 results in s2 = 0,
and FB

0 = 1/2 is consistent with this condition.

Setting b = 0 in Eq. (66), this equation is reduced into

s
(0)
2

2
arctan

(
2s

(0)
2

s
(0)2
2 − 1

)
= 1 + 1

F0
. (67)

This equation is applicable to the case of F0 < −1 in the
Landau’s Fermi-liquid state, where the real part turns out
to vanish [20,21]. Considering that the left-hand side is an
even function for s2, we realize that this equation allows
two solutions, one of which corresponds to an overdamped
mode, but the other of which gives rise to an instability of the
zero-sound mode. This instability condition of the Landau’s
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Fermi-liquid state turns out to be modified due to the presence
of the effective Berry curvature term, denoted by b.

To investigate the role of the Berry curvature in the zero-
sound mode, we consider a perturbation approach in Eq. (64),
given by

s1 = s
(0)
1 + δs1, s2 = s

(0)
2 + δs2. (68)

Here, s
(0)
1 and s

(0)
2 are the solution of Eq. (65), i.e., the

Landau’s Fermi-liquid state.
First, we focus on the case of F0 < −1, where s

(0)
1 = 0 and

s
(0)
2 is given by Eq. (67). Taking into account all terms up to

the first order in the effective Berry curvature, we find

Re:

{
− s

(0)
2

s
(0)2
2 + 1

+ 1

2
arctan

(
2s

(0)
2

s
(0)2
2 − 1

)}
δs

(0)
2 = 0

Im:

{
− s

(0)
2

s
(0)2
2 + 1

+ 1

2
arctan

(
2s

(0)
2

s
(0)2
2 − 1

)}
δs

(0)
1

= −b
s

(0)
2

s
(0)2
2 + 1

. (69)

Although the Berry curvature gives rise to a small value in
the real part of the zero-sound mode, the zero-sound mode
remains unstable.

Second, we consider the case of F0 > 0, where s
(0)
2 = 0

and s
(0)
1 is given by Eq. (59). Here, we keep all terms up to the

first order in the effective Berry curvature as before, given by

Re:

{
s

(0)
1

s
(0)2
1 − 1

− 1

2
ln

(
s

(0)
1 + 1

s
(0)
1 − 1

)
+ b

s
(0)2
1 + 1(

s
(0)2
1 − 1

)2

}
δs1

= b
s

(0)
1

s
(0)2
1 − 1

Im:

{
s

(0)
1

s
(0)2
1 −1

− 1

2
ln

(
s

(0)
1 +1

s
(0)
1 −1

)
+ b

s
(0)2
1 +1(

s
(0)2
1 −1

)2

}
δs2 =0.

(70)

The effective Berry curvature affects the real part of the zero-
sound mode. The imaginary part remains to be zero unless the
following condition of

s
(0)
1

s
(0)2
1 − 1

− 1

s
(0)
1

(
1 + 1

F0

)
+ b

s
(0)2
1 + 1(

s
(0)2
1 − 1

)2 = 0 (71)

is satisfied. When this condition is fulfilled, the imaginary part
becomes finite, which reflects Landau damping of the zero-
sound mode.

The case of −1 < F0 � 0 is quite complicated, where
both real and imaginary parts are given by Eq. (65) [20,21].
Repeating the above analysis, the small variation with respect
to the solution of Eq. (65) up to the linear order of the effective
Berry curvature is described by Eq. (B1) for the real part
and Eq. (B2) for the imaginary part, shown in Appendix B
due to their complex expressions. Both real and imaginary
parts acquire b-linear corrections with respect to the Landau
damping solution of Eq. (65).

FIG. 1. Phase diagram based on the instability condition of the
zero-sound mode in a topological Fermi-liquid state. Here, F0 is the
Landau’s interaction parameter for forward scattering and b is an
effective Berry curvature. A b = 0 cut corresponds to the instability
criterion of the zero-sound mode in a Landau’s Fermi-liquid state.
It turns out that the role of an effective Berry curvature b changes
the nature of the zero-sound mode. An essential point beyond the
Landau’s Fermi-liquid phase is that the role of the Berry curvature
gives rise to Landau damping even when F0 > 0. The region of
F0 � −1 is given by Eq. (69). The region of F0 > 0 is described by
Eq. (70). In particular, the boundary between undamped and Landau
damped zero-sound modes is determined by Eq. (71). The region of
−1 < F0 � 0 in Fig. 1 is given by Eqs. (B1) and (B2).

The instability criteria for the zero-sound mode suggest
a phase diagram shown in Fig. 1. Here, the phase diagram
is extended from one dimension in a Landau’s Fermi-liquid
state to two dimensions in a topological Fermi-liquid phase,
where b is an effective Berry curvature and F0 is an effective
interaction parameter for forward-scattering events. The one-
dimensional line corresponding to a b = 0 cut serves as the
instability criterion of the zero-sound mode in the Landau’s
Fermi-liquid state. It becomes destabilized when F0 � −1,
resulting in phase separation and given by the divergence of
the compressibility [20,21]. In this region of the interaction
strength, the Berry curvature does not play a significant role
in the instability of the zero-sound mode. However, the role
of the Berry curvature changes the nature of the zero-sound
mode drastically in the case of F0 > 0. In particular, the
effective Berry curvature gives rise to Landau damping for
the zero-sound mode beyond the description of the Landau’s
Fermi-liquid theory. The boundary between undamped and
Landau damped zero-sound modes is determined by Eq. (71)
in the case of F0 > 0. This Landau damped dynamics of
the zero-sound mode is smoothly connected with that in the
region of −1 < F0 � 0 with b = 0, i.e., the zero-sound mode
of the Landau’s Fermi liquid state.

We would like to point out that only one chiral Fermi sur-
face has been taken into account until now. More precisely, the
pair of chiral Fermi surfaces are assumed to be independent
as the zeroth-order approximation. Here, one chiral Fermi
surface is characterized by a positive Berry curvature b > 0
while the other is identified with a negative one b < 0. In this
respect, even if the zero-sound mode is undamped for one
chiral Fermi surface, it can be Landau damped for the other
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one. Since we are considering that these chiral Fermi surfaces
do not communicate with each other through Fermi-liquid
interactions, we conclude that the undamped zero-sound mode
in one chiral Fermi surface coexists with the Landau damped
one in the other chiral Fermi surface.

IV. SUMMARY

In summary, we investigated how an interacting Weyl
metal phase with broken time reversal symmetry becomes
destabilized when both the Berry curvature and chiral
anomaly are introduced into a Landau’s Fermi-liquid state.
Based on the Boltzmann equation framework and follow-
ing the Landau’s Fermi-liquid theory, we derived eigenvalue
problems, where eigenvectors describe Fermi surface defor-
mations and eigenvalues represent dispersion relations of
collective dynamics of Fermi surface fluctuations. Solving
these coupled equations, where the coupling occurs between
different angular momentum channels, we found that the role
of the Berry curvature modifies the instability criteria of the
Landau’s Fermi-liquid state. To clarify this modification, we
examined the zero-sound mode for more details, described
by the zero angular-momentum channel in our eigenvalue
problems, where two parameters of the forward-scattering

interaction F0 and the effective Berry curvature b or the
applied magnetic field appear to control the dynamics of the
zero-sound mode. Our main result was that even if the zero-
sound mode is undamped due to the interaction effect, the role
of the Berry curvature leads it to be Landau damped. This
magnetic-field control for the collective dynamics of Fermi
surface fluctuations is beyond the Landau’s Fermi-liquid state,
regarded to be a characteristic feature of an interacting Weyl
metal phase.
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APPENDIX A: HOW TO REPRESENT THE INTERACTION
PART OF THE BOLTZMANN EQUATION IN TERMS OF

SPHERICAL HARMONICS

In this Appendix, we show how to decompose the interac-
tion part of the Boltzmann equation in terms of the angular
momentum. The interaction part is calculated as follows

∫
d3p′

(2π )3
Gχf p p′

(
− ∂n0

χ

∂ε
χ

p′

)
v

χ

p′ · δ p′

=
∑
ll′m

∫
p′2dp′d(cos θ ′)dφ′

(2π )3
fl′Pl′ (cos θ p p′ )Ylm(θ ′, φ′)ulm

×
{
δ(p′ − μ) + cos θ ′

[
−eB

2c

1

μ

d

dp′ δ(p′ − μ) + eB

2c

1

μ2
δ(p′ − μ)

]}
(A1)

=
∑
ll′m

∫
d�′

(2π )3
μ2fl′ulm

[
Pl′ (cos θ p p′ )Ylm(�′) + eB

c

3

2μ2
cos θ ′Pl′ (cos θ p p′ )Ylm(�′)

]
(A2)

=
∑
ll′m

Fl′ulm

[
δll′

1

2l′ + 1
Yl′m(�) + eB

c

3

2μ2

∫
d�′

4π
Pl′ (cos θ p p′ )Ylm(�′) cos θ ′

]
(A3)

=
∑
ll′m

Fl′ulm

[
δll′

1

2l′ + 1
Yl′m(�) + eB

c

3

2μ2

1

2l′ + 1

l′∑
m′=−l′

Yl′m′ (�)

√
4π

3

∫
d�′Y ∗

l′m′ (�′)Ylm(�′)Y10(�′)

]
(A4)

=
∑
ll′m

Fl′ulm

[
δll′

1

2l′ + 1
Yl′m(�) + eB

c

3

2μ2

1

2l′ + 1

×
l′∑

m′=−l′
Yl′m′ (�)

√
(2l′ + 1)(2l + 1)

(
l′ l 1

−m′ m 0

)(
l′ l 1
0 0 0

)
(−1)m

′
]

(A5)

=
∑
ll′

Fl′ul0

[
δll′

1

2l′ + 1
Yl′0(θ ) + eB

c

3

2μ2

1

2l′ + 1
Yl′0(θ )

√
(2l′ + 1)(2l + 1)(Cl′l1)2

]
, (A6)

where Cl′l1 = (l
′ l 1

0 0 0) is the Wigner 3-j symbol, given by (Cl′l1)2 = (−1)2l (l+l2−l′−l′2 )2

(1+l−l′ )!(1−l+l′ )!(l+l′ )(1+l+l′ )(2+l+l′ ) [37]. In the last equality,
the independence of the azimuthal angle was assumed.

165122-9



CHUNGWON JEONG AND KI-SEOK KIM PHYSICAL REVIEW B 98, 165122 (2018)

APPENDIX B: DISPERSION RELATION OF THE ZERO-SOUND MODE IN −1 < F0 � 0

The real part is given by⎛
⎜⎜⎝

⎧⎪⎨
⎪⎩

−2s
(0)
1

(
s

(0)2
1 + s

(0)2
2 − 1

) + [(
s

(0)
1 − 1

)2 + s
(0)2
2

][(
s

(0)
1 + 1

)2 + s
(0)2
2

]
ln

[√(s (0)2
1 +s

(0)2
2 −1)2+4s

(0)2
2

(s (0)
1 −1)2+s

(0)2
2

]
2
[(

s
(0)2
1 + s

(0)2
2 − 1

)2 + 4s
(0)2
2

]
⎫⎪⎬
⎪⎭

2

+
[

1

2
arctan

(
2s

(0)
2

s
(0)2
1 + s

(0)2
2 − 1

)
− s

(0)
2

(
s

(0)2
1 + s

(0)2
2 + 1

)
(
s

(0)2
1 + s

(0)2
2

)2 + 4s
(0)2
2

]2
⎞
⎠δs

(0)
1

=

⎧⎪⎨
⎪⎩

s
(0)
1

(
s

(0)2
1 + s

(0)2
2 − 1

)
ln

[√(s (0)2
1 +s

(0)2
2 −1)2+4s

(0)2
2

(s (0)
1 −1)2+s

(0)2
2

]
2
[(

s
(0)2
1 + s

(0)2
2 − 1

)2 + 4s
(0)2
2

] −
s

(0)
2

(
s

(0)2
1 + s

(0)2
2 + 1

)
arctan

( 2s
(0)
2

s
(0)2
1 +s

(0)2
2 −1

)
2
[(

s
(0)2
1 + s

(0)2
2 − 1

)2 + 4s
(0)2
2

]

+
(
s

(0)2
1 + s

(0)2
2

)
(
s

(0)2
1 + s

(0)2
2 − 1
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and the imaginary part is described by⎛
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