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Zitterbewegung and bulk-edge Landau-Zener tunneling in topological insulators
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We investigate the ballistic zitterbewegung dynamics and the Landau-Zener tunneling between edge and bulk
states of wave packets in two-dimensional topological insulators. In bulk, we use the Ehrenfest theorem to show
that an external in-plane electric field not only drifts the packet longitudinally, but also induces a transverse finite
side-jump for both trivial and topological regimes. For finite ribbons of width W , we show that the Landau-Zener
tunneling between bulk and edge states vanishes for large W as their electric-field-induced coupling decays
with W−3/2. This is demonstrated by expanding the time-dependent Schrödinger equation in terms of Houston
states. Hence we cannot picture the quantum spin Hall states as arising from the zitterbewegung bulk trajectories
“leaking” into the edge states, as proposed in Phys. Rev. B 87, 161115(R) (2013).
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I. INTRODUCTION

The dynamics of wave packets in multiband systems
presents a variety of interesting physical phenomena, e.g.,
the early studies of the Landau-Zener tunneling (LZT) [1–5],
the ballistic spin resonance in multichannel spin-orbit cou-
pled quantum wires [6,7], and the dynamics of unusual spin
textures in spin-orbit coupled two-dimensional electron gases
[8–13]. Moreover, the trembling motion, or zitterbewegung,
is a particularly interesting dynamics that arises due to the
spin-orbit coupling in quantum wells [14–18] and topological
insulators (TIs) [19–21].

The topological insulators [22–26] are characterized by
band inversions that lead to symmetry-protected helical
edge/surface states with Dirac-like dispersion within the bulk
gap. Recently, it was proposed [19] that the semiclassical
zitterbewegung trajectories of electrically driven carriers in
two-dimensional (2D) TIs could provide an intuitive picture
for the dynamical emergence of the edge states. On the
other hand, it is well known that in GaAs quantum wells
the zitterbewegung is accompanied by a finite ballistic side
jump [16]. This process leads to spin polarization at the
edges, constituting a ballistic spin Hall effect in narrow wires
[27]. In the diffusive regime, the side-jump accumulated after
successive Markovian scatterings was recently related to the
Rashba-Edelstein effect [28].

The zitterbewegung is usually calculated in bulk, while the
edge states exist only at the borders of finite-size samples.
Therefore, it is interesting to investigate the effects of both
the edge states and the quantum confinement on the ballistic
dynamics of wave packets in TI ribbons in the presence
of electric fields. More importantly, does the corresponding
zitterbewegung trajectories indeed bear any connection with
the helical edge states as proposed in Ref. [19]?

In this paper, we address this issue by investigating the
ballistic dynamics of electrically driven wave packets in 2D
TIs fully accounting for the LZT between bulk and edge
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FIG. 1. (a) Illustration of a BHZ ribbon of width W with edge
states, characterized by a penetration length �, and a bulk state (blue).
(b) Sketch of the BHZ band structure in the nontrivial regime with
linear edge-state branches and bulk bands. The arrow indicates the
Landau-Zener tunneling between an edge state and a bulk band
promoted by the electric field F. (c) zitterbewegung trajectories
[〈x〉(t ), 〈y〉(t )] in bulk for 0 < t < 5 ps for different initial spin
s = {↑,↓} and pseudospin σz = {⇑, ⇓}. For larger t � 50 ps the
motion along y saturates into a finite side-jump |y(∞)| ≈ 18.75 nm.

states. We model our system by the Bernevig-Hughes-Zhang
(BHZ) Hamiltonian [22] in the presence of an external electric
field F. For a ribbon of width W , as illustrated in Figs. 1(a)
and 1(b), we show that the LZT is characterized by the
nondiagonal terms of the Berry connection matrix An,n′

kx
. For

W � �, where � is the typical length of the edge states,
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we find that the LZT vanishes with W−3/2. In addition, we
analyze the semiclassical zitterbewegung trajectories in bulk,
which always show a finite ballistic side-jump [16] toward
a direction that strongly depends on the initial conditions,
Fig. 1(c).

For a finite ribbon, we solve the Schrödinger equation
numerically and study the full dynamics of a wave packet.
Consistently with An,n′

kx
vanishing for W � �, we show that a

Gaussian wave packet bounces off the borders of the ribbon
unaffected by the presence of the edge states. These results do
not support the idea from Ref. [19] that the helical edge states
emerge from the bulk zitterbewegung trajectories, which
would provide a semi-classical picture of the quantum spin
Hall effect (QSHE). Instead, the zitterbewegung and finite
ballistic side-jump seen here are compatible with the GaAs
Rashba-Edelstein effect from Ref. [28], which was already
suggested [16] as a semiclassical picture of the spin Hall effect
(SHE).

This paper is organized as follows. In Sec. II, we present
the model Hamiltonian and the numerical parameters. In
Sec. III, we discuss the Landau-Zener tunneling and its de-
pendence on the system size. In Secs. IV and V, we present
results for the zitterbewegung, using the Ehrenfest theorem
and the full time evolution of a wave packet for large systems,
respectively. We finally summarize our findings in Sec. VI.

II. MODEL SYSTEM

We consider the BHZ Hamiltonian [22]

H = C − Dk2 + sAkxσx + Akyσy + (M − Bk2)σz, (1)

where s = ±1 labels the spin-up (↑) and -down (↓) subspaces,
σ are the Pauli matrices acting on the pseudospin subspace
{E1,H1} = {⇑,⇓} of the confined electron and hole states of
the quantum well, and k = (kx, ky ) are the in-plane momenta.
Unless otherwise specified, we choose typical values for
the parameters [23]: C = 6.5 meV, A = 375 meV nm, B =
−1120 meV nm2, D = −730 meV nm2, and a negative Dirac
mass M = −10 meV, which gives rise to helical edge states
as illustrated in Figs. 1(a) and 1(b). An electric field F ∼
10−3 mV/nm along x̂ is introduced by the time-dependent
vector potential eA(t ) = −eF tx̂ via minimal coupling, k →
k − eA(t )/h̄. This gauge preserves (kx, ky ) as good quantum
numbers in bulk, but it makes H → Ht time-dependent.

For finite ribbons, the confinement is introduced via a
y-dependent mass potential [29,30] M → M (y) given by

M (y) = Mi + (Mo − Mi )

[
1 ± 1

2
tanh

(
y ± W/2

γ

)]
, (2)

where Mi is the mass gap of the system, Mo is the mass of the
confining barriers, and γ specifies whether the potential pro-
file is sharp (γ → 0) or smooth. Unless otherwise specified,
we consider the hard-wall limit, which corresponds to γ → 0
and Mo → ∞. Due to the confinement, ky is now quantized.

III. LANDAU-ZENER TUNNELING

The original Landau-Zener formula [1–5], developed for
a pair of linear bands anticrossing, can be directly applied to
the pair of hybridized edge-state branches arising in the ribbon
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FIG. 2. (a) Band structure εn(kx ) of a W = 200 nm ribbon. The
color code in each band represents its Berry connection coupling
|Ab,e

kx
| (in nm) to the selected edge branch (dashed). The inset at

kx ≈ 0 shows the small hybridization gap εg = 0.4 meV. (b) Prob-
ability density of the edge state for different kx’s, indicated by the
symbols. As kx increases, the state becomes extended (bulklike).
(c) |Ab,e

kx
| between the first bulk quantized conduction band and

the edge branch. As W increases, the peak becomes sharp at kx =
kc ≈ 28μm−1. (d) Logarithmic derivative of ln |Ab,e

kx
| with respect to

W . For large W � � (� ≈ |A/M| = 37.5 nm), |Ab,e
kx

| ∝ W−3/2 for
kx < kc and |Ab,e

kx
| ∝ W−1 for kx > kc.

geometry [see the gap εg in the inset of Fig. 2(a)]. Therefore
the tunneling probability between edge states is given by

γee ≈ exp

[
− 2πε2

g

h̄vf eF

]
, (3)

where vf ≈ A/h̄ is the Fermi velocity of the nearly linear-in-
kx edge branches. Next we analyze the LZT between edge and
bulk states.

Consider the time-dependent Hamiltonian Ht in the
presence of an electric field as discussed above. Since
[Ht, kx (t )] = 0, we can write the solution as �(x, y, t ) =
eikx (t )xψkx (t )(y, t ). The unknown term ψkx (t )(y, t ) can be
expanded into Houston functions [31] ϕkx (t ),n(y), which
are solutions of an instantaneous Schrödinger equation
Htϕkx (t ),n(y) = εn[kx (t )]ϕkx (t ),n(y), with n labeling both the
quantized bulk bands (n = b) and the helical edge states
(n = e) shown in Fig. 2. Since t is taken as a simple parameter
in this auxiliary equation, εn(kx ) is the band structure of the
BHZ ribbon in the absence of an electric field. Ultimately, the
Houston functions provide a complete time-dependent basis
set, such that the full expansion reads

ψkx (t )(y, t ) =
∑

n

αn(t )ϕkx (t ),n(y), (4)

in which αn(t ) are time-dependent coefficients. Applying
this expansion to the time-dependent Schrödinger equation,
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we obtain[
ih̄

∂

∂t
− εn(kx (t ))

]
αn(t ) = −eF

∑
n′

An,n′
kx (t )αn′ (t ), (5)

where An,n′
kx (t ) = i〈kx, n| ∂

∂kx
|kx, n

′〉|kx→kx (t ) are the (n, n′) ele-
ments of the Berry connection matrix, and |kx, n〉 is the Dirac
ket for the Houston function ϕkx,n(y). For n �= n′ (εn �= εn′),
An,n′

kx (t ) can be written as

An,n′
kx (t ) = i

εn′ − εn

〈
kx, n

∣∣∣∣∂H

∂kx

∣∣∣∣kx, n
′
〉∣∣∣∣

kx→kx (t )

, (6)

which is most relevant near band anticrossings as εn(kx (t )) ≈
εn′ (kx (t )). These nondiagonal terms connect different eigen-
states (n, n′) via the electric field eF , i.e., it leads to the
Landau-Zener tunneling. If restricted to a single band n, the
usual diagonal Berry connection An,n

kx (t ) and Eq. (5) describe
the adiabatic time evolution, while the complete expression
for many bands fully describes the quantum unitary evolution.

In general, the LZT probabilities are obtained by solving
Eq. (5) using the steepest descent approximation [31] around
the extremum of the energy difference �εnn′ = εn(kx (t )) −
εn′ (kx (t )), assuming that An,n′

kx (t ) varies slowly so it can be
approximated by its value at �εnn′ = 0. Here we cannot
apply this method since bulk- and edge-state dispersions
approach each other asymptotically as kx increases. Instead,
we focus on the properties of the couplings An,n′

kx (t ) shown in
Figs. 2(a), 2(c), and 2(d).

Interestingly, for W � �, in which � is the localization
length of the edge states, the LZT between edge and bulk
bands vanishes. This can be seen already from the normal-
ization of these states. For an extended bulk state, the nor-
malization goes as ∝ 1/

√
W . On the other hand, the edge

states (|kx, e〉 ∝ e−ỹ/� for an edge at ỹ = y − W/2 ≈ 0) are
localized within a length scale � ≡ �(kx ) from the edges [see
Figs. 1(a) and 2(b)]; at kx = 0, �(0) ≈ |A/M| [29]. In this
case, the edge-state normalization does not depend on the
ribbon width. Additionally, the overlap between bulk- and
edge-state wave functions is only finite near the edge, where
the bulk state is qualitatively |kx, b〉 ∝ 1√

W
sin(πỹ/W ) ≈

πỹ/W 3/2, therefore the coupling Ab,e
kx (t ) ∝ W−3/2; this is valid

for small kx . As kx increases, the edge states become ex-
tended; see Figs. 2(a) and 2(b). Indeed for a semi-infinite sys-
tem [32,33], ky switches from purely imaginary (evanescent
wave with � = Im{ky}−1) to purely real (bulklike, oscillatory
wave) at the kx = kc point, where the linear edge branch enters
the bulk band. Consequently, for kx > kc the normalization
of the edge branch becomes bulklike, i.e., ∝ 1/

√
W , and

the coupling scales as Ab,e
kx (t ) ∝ W−1. Both scalings yield a

vanishing Ab,e
kx (t ) for large W .

The numerical evaluation shown in Fig. 2 confirms the
asymptotic scalings of Ab,e

kx (t ). In Fig. 2(a) we calculate the
coupling from a reference edge branch (dashed line) to all
other edge and confined ribbon bands. The coupling inten-
sity is indicated by the color code. The coupling |Ae,e′

kx (t )|
between the edge states is approximately a Lorentzian peak
with broadening ∼|2M/A| and intensity ∼|A/εg| at kx = 0.
For large W → ∞, this coupling diverges as the gap closes,

εg = εn − εn′ → 0. Similarly, in Figs. 2(a) and 2(c), the cou-
pling between the dashed edge branch and the first bulk band
shows a sharp peak for W → ∞ at kx = kc, which matches
the point where the edge branch transitions from localized to
extended [Fig. 2(b)].

In Fig. 2(d) we show the logarithmic derivative of the
coupling, which for Ab,e

kx (t ) ∝ W−p yields − ∂ lnA
∂ ln W

= p. For
kx < kc, all lines approach p = 3/2 asymptotically, while
for kx > kc they approach p = 1. These scalings show that
already for W ≈ 1μm the coupling between bulk and edge
states is negligible. Effectively, there is no LZT between edge
and bulk states for large samples.

IV. ZITTERBEWEGUNG

The zitterbewegung is the oscillatory motion of the mean
value of the coordinates [〈x〉(t ), 〈y〉(t )], which is usually cal-
culated in the broad wave-packet (plane-wave) limit, ψ (t ) ∝
exp[ik(t ) · r]. To gain further insight about the ballistic dy-
namics of wave packets in TIs, we calculate these trajectories
using the Ehrenfest theorem [34]. Omitting the time argument
for brevity, i.e., 〈O〉 ≡ 〈O〉(t ) = 〈ψ (t )|O|ψ (t )〉, the coupled
set of equations of motion reads

d〈x〉
dt

= − 2

h̄
(D + B〈σz〉)kx (t ) + As

h̄
〈σx〉, (7)

d〈y〉
dt

= − 2

h̄
(D + B〈σz〉)k0

y + A

h̄
〈σy〉, (8)

d〈σ 〉
dt

= 2

h̄
� × 〈σ 〉, (9)

where the pseudospin 〈σ 〉(t ) precession is given by the vec-
tor �(t ) = {sAkx (t ), Ak0

y,M − B|k(t )|2}, with kx (t ) = k0
x +

eF t/h̄, and (k0
x, k

0
y ) are the initial momentum. The initial

pseudospin 〈σ 〉(0) = σ 0 is arbitrary. For simplicity, we take
x(0) = y(0) = 0. The equations above show that the dynam-
ics of 〈x〉(t ) and 〈y〉(t ) have contributions from 〈σx〉(t ) and
〈σy〉(t ). These oscillate due to the pseudospin precession
given by Eq. (9), which gives rise to the zitterbewegung. Note
that even for k0

y = 0, a finite transverse dynamics is set by the
〈σy〉(t ) contribution to 〈y〉(t ).

In the presence of the electric field, all possible initial
conditions lead to a finite ballistic side-jump. This can be
seen from the equations of motion noticing that, as time
flows, kx (t ) grows and the pseudospin precession is domi-
nated by the z component of �(t ) ≈ {0, 0,−Bk2

x (t )}. There-
fore, 〈σz〉(t ) asymptotically approaches a constant σ∞

z , while
〈σx〉(t ) and 〈σy〉(t ) precess around a zero average with in-
creasing frequency 2�z(t )/h̄. The final value for σ∞

z strongly
depends on the initial conditions, ultimately affecting the
asymptotic velocities in Eqs. (7) and (8). More importantly,
the contributions from the last terms of these equations vanish
on a time average, thus ceasing the zitterbewegung and the
transverse dynamics, resulting in a finite side-jump y(∞).

To express y(∞), let us analyze Eqs. (7)–(9) in the limits
of small and large M . First, recall that the Landau-Zener
tunneling is characterized by the Berry connection. In bulk,
this coupling intensity is |eFA| ∝ |eFA/M| at k = 0, which
becomes relevant if |eFA| � |2M| (band gap). For large and
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(a)

numerical

(b)

FIG. 3. The asymptotic limit |y(∞)| of the finite ballistic side-
jump as a function of (a) M and (b) eF . For large M � Mc (or
eF � eFc), the LZT is suppressed and the side-jump is independent
of eF . In panel (a) we use eF = 10−3 meV/nm, and in (b) |M| = 1
meV. In both cases, k0 = 0, s =↑, and σ 0

z =⇑. The dashed lines
are the limiting cases from Eq. (10), while the vertical dotted line
marks the critical mass Mc or electric field eFc. The circles (orange)
are the numerical data, which transit between both limiting cases.

small M , we find

|y(∞)| ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
Aπ

8eF
for |M| � Mc,

A

2|M| for |M| � Mc.

(10)

The transition point is defined by a critical mass Mc ≡√
2AeF/π , or critical field eFc ≡ πM2/2A. The solution

for M � Mc can be obtained analytically from Eqs. (7)–(9),
while for M � Mc the expression above was extracted from
fitting the numerical data. These expressions are compared to
the numerical data in Fig. 3 with great accuracy.

The Ehrenfest dynamics for M = −10 meV, different ini-
tial spin s = (↑,↓), and pseudospin σ 0

z = (⇑,⇓) are shown in
Fig. 1(c) for 0 < t < 5 ps. The initial momentum is (k0

x, k
0
y ) =

(10−3, 0)nm−1 in all cases. The trajectories show the os-
cillatory behavior (zitterbewegung) due to the pseudospin
precession. Note that since k0

y = 0, all the dynamics along the
transverse direction (y) are induced by 〈σy〉(t ) in Eq. (8). As
discussed above, for large t , the trajectories bend inward as
the transverse motion saturates. The zitterbewegung vanishes
for t � 50 ps with a finite side-jump of |y(∞)| ≈ A/2|M| =
18.75 nm.

The initial pseudospin σ 0 also affects significantly the
dynamics. In Fig. 4(a) we consider σ 0 as the eigenstates of σx ,
which we label as σ 0

x = {⇒,⇐}. Since at k ≈ 0, �(t ) ‖ ẑ,
the precession is approximately a circular motion of 〈σx〉(t )
and 〈σy〉(t ) on the 〈σz〉 = 0 plane of the pseudospin Bloch
sphere. This yields the nearly circular motion seen in Fig. 4(a)
for M = −1 meV, which is distorted by the electric field
F = 10−3 mV/nm. As time flows, the circular motion ceases
and converges toward a side-jump of ∼±200 nm. For M =
−10 meV, the dynamics is qualitatively equivalent to Fig. 4(a),
but with a much faster precession that becomes difficult to
visualize. Figures 1(c) and 4(a) were obtained for M < 0.
However, nearly identical results are obtained in the trivial
regime (M > 0) simply by mirroring x → −x.

In Fig. 4(b) we use a crude approximation to show that
the Ehrenfest Eqs. (7)–(9) would lead to skipping orbits at the
edges for both trivial and nontrivial topological regimes. This
would yield the absurd conclusion that one should expect edge

0
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FIG. 4. (a) Bulk zitterbewegung trajectories for M = −1 meV,
k0 = 0, and different initial spins s = {↑,↓} and pseudospins σ 0

x =
{⇒, ⇐}, as indicated. The reduced M leads to a larger side-jump
∼ ± 200 nm. (b) Incorrect skipping orbits at the edge (y = −5 nm)
appear for both trivial (M > 0) and nontrivial (M < 0) topological
regimes if the Ehrenfest equations (7)–(9) are used beyond their limit
of validity. Here (k0

x, k
0
y ) = (10−3, 0)nm−1, initial (s, σ 0

z ) = (↑,⇑),
and M = ±10 meV. (c) Qualitative zitterbewegung 〈y〉 vs t on a
large W = 4μm ribbon for different initial conditions s =↑ and
σ 0

z = {⇑, ⇓}. In all cases, (k0
x , k

0
y ) = (10−3, 10−2)nm−1, M = −10

meV. At the edges y = ±W/2, the trajectory bounces with specular
reflection as ky → −ky and 〈σy〉 → −〈σy〉 in Eq. (8).

states in both trivial and nontrivial topological regimes. These
results are misleading. Here we correctly consider specular
reflections at the edges by flipping the velocity sign when
there is a collision, i.e., k0

y → −k0
y and 〈σy〉 → −〈σy〉 in

Eq. (8), which is consistent with the pseudospin texture of the
bulk band structure. However, the Ehrenfest equations only
return a closed set of equations if one considers the plane-
wave limit, such that k is a good quantum number. In the
opposite limit, for narrow wave packets, significant deviations
are expected [16]. This means that to use the Ehrenfest equa-
tions above, one must assume that they describe the center
of motion of a broad packet. Moreover, for reasonable values
of M (= ±10 meV), the finite side-jump is only |y(∞)| ≈
20 nm, which is much smaller than the required packet
broadening (∼1μm). Therefore, the trajectories in Fig. 4(b)
are not compatible with the approximations that validate
Eqs. (7)–(9), hence the skipping orbits shown in Fig. 4(b) are
not accurate.

Nonetheless, the Ehrenfest Eqs. (7)–(9) can be applied for
a finite ribbon of width W if one considers the initial packet
to be a broad enough Gaussian packet. This requires W to
be even larger, so that the ribbon can accommodate the initial
packet. For the typical set of parameters, this requires an initial
Gaussian broadening � > 1μm, which also guarantees that
the packet broadening is nearly constant in time. The resulting
motion is to be seen as qualitative, since it does not consider
the broadening explicitly.
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FIG. 5. Time evolution of the density |ψ (y, t )|2 and its corre-
sponding Ehrenfest trajectory 〈y〉(t ) (black line) for a W = 10μm
ribbon [other parameters are equivalent to those in Fig. 4(c)]. The
spin is s =↑, and the initial pseudospin σz = {⇑, ⇓} is indicated
in each panel. The top (bottom) panel shows the dynamics in the
nontrivial (trivial) regime, M = −10 meV (M = 10 meV). In all
cases, the packets bounce at the edges y = ±W/2. The blue and red
colors indicate the sign of 〈σy〉 (time-averaged over a few periods
around each t). A small numerical noise is seen in the color code due
to the fast oscillation of 〈σy〉.

Let us consider W = 4μm. Since the side-jump is in
the nanometer range, an initial packet with k0

y = 0 would
never reach the edges at y = ±W/2. Hence a finite k0

y �= 0
is necessary to lead to a collision of the packet with the
edge. The resulting dynamics are shown in Fig. 4(c). At
the edges y = ±W/2, we consider the specular reflection
described above. For any set of realistic parameters, we see
the trajectories bouncing at the edges with no signature of
skipping orbits. The differences between the trajectories in
Fig. 4(c) arise from the broken electron-hole symmetry of H ,
while for D = 0 they become identical. These results agree
with the full quantum dynamics of a Gaussian wave packet
shown in Fig. 5, which we discuss next.

V. WAVE-PACKET DYNAMICS

The Houston states provide a clear interpretation of the
couplings An,n′

kx (t ) that lead to the LZT, while the zitterbewe-
gung, calculated via the Ehrenfest equations, gives us insight
about the dynamics of a wave packet. To complement these
results, we now solve the time-dependent Schrödinger equa-
tion numerically to observe the dynamics of a wave packet
as it collides with the edge of the system. We are interested in
wide ribbons in the micrometer range, so here we consider the
memory-efficient split-operator method [35], which is based
on the Suzuki-Trotter expansion [36,37]. The approximate
time-evolution operator is given by

U (t + τ, t ) ≈ e−iVy
τ

2h̄ e−iTk (t ) τ
h̄ e−iVy

τ
2h̄ + O(τ 3), (11)

where Vy = M (y)σz is the single y-dependent term of Ht [see
Eq. (2)], while Tk (t ) contains all k-dependent contributions
from Eq. (1). For the initial state, Eq. (4) now becomes a Gaus-
sian wave packet with broadening � and initial momentum
(k0

x, k
0
y ), which reads

ψ (y, 0) = eik0
yy

exp(− y2

4�2 )

(2π�2)1/4
ξσ , (12)

where ξσ is the vector representation of the initial spin σ 0,
e.g., ξ⇑ = (1

0

)
, ξ⇓ = (0

1

)
. As time flows, the packet broadens

approximately as �t =
√

�2 + [2(D ± B )t/�h̄]2. As usual,
an initially narrow packet broadens quickly, while for initial
� � [2(D ± B )tf/h̄]1/2 it remains �t ≈ � within 0 < t <

tf ∼ 500 ps. For our typical set of parameters, this condition
requires � � 1μm. Hereafter, we consider � = 1μm.

For k0
y = 0, the transverse motion is limited to the ∼20 nm

side-jump, which is much smaller than � ∼ 1μm, making it
difficult to visualize the overall motion. Nonetheless, in this
case the center of motion of the wave packet matches the
zitterbewegung trajectories, Figs. 1(c) and 4(a), obtained with
the Ehrenfest equations. Due to the short side-jump, this bulk
dynamics does not reach the edges.

For k0
y �= 0 the results are shown in Fig. 5. One immedi-

ately sees that the packet bounces off the borders unaffected
by the presence of the edge states. Essentially there is no
qualitative difference between the dynamics in the trivial
(M > 0) and nontrivial (M < 0) topological regimes. More-
over, in all cases, the packet evolution agrees well with the
Ehrenfest dynamics for equivalent initial conditions (black
lines in Fig. 5). The good agreement with the Ehrenfest
trajectories emphasizes that edge states play no role in the
dynamics of a packet initially set in bulk. The color code of the
packet densities in Fig. 5 indicates the sign of 〈σy〉 obtained
from the Schrödinger time evolution. As the packet bounces
off the borders, 〈σy〉 → −〈σy〉 and ky → −ky , thus justifying
the specular reflection introduced in the Ehrenfest dynamics
above.

VI. CONCLUSIONS

We have shown that topological edge states effectively do
not couple to bulk states via LZT. This conclusion arises
exactly from the Houston function approach for the time
evolution that relates the LZT to the Berry connection matrix
element An,n′

kx
∝ W−p, with p = 3/2 (1) for small (large) kx .

Numerical evaluation of An,n′
kx

confirms these scalings. Addi-
tionally, the zitterbewegung and numerical wave-packet time
evolution were developed to further investigate the dynamics.
These show packets bouncing off the edges in both trivial
and nontrivial topological regimes. More interestingly, the
zitterbewegung dynamics show that all possible initial con-
ditions lead to a finite ballistic side-jump. Overall, these re-
sults contrast those from Ref. [19], where the zitterbewegung
was introduced as a semiclassical picture for the topological
helical edge states that yield the edge magnetization of the
QSHE. Instead, for narrow ribbons the zitterbewegung can be
associated with a ballistic SHE [27].

In a diffusive regime, we expect this dynamics to be
consistent with the Rashba-Edelstein effect [16,28], which
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might lead to spin accumulation at the edges (i.e., SHE) in
both trivial and nontrivial topological regimes. This yields
an interesting scenario, where there could be an interplay
between the QSHE in SHE, depending on the chemical
potential and how the electrons are injected into the sam-
ple. It is important to emphasize that here we have con-
sidered only the edge-bulk coupling via LZT, while other
couplings could play a significant role [38]. The full diffusive

dynamics in a ribbon geometry with bulk and edge states
considered on an equal footing remains both unexplored and
challenging.
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