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Hidden order in URu2Si2: Symmetry-induced antitoroidal vortices
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We discuss possible approaches to the problem of the URu2Si2 “hidden order” (HO) which remains unsolved
after tremendous research efforts. Suppose there is no spatial symmetry breaking at the HO transition temperature
and solely the time-reversal symmetry breaking emerges owing to some sort of magnetic order. As a result of its
4/mmm symmetry, each uranium atom is a three-dimensional magnetic vortex; its intra-atomic magnetization
M(r) is intrinsically noncollinear, so that its dipole, quadrupole, and toroidal moments vanish, thus making
the vortex “hidden.” The first nonzero magnetic multipole of the uranium vortex is the toroidal quadrupole.
In the unit cell, two uranium vortices can have either the same or opposite signs of M(r); this corresponds to
either ferrovortex or antiferrovortex structures with I4/mmm or PI 4/mmm magnetic space groups, respectively.
Our first-principles calculations suggest that the vortex magnetic order of URu2Si2 is rather strong: the total
absolute magnetization |M(r)| is about 0.9μB per U atom, detectable by neutron scattering in spite of the unusual
form factor. The ferrovortex and antiferrovortex phases have almost the same energy and they are energetically
favorable compared to the nonmagnetic phase.
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I. INTRODUCTION

For more than 30 years, since the first papers appeared in
1985 [1–3], there were many attempts to understand the mys-
terious hidden order (HO) in the heavy-fermion compound
URu2Si2 (they are surveyed in two detailed reviews [4,5]).
The main problem is that below the HO transition tempera-
ture, THO = 17.5 K, there are practically no obvious physical
phenomena associated with the order parameter; the only un-
equivocal evidence for the order is a rather strong specific heat
jump [1–3] at THO . For instance, the accompanying antiferro-
magnetic order violating the body-centered symmetry [6–9]
is so weak that it cannot explain the behavior of the specific
heat. The observed lattice symmetry breaking [10] and in-
plane anisotropy of the magnetic susceptibility [11] are also
extremely weak and their relation to HO is not clear [12]. The
symmetry breaking from body-centered tetragonal to simple
tetragonal was carefully examined [13] via inelastic neutron
and x-ray scattering measurements, and no signs of reduced
spatial symmetry, even in the HO phase, had been found.
The fourfold local symmetry of the HO state of URu2Si2

has recently been confirmed by means of single-crystal NMR
measurements [14].

There have been several interesting attempts to under-
stand the HO transition within the phenomenological Landau-
Ginzburg theory (see, for instance, [15–18], and references
therein). The phenomenological approaches include naturally
both the hidden order and the pressure-dependent antiferro-
magnetic order. They also take into account the results of
ab initio studies. However, for the time being, the problem
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is still very open, and we also discuss other possible forms of
the order parameter in this paper.

A popular idea is that there is time-reversal symmetry
breaking (TRSB) related probably with an exotic type of
multipole magnetic order emerging at THO [5,19,20]. Many
efforts, theoretical and experimental, were concentrated on
searching for possible multipole orders [5,21–26]. However,
the conventional methods such as magnetic neutron and reso-
nant x-ray scattering seem unable to detect those multipoles.

In this paper, we suggest a simple HO model based mainly
on the symmetry consideration. Indeed, if we cannot detect
any pronounced violation of the spatial symmetry below THO ,
let us assume that the HO has exactly the same symmetry,
namely, 4/mmm, as the high-temperature paramagnetic phase
of URu2Si2. More precisely, we suppose that HO is a non-
collinear intra-atomic magnetization of uranium atoms with
4/mmm symmetry so that the only symmetry violation at the
transition point is TRSB. Surprisingly, such a simple assump-
tion leads to a nontrivial vortex HO described by the toroidal
quadrupole order parameter which is difficult to detect with
conventional methods. First-principles calculations show that
the vortex HO is perhaps strong enough to be detected by
careful monitoring of neutron reflections across the phase
transition.

II. MAGNETIC SYMMETRY OF THE HIDDEN ORDER

We first remind one that the magnetic moment M(r)
is a pseudovector and transformations of its components
under mirror reflections are just opposite to a usual
vector: the component normal to the mirror plane keeps
its direction, whereas the parallel components invert
their directions. For instance, for the mz mirror plane,
Mz(x, y,−z) = Mz(x, y, z), Mx (x, y,−z) = −Mx (x, y, z),
and My (x, y,−z) = −My (x, y, z). The space inversion
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FIG. 1. Different symmetries of intra-atomic magnetization of
uranium atoms in URu2Si2. (a) A conventional magnetic atom would
have the point symmetry 4/mm′m′ including the vertical fourfold
axis (black square), the horizontal mirror plane m (the figure plane),
and two types of vertical pseudomirror planes m′ (perpendicular
to the x or y axes and diagonal to them; black lines); m′ means
a combined operation of mirror reflection and time reversal. (b)
In-plane uranium magnetization with the 4/mmm symmetry where
red and blue colors correspond to positive and negative regions
of Mz(x, y, z = 0) divided by mirror planes m (black lines). (c)
Three-dimensional ATV: sixteen 4/mmm-equivalent magnetic vec-
tors (green arrows) form two 8-vector vortices at ±z with opposite
directions of toroidal moments (red arrows); see also a movie in
Ref. [27]. It should be emphasized that the 4/mmm symmetry
induces the ATV structure only for pseudovectors like M(r) and not
for true vectors like electric dipole moments, etc. (d) In principle,
higher symmetries are also possible, up to ∞/mm, which is the
symmetry of the nematic order.

does not change M(r): M(−r) = M(r). The time-reversal
symmetry operation, denoted by the prime sign, inverts the
direction of the magnetization: M′(r) = −M(r).

The principal difference between conventional magnetic
atoms and a magnetic atom with 4/mmm symmetry is obvi-
ous from Fig. 1. The magnetic point symmetry of conventional
atoms would be 4/mm′m′ and it includes one vertical fourfold
axis, one horizontal mirror plane m, and two types of vertical
mirror planes m′ (normal and diagonal to the x, y axes). As a
result of this symmetry, Mx (x, y, 0) = 0 and My (x, y, 0) =
0 in the z = 0 mirror plane and usually these components
remain to be small above and below the mirror plane so that
the main magnetization of the atom is Mz.

For the case of 4/mmm symmetry, Mx and My are also
zero in the plane of the figure but Mz should be very

inhomogeneous; it should change its sign at least eight times
when we go around the atom [Fig. 1(b)]. In the horizontal
mirror plane z = 0, we have eight similar sectors with al-
ternating Mz component. Then, passing through all vertical
mirror planes, shown in Fig. 1(b) by black lines, the parallel
components of M(r) become zero and change their signs.
In other words, for all r belonging to the mirror planes of
4/mmm symmetry, M(r) is normal to the corresponding
plane.

For any general position x, y, z the 4/mmm symmetry
operations create a pair of eight-vector vortices with head-
to-tail arrangement of equivalent moments in the ±z planes
[Fig. 1(c)]. The toroidal moments [28–30] of these two eight-
vector vortices are antiparallel (along ±z). It is a general
magnetic arrangement dictated by the 4/mmm symmetry
and it makes the M(r) field significantly noncollinear and
inhomogeneous simply as a result of the symmetry. Each
uranium atom looks like an atomic-size magnetic skyrmion
built from two equivalent halves at z > 0 and z < 0 with
opposite toroidal moments. We could refer to this configura-
tion as an antitoroidal vortex (ATV). It should be emphasized
that the 4/mmm symmetry induces the ATV HO only for
pseudovectors such as M and not for true vectors such as
electric dipole moments, etc.

To characterize quantitatively the inhomogeneous atomic
magnetization with 4/mmm point symmetry we can use the
tensor moments of M(r) relative to the atomic center. The
average dipole moment 〈M(r)〉 is zero. Here and below 〈· · · 〉
means integration V −1

∫ · · · dr over a spherical atomic-size
volume V around the atom. The magnetic quadrupole mo-
ment 〈Mi (r)xj 〉 = 0 because of the inversion center M(−r) =
M(r). In particular, the atomic toroidal (anapole) moment
〈[r × M(r)]〉 [28–30], which is an antisymmetric part of this
tensor, is zero as well as the monopole moment 〈r · M(r)〉.
For the same reason, all even-rank tensor moments of
〈Mi (r)xj · · · xn〉 type are zero as well.

Thus the first nonzero tensor moment of the 4/mmm ATV
structure is the third-rank tensor Mijk = 〈Mi (r)xjxk〉; it is
symmetric under permutation of the last two indices. It is
easy to show (or to find in textbooks [31]) that for this
symmetry the third-rank pseudotensor Mijk has only four
nonzero components and all of them are equal up to the
sign M123 = M132 = −M231 = −M213 = Mv , where Mv =
1
2V −1

∫
[M(r) × r] · z dr. The time-odd parity-even moment

Mv characterizes the strength and sign of the ATV HO (it
is called either magnetic octopole or quadrupole toroidal
moment).

The sign of Mv is a nontrivial attribute. Indeed, we can
change the sign of Mv by reversing the magnetization di-
rection in all points M(r) → −M(r) (the time-reversal op-
eration). However, this way we obtain a new object which
cannot be superposed with the old one either by rotations or by
mirror reflections. Since the only symmetry operation relating
these two objects is the time inversion, their energies must
be equal. Thus any magnetization arrangement with 4/mmm

point symmetry can exist in two energetically equivalent vari-
ants with ±Mv . It is natural to call them clockwise and anti-
clockwise vortices for Mv > 0 and Mv < 0, correspondingly.
However, it should be emphasized that the sign of Mv is not
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FIG. 2. The calculated magnetization distribution Mx (r) within the diagonal mirror plane formed by vectors [1,1,0] and [0,0,1] in the unit
cell of the ferrovortex (a) and antiferrovortex (b) phases; (c) the calculated valence electron density which is almost equal for both phases. In
this plane, My (r) = −Mx (r) and Mz(r) = 0. Two uranium atoms are at ( 1

4 , 1
4 , 1

4 ) and ( 3
4 , 3

4 , 3
4 ) positions with Si atoms surrounding them; Ru

atoms are out of the plane. The straight lines are intersections with vertical and horizontal mirror planes where Mx and My change their signs.

topologically stable; it can be changed by deformation of the
M(r) field. The magnetization arrangement with Mv = 0 can
correspond to nonzero absolute magnetization 〈|M(r)|〉 �= 0.

There are two uranium atoms in the body-centered-
tetragonal unit cell of URu2Si2. In the simplest magnetic
structure, both atoms have the vortices with the same Mv ,
either both clockwise or both anticlockwise. Such structure
has the I4/mmm magnetic space group [32,33] and can be
called the ferrovortex phase. The clockwise and anticlock-
wise ferrovortex phases should have equal energies and can
be mutually transformed by the time reversal. The clockwise
and anticlockwise domains can coexist, being separated by
domain walls, in real samples of the ferrovortex phase.

If those two atoms have opposite magnetization direc-
tions (one clockwise and another anticlockwise), then the
lattice is primitive and the magnetic symmetry group is
PI 4/mmm [32,33]. In this case, the lattice consists of clock-
wise and anticlockwise layers alternating along the z axis; it
can be called the antiferrovortex phase. The time reversal is
equivalent to the ( 1

2 , 1
2 , 1

2 ) shift of the lattice.
Besides ferrovortex and antiferrovortex phases, many (in-

finite) symmetrically different arrangements of the clockwise
and anticlockwise vortices are possible but their consideration
should be left for a future work. Then, in principle, ATV
with higher symmetries are also possible, up to ∞/mm,
which is the symmetry of the nematic order [see Fig. 1(d)].
An open question is whether the vortices with such a high
symmetry can exist in free atoms, molecules, or nematiclike
liquid crystals. Actually, the toroidal quadrupole moments are
discussed for positronium atoms [34] and for deuterons [35]
(a survey of related works is given in [36]).

The quantitative characterization of 4/mmm vortices
by the third-rank tensor Mijk has three important com-
plications: (i) Mijk does not depend on the azimuthal
orientation of the vortex in the xy plane: (ii) it does
not distinguish between 4/mmm and other uniaxial sym-
metries (422, 4mm, 4̄2m, 622, 6mm, 6̄2m, 6/mmm, ∞2,
∞m, ∞/mm); (iii) the Mz component gives no contribution

to Mv . Some of these drawbacks disappear for the next
nonzero tensor (fifth rank) and for the magnetoelectric tensor
〈Mi (r)Ej (r)xk〉. All this means that pure symmetrical con-
sideration leaves a lot of freedom for possible scenarios of the
HO transition and more work is needed here.

III. FIRST-PRINCIPLES SIMULATIONS

The symmetry-based approach is of course reliable, but
it cannot say whether and when those exotic antitoroidal
vortices could be energetically stable, what are the values
of M(r) in different points of the unit cell, etc. To find
the magnetization M(r), the electronic densities ρ(r), and
the energies of possible URu2Si2 phases we have performed
“illustrative” ab initio simulations using the QUANTUM

ESPRESSO package [37,38] with appropriate pseudopotentials
and techniques [39–47].

We do not fix the spatial and magnetic symmetries of
URu2Si2 in the beginning and during the self-consistent mini-
mization procedure. Instead, the procedure starts from crystal
structures whose symmetries are subgroups of I4/mmm.
Small initial magnetic moments are assigned to silicon and
ruthenium atoms so that uranium magnetic moments are
not predetermined. Then during the self-consistent iterations
those conventional magnetic moments become smaller and
smaller but at the same time a new magnetization field M(r)
(with zero average magnetization) is growing mainly around
uranium atoms, i.e., the absolute magnetization 〈|M(r)|〉
is progressively growing until an equilibrium structure is
reached. Symmetry analysis of the appearing magnetization
shows that new symmetry elements initially look like some
tendency and then become more and more exact if the iterative
self-consistent procedure converges. See Ref. [48] for more
details of the simulations.

Both the ferrovortex and antiferrovortex phases have
been obtained in our simulations starting from different
initial structures. Their energies are well below the en-
ergy of the nonmagnetic phase: per formula unit, �Ef v =
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−0.0318 eV/f.u. and �Eav = −0.0364 eV/f.u. This energy
gain seems to be too strong for the observed value [1–3] of
the specific heat jump corresponding to the internal energy
change induced by the hidden order of about 0.000 18 eV/f.u.
In fact, the energy responsible for the HO phase transition is of
about an interaction energy between magnetic atoms, which is
“fighting” with entropy for the phase transition. The interac-
tion energy is a very small part of the total magnetic energy
and the former is impossible to extract from the latter within
the conventional density-functional theory simulations. Quite
probably, the antitoroidal vortices appear as fluctuations well
above the HO transition temperature, and they are arranged
into ferrovortex or antiferrovortex phase at the HO transi-
tion temperature owing to very subtle interactions between
vortices.

The calculated magnetization and charge densities are
shown in Fig. 2 for the diagonal mirror plane x = y includ-
ing two U atoms. The main magnetic and charge features
obviously correspond to the 5f uranium orbitals [49] (mean
radius 0.76 Å). The uranium vortices are almost the same
for both phases, except that in the antiferrovortex phase they
have opposite signs. And the total absolute magnetization is
almost the same for both phases: |M(r)f v| = 0.93μB/f.u. and
|M(r)av| = 0.96μB/f.u. According to Ref. [50], the value of
about 1μB/f.u. is needed to explain the observed specific
heat jump. The magnetization is concentrated around uranium
atoms [Figs. 2(a) and 2(b)]: in the ferrovortex (antiferrovor-
tex) phase, there is about 0.936 (0.93) of the total |M(r)|
inside the Slater uranium radii (Rs = 1.75 Å) and remaining
itinerant magnetization is distributed in the unit cells accord-
ing to their space symmetries. The very strong anisotropy
of ATVs could naturally explain the Ising-like behavior of
HO [5,12]. The calculated Mz for one atom is shown in
Fig. 1(b) which is a 0.5 × 0.5 part of the unit cell xy plane

(i.e., about 2 × 2 Å
2
); see also movies in Ref. [51].

In fact, it is well known that magnetic intra-atomic
noncollinearity is a general effect, arising because of the
relativistic spin-orbit coupling not only in actinides [52] but
also in other materials [53–55]. The noncollinear magnetism
is very sensitive to the space group symmetry and we have
predicted recently [56] the toroidal intra-atomic moments
for RhGe crystal with the P 213 space group. The case of
URu2Si2 is especially interesting because its symmetry is so
high that observation of its intra-atomic vortices is really a
nontrivial problem.

IV. DISCUSSION

The logic of our approach is straightforward:
(i) To explain the observed large anomaly in the specific

heat of URu2Si2, we need a rather strong order.
(ii) To be hidden, the strong order should have the symme-

try of the high-temperature phase, because otherwise it would
be easily detectable by x-ray and/or neutron diffraction.

(iii) If the order parameter has the symmetry of the
high-temperature phase, the phase transition should be (con-
trary to experiments) of the first order except for the case
of the time-reversal-symmetry breaking. Therefore the most
plausible candidate for the “hidden order” in URu2Si2 is

FIG. 3. Relative intensities of magnetic contributions to neutron
reflections for the ferrovortex (h + k + � = 2n, left) and antifer-
rovortex (h + k + � = 2n + 1, right) phases; the circle areas are
proportional to |M(hk�)|2 and normalized on the most intense mag-
netic reflections, 255 and 256 for the ferrovortex and antiferrovortex
phases, respectively. Top: for hk0 (red) and hk1 (blue). Bottom: for
h0� (red) and h1� (blue). The antitoroidal magnetization of uranium
atoms [Figs. 2(a) and 2(b)] results in a rather unusual reciprocal-
space distribution of strong reflections: magnetic contributions are
zero for h00, 0k0, 00�, and hh0 reflections.

a time-reversal-symmetry breaking system of magnetic mo-
ments with the symmetry of the crystal lattice. In our version,
this is the tetragonal lattice of antitoroidal vortices.

(iv) This conjecture has been fully confirmed in our
ab initio calculations.

Now we want to show that the hidden order of this type can
be detected means of careful monitoring of neutron reflections
across the HO phase transition. It is helpful that the lattice
symmetry favors the ATV HO with very unusual distributions
of the intra-atomic magnetization resulting in unusual form
factors for magnetic neutron scattering [see Fig. 3 for the
reflection intensities obtained from ab initio calculated M(r)].
An obvious unusual feature is that high-symmetry reflections
h00, 0k0, 00�, and hh0 are zero for both the ferrovortex
and antiferrovortex phases. The main difference between the
two phases is that there are pure magnetic reflections h +
k + � = 2n + 1 in the antiferrovortex phase, whereas for the
ferrovortex phase all the magnetic reflections coincide with
nuclear reflections h + k + � = 2n. A comparison of Fig. 3
with the observed intensities of pure magnetic reflections [8]
(100, 102, 201, 203, 106, and 300) allows us to exclude
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the antiferrovortex phase from the list of possible candidates
for HO.

The situation with the ferrovortex phase is much more
intriguing: the magnetic reflections only slightly change the
nuclear reflection intensities; the latter have never been mea-
sured carefully for URu2Si2 across the HO temperature.
Moreover, the interference between magnetic and nuclear
contributions should vanish in the case of equal fractions
of clockwise and anticlockwise domains. According to our
calculations, the magnetic structure factor can reach its maxi-
mum ≈0.25μB for reflection 525 at T = 0. However, this re-
flection has a large nuclear structure factor. Fortunately, there
are many weak nuclear reflections with comparable magnetic
factors from 0.15 to 0.2μB ; for instance, 307 and 417; they are
more sensitive to magnetic scattering. It seems that accurate
measurements of neutron reflections as a function of temper-
ature provide the only way to study ATV HO quantitatively.
Similar neutron experiments have revealed an unusual mag-
netic order preserving translational symmetry of the lattice in
the enigmatic pseudogap phase of high-temperature supercon-
ductors [57–61]. We have found recently a striking similarity
between hidden orders in URu2Si2 and in the pseudogap
phase that will be discussed elsewhere. Quite probably, the
URu2Si2 HO phase is generic and similar phases where the
order remains undetected because of its high symmetry can
exist in other materials.

In conclusion, it is shown that high magnetic symmetry
of URu2Si2 crystal can explain why its hidden order remains
hidden for many years. There is no spatial symmetry break-
ing in the HO phase transition and solely the time-reversal
symmetry is violated. Owing to their 4/mmm symmetry,
uranium atoms have zero dipole and quadrupole moments,
and the first nonzero magnetic moment of the uranium vortex
is the quadrupole toroidal moment which can be used as an
order parameter in the Landau theory of the HO phase. The
simulations suggest that the vortex magnetic order of URu2Si2

is indeed energetically favorable and strong enough to be
detected by neutron diffraction.
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