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Candidate theory for the strange metal phase at a finite-energy window
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We propose a lattice model for strongly interacting electrons with the potential to explain the main
phenomenology of the strange metal phase in the cuprate high-temperature superconductors. Our model is
motivated by the recently developed “tetrahedron” rank-3 tensor model that mimics much of the physics of the
better-known Sachdev-Ye-Kitaev (SYK) model. Our electron model has the following advantageous properties:
(1) it needs only one orbital per site on the square lattice. (2) It does not require any quenched random interaction.
(3) It has local interactions and respects all the symmetries of the system. (4) The soluble limit of this model
has a longitudinal dc resistivity that scales linearly with temperature within a finite temperature window. (5)
Again, the soluble limit of this model has a fermion pairing instability in the infrared, which can lead to
either superconductivity or a “pseudogap” phase. The linear-T longitudinal resistivity and the pairing instability
originate from the generic scaling feature of the SYK model and the tetrahedron tensor model.
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I. INTRODUCTION

The non-Fermi-liquid (NFL) state represents a family of
exotic metallic states that do not have long-lived quasipar-
ticles and hence behave fundamentally differently from the
standard Landau Fermi-liquid theory [1–11]. The NFLs usu-
ally occur at a certain quantum critical point in itinerant
fermion systems, and the quantum critical fluctuations couple
strongly with the fermions and hence “kill” the quasiparticles.
But the most well known (yet poorly understood) NFL, the
“strange metal” phase at the optimal doping of the cuprate
high-temperature superconductors, seems more generic than
the by-product of a certain quantum critical point because
its anomalous temperature dependence of the longitudinal dc
resistivity (ρ ∼ T ) persists up to a rather high temperature in
the phase diagram [12–16], which is presumably much higher
than the ultraviolet cutoff of any possible quantum critical
point in the system. However, like many other NFLs [17–23],
the strange metal phase is also preempted by a dome of
“ordered phase” with a pair condensate of fermions (high-Tc

superconductivity) at low temperature. Thus the strange metal
phase is more fundamental than the superconductor phase
itself: it is the “parent state” of the high-Tc superconductors,
just like the Fermi liquid is the parent state (or normal state) of
conventional BCS superconductors. And we better view this
parent state as a generic non-Fermi-liquid state, instead of a
quantum critical behavior.

A series of toy models for NFLs, despite their relatively
unnatural forms, seems to capture the key universal features
mentioned above. These models are the so-called Sachdev-
Ye-Kitaev (SYK) model and its generalizations [24–31]. (1)
The fermion Green’s function in these models has a scaling
behavior completely different from that of the noninteracting
fermions in the infrared limit; thus it has no quasiparti-

cle and by definition is a NFL. (2) It was found that the
SYK model has marginally relevant “pairing instability” just
like the ordinary Fermi-liquid state [32,33], which is again
consistent with one of the universal features of the NFLs
observed experimentally. (3) Recently measured charge den-
sity fluctuation of the strange metal [34] agrees with the
unique scaling behavior of the SYK model [24]. (4) Last, but
not least, recently, a generalization based on the SYK model
has shown linear-T resistivity for a large temperature window,
and the scaling behavior of the SYK model is the key for the
linear-T resistivity [35] (a similar effect can be achieved in
models with large-N generalization of the electron-phonon
coupling [36–38]). All these developments suggest that some
version of the SYK model and its generalizations may, in-
deed, be related to the strange metal phase the strange metal
phase.

More often than not, an exactly soluble model has to
sacrifice reality to some extent by making some artificial
assumptions. To ensure its solubility, the original SYK model
has the following necessary ingredients that make it unlikely
to be directly related to the cuprates: (1) It needs an all-
to-all four-fermion interaction, while a natural Hamiltonian
for a real condensed-matter system usually has only local
interactions. (2) The four-fermion interaction is fully ran-
dom with a Gaussian distribution, which is also far from
the real system. (3) So far the NFL models constructed
based on generalizations of the SYK model all have a
large number of fermion states on each unit cell of the
lattice with a fully random all-to-all intra-unit-cell interac-
tion [35,39–44], while the common wisdom is that the cuprate
materials have only one active d orbital on each copper
site.

In this work we will construct two lattice models for
strongly interacting electrons that are still motivated by the
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FIG. 1. The schematic phase diagram of our Hamiltonian (1)
or (24) plus single-particle hopping parametrized by t and nearest-
neighbor perturbation Hu [Eq. (19)] with coefficient u. The strange
metal phase is dominated by only Eq. (1) or Eq. (24) and is charac-
terized by the non-Fermi-liquid behavior and an anomalous linear-T
scaling of the dc resistivity. The pseudogap crossover temperature
scale T ∗ is given by Eq. (21). The exact phase boundaries need
further calculations.

SYK physics but are much closer to real systems. (1) Our
models need only one orbital per unit cell on the square
lattice. (2) Our models have no quenched randomness. (3)
Our models still capture the most desired physics of the SYK
model, such as the linear-T scaling of the longitudinal dc
resistivity and pairing instability in the infrared. In the soluble
limit, the solution of our model is identical to the SYK model;
thus our analytical results largely rely on the known solution
of the SYK model in, for instance, Ref. [26]. But we will also
check our analytical predictions based on the soluble limit
by exact diagonalization of the minimal and most realistic
version of our model away from the soluble limit in a finite
system. The phase diagram of our proposed model for the
physics near the strange metal phase including the low-energy
phases induced by different perturbations considered in this
paper is plotted in Fig. 1.

It was shown previously for the Sachdev-Ye model that
away from the exactly soluble large-N limit [45], the
SYK scaling still persists at a finite energy scale (for ex-
ample, finite temperature), while instabilities due to 1/N

corrections emerge at low energy which are suppressed
(sub)exponentially with increasing N [46]. Although the ex-
actly soluble version of our models still requires some large-N
limit, by evaluating the next-order diagrams, we argue that
for finite N , the scaling behavior of the large-N limit may
still apply to an intermediate energy or temperature window,
which is where the strange metal phase was observed in real
systems.

II. THE HAMILTONIAN

Let us first write down the most important term of the
interacting electron Hamiltonian that we will study on the

square lattice:

H =
∑

j

Hj ,

Hj = Un̂2
j +

∑
ê=x̂,ŷ

J

(
�Sj · �Sj+ê − 1

4
n̂j n̂j+ê

)

−K (εαβεγσ c
†
j,αc

†
j+x̂+ŷ,βcj+ŷ,γ cj+x̂,σ + H.c.), (1)

where εαβ is a 2 × 2 antisymmetric matrix in spin space. Other
terms, such as single-particle hopping, will later be treated as
perturbations. We will study this model with a fixed particle
density both analytically and numerically. Here n̂j = n̂j,↑ +
n̂j,↓ is the total electron number on site j , and �Sj = 1

2c
†
j �σcj is

the spin operator. Besides the standard charge density and spin
interactions, we also turned on a “ring exchange” term with
coefficient K , which takes a spin singlet pair of electrons on
two diagonal sites of a plaquette to the two opposite diagonal
sites of the same plaquette. This Hamiltonian preserves the
square lattice symmetry (because this interaction has only
even parity and spin singlet pairing between fermions) and
also spin SU(2) symmetry.

We will try to make a connection between Eq. (1) and the
SYK physics. As we explained previously, many necessary
ingredients of the original SYK model are not very realistic.
Instead of directly using the SYK model, our construction (1)
is motivated by the randomness-free “tetrahedron” model (or
the so-called rank-3 tensor model) [29,30,47]:

Ht
1 = g

(NaNbNc )1/2
c
†
a1b1c1

c
†
a2b2c1

ca1b2c2ca2b1c2 . (2)

Here a1, a2 = 1 · · · Na, b1, b2 = 1 · · · Nb, and c1, c2 =
1 · · · Nc. This model has a U(Na ) × U(Nb ) × O(Nc ) symme-
try. It was shown in the literature that, in the large-Ni limit,
the dominant contribution to the Fermion Green’s function
comes from a series of “melon Feynman diagrams,” which
can be summed analytically by solving the Schwinger-Dyson
equation.

To make a connection to electron systems, the first step is
to modify the tetrahedron model as follows:

Ht
2 = − g

(NaNbNc )1/2

×Jc1,c
′
1
Jc2,c

′
2
c
†
a1b1c1

c
†
a2b2c

′
1
ca1b2c2ca2b1c

′
2
, (3)

where J is the antisymmetric matrix associated with the
Sp(Nc) group and Jabcacb forms an Sp(Nc) singlet. The total
symmetry of this model is now U(Na ) × U(Nb ) × Sp(Nc ).
The solubility of this model is unchanged from Eq. (2) in the
large-Ni limit, and the single-particle Green’s function in this
limit is identical to the disorder-averaged Green’s function of
the SYK model [26]:

G(τ ) = −B(θ )e−2πT Eτ

√
πT

2g sin (πT τ )
, (4)

G(iω)T =0 = B(θ )

sin
(

π
4 + θ

) e
−isgn[ω]

(
π
2 +θ

)
|2gω| 1

2

, (5)
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where a real angle parameter −π
4 < θ < π

4 and the spectral
asymmetry E have been introduced. Both parameters depend
on the charge density, and they are related to each other by

e2πE = sin
(

π
4 + θ

)
sin

(
π
4 − θ

) . (6)

The angle θ = 0 corresponds to the case of half filling.
By solving consistent equations with the same method as
Ref. [26], the coefficient B is found to be

B(θ ) =
(

1

π cos (2θ )

) 1
4

sin

(
π

4
+ θ

)
. (7)

In Eq. (4), we have assumed 0 < τ < β in the Green’s func-
tion, and the Green’s function with −β < τ < 0 is determined
by the standard relation G(τ + β ) = −G(τ ).

Now we can draw a connection between the modified
tetrahedron model (3) and our original model (1). When U =
K = ηJ/2 (η = ±1), the total Hamiltonian (1) is equivalent
to the following model with N = 3 and M = 2:

H =
∑

j

(N−1)/2∑
r,r ′=−(N−1)/2

M∑
α,β,γ,σ=1

− gηr,r ′

N
√

M

×JαβJγ σ c
†
jx ,jy ,α

c
†
jx+r,jy+r ′,βcjx ,jy+r ′,γ cjx+r,jy ,σ . (8)

Just like the tetrahedron model (3), every fermion still carries
three indices: the Sp(M) spin, the x coordinate, and the y co-
ordinate. We will consider and numerically study two versions
of the models with ηr,r ′ = +1 uniformly (when N = 3, M =
2, it corresponds to U = K = −J/2) and ηr,r ′ = (−1)r+r ′

(which corresponds to U = K = +J/2).
The minimal version of the model (8) with N = 3, M = 2

is identical to Eq. (1), which should be analogous to the case
with Na = Nb = 3 in Eq. (3). In analytical calculations, we
always take the thermodynamics limit first (the sum of j is
taken on a square lattice with infinite size). Then in the large-
N and large-M limit, for both choices of ηr,r ′ , the fermion
Green’s function is still dominated by the “melon diagrams,”
and hence the Schwinger-Dyson equations, as well as their
solutions, remain the same as models (2) and (3):

Gj,j ′,α,β (τ ) = G(τ )δj,j ′δα,β, (9)

from which we can extract the fermion spectral function (local
density of states)

ρf (ω) =
√

1

gT

B(θ )

sin
(

π
4 + θ

) Im

[
ie−iθ

2π

�
(

1
4 + β(ω−ωS )

2πi

)
�

(
3
4 + β(ω−ωS )

2πi

)
]
.

(10)

Here ωS = 2πET . The Fermion Green’s function has the
form of local quantum criticality, and the scaling dimension
of the fermion operator is �[c] = 1/4.

We have introduced a fixed fermion density, defined as

Q = 1

M

M∑
α=1

〈c†j,αcj,α〉. (11)

The value of Q can be varied within the range 0 < Q < 1.
Using the same method as Ref. [26], the relation between

fermion density Q and the angle parameter θ in the Green’s
function is found to be

Q = 1

2
− θ

π
− sin (2θ )

4
, −π

4
< θ <

π

4
. (12)

The fact that the fermion Green’s function (9) remains lo-
calized in space is due to the fact that the Hamiltonians (1)
and (8) preserve the center of mass of the electrons on the
square lattice. Any nonzero fermion correlation with a finite
spatial separation would violate the center-of-mass conserva-
tion; thus the fermion Green’s function is fully localized in
space. Single-particle hopping will later be introduced as a
perturbation, which breaks center-of-mass conservation and
leads to spatial correlation between fermions and also charge
transport.

For finite N and M , we need to estimate the corrections
coming from the subdominant Feynman diagrams. For any
diagram, if we evaluate it with the solution in the large-(N,M)
limit, it will roughly lead to a “marginal” correction; namely, it
will correct the large-(N,M) solution with a logarithmic func-
tion of infrared cutoff, say, the temperature. This is because
in the large-(N,M) soluble limit the coupling constant g

becomes marginal since the scaling dimension of the fermion
operator is 1/4. Subdominant Feynman diagrams of SYK-like
models were carefully calculated in Ref. [48], and the result
is consistent with our expectation. Thus we expect that any
subdominant diagram will, at most, lead to corrections with
the form ∼1/NA1/MB[ln(�/T )]C , where A,B, and C are all
positive numbers. This diagram will hence become significant
only when

T � � exp
( − cN

A
C M

B
C

)
, (13)

where � is the ultraviolet cutoff of the system, which can be
identified as g in our model. Thus we expect the correction
to the NFL solution to be suppressed rapidly with increasing
N and M; hence it is possible that there is a finite-energy
window where the solution (9) applies. This is consistent with
the expectation for the original Sachdev-Ye model away from
the exactly soluble limit [46]. Away from the exactly soluble
limit, the ground state has no finite entropy density.

III. PROPERTIES OF THE NFL

A. Longitudinal conductivity

Assuming Eq. (9) applies to a finite-energy window, we
can use it to compute quantities at finite temperature within
such an energy window. Because Eq. (1) conserves the cen-
ter of mass of the electrons, it is incapable of transporting
electric charge. More formally, this interaction term does
not couple to the zero-momentum component of the external
electromagnetic field, analogous to models studied previously
with center-of-mass conservation [49,50]. Thus the single-
particle hopping term is still responsible for charge transport.
In cuprates both the nearest-neighbor and second-neighbor
hoppings are important [51]. In the soluble large-(N,M) limit,
we formally generalize the electric current density to the
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following form:

Jx = 1√
NM

(∑
α

itc
†
j,αcj+x̂,α +

√
N − 1

2
itc

†
j,αcj+x̂±ŷ,α

)

+ H.c. (14)

This electric current density can be derived by designing a cor-
responding single-electron hopping term in the large-(N,M)
limit (which involves both nearest- and second-neighbor hop-
ping) and coupling it to the external electromagnetic field.

Assuming the solution in the large-(N,M) limit (9) applies
to a finite-energy window of the system, then according to
the Kubo formula, the central task is to calculate the retarded
current-current correlation function. The imaginary-time cor-
relation function is defined as C(J, J ; τ ) = 〈Tτ J (τ )J (0)〉.
We find the 〈Jx Jy〉 correlation vanishes due to the symmetry
of the model, and the leading order nonzero contribution to
〈Jx Jx〉 takes the form C(J, J ; τ ) = −2t2G(τ )G(−τ ). Then
we Fourier transform C(J, J ; τ ) to obtain the correlation
function in the Matsubara frequency space:

C(J, J ; iωn) = 2t2
∫ β−δ

δ

dτeiωnτG(τ )G(β − τ ), (15)

where we have regulated the integral by introducing a small
positive cutoff δ. After removing the divergent term ln δ

(which does not contribute to the real part of the conductivity),
we obtain the analytically continued correlation function

C(J, J ; z) = −2
t2

g
B2e−2πEψ

(
1

2
+ βz

2πi

)
, (16)

where ψ (z) = d
dz

ln �(z) is the polygamma function and
the complex frequency z satisfies Imz > 0. The function
C(J, J ; iωn) can be obtained by setting z → iωn in the above
expression, and the retarded/advanced correlation function
CR/A(J, J ; ω) is obtained by taking z → ω ± i0+. Finally,
using the relation σ (ω) = 1

iω
CR (J, J ; ω), we find the real part

of the optical conductivity:

Reσ (ω) =
√

πt2

4gT
Υσ (Q, ω/T ), (17)

where

Υσ (Q, ω/T ) =
√

cos[2θ (Q]
tanh (ω/2T )

ω/2T
(18)

is the scaling function of the conductivity. From another
perspective, Υσ can also be computed from the convolution
of the scaling function of the fermion spectral function ρf in
Eq. (10).

By our definition, Υσ depends on both the fermion density
Q and the ratio ω/T . The Q dependence of the conductivity is
contained in the coefficient

√
cos (2θ ) in the scaling function

Υσ (Q, ω/T ), and the function θ (Q) can be obtained by
inverting Eq. (12). The half filling θ = 0 gives the maximum
conductivity, as one would naively expect. Once we fix the
ratio ω/T (for example, the dc limit with ω/T = 0), the
longitudinal conductivity σ (ω, T ) is proportional to 1/T ,
which is the most important phenomenon of the strange metal
phase.
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FIG. 2. The quantity F (ωc, T ) = ∫ ∞
0 dωe−ω/ωcωσ (ω, T ) ex-

tracted from exact diagonalization of Eq. (8) on a 3 × 4 lattice,
with g = 1, M = 2, N = 3, and a fixed particle number Np = 4.
The solid lines are the plot of the same quantity calculated based
on the scaling function (17). In the definition of electric current we
have also taken N = 3, M = 2; namely, both the nearest-neighbor
and second-neighbor hopping will contribute to conductivity. In this
small system our data with a uniform ηr,r ′ = +1 compare better with
the analytical solution in the large-(N, M) limit.

In the calculation above we have assumed that the cor-
relation function between current operators factorizes into a
product of two fermion Green’s functions. This is true in
the large-(N,M) limit using the current operator (14), and
expression (17) is exact in this limit.

We also studied the minimal and most realistic version
of our model, Eq. (1), with exact diagonalization on a
small 3 × 4 lattice with periodic boundary conditions and a
fixed particle number Np = 4. With our numerical method,
it is most convenient to compare the quantity F (ωc, T ) =∫ ∞

0 dωe−ω/ωcωσ (ω, T ) with the analytical result (17). We
found that the case with the uniform choice ηr,r ′ = +1 com-
pares better with the solution in the large-(N,M) limit. The
general shape of the function F (ωc, T ) obtained numerically
is similar to the analytical expression in the large-(N,M) limit
(Fig. 2), but further numerical evidence is demanded for larger
system sizes for both choices of ηr,r ′ .

The value of the dc conductivity is tunable by the pa-
rameter t in the definition of the electric current (which is
determined by the size of the hopping term) and the overall
energy scale g. Thus the resistivity in the minimal version of
our model can easily exceed the Mott-Ioffe-Regel limit; that
is, it can naturally become the so-called bad metal, which is
another puzzling phenomenon observed in cuprate materials
and has attracted a lot of attention [52–54].

B. Pairing instability and pseudogap

Besides hopping, we can also turn on other perturba-
tions in Eq. (1). For example, we can turn on the following
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perturbation on every link of the lattice:

Hu =
∑
〈i,j〉

− u

2M
(�†

i,j�i,j + �i,j�
†
i,j ). (19)

Here �i,j = Jαβci,αcj,β is a Sp(M) singlet pairing operator
on a nearest-neighbor link 〈i, j 〉. This term can be reor-
ganized into a nearest-neighbor density-density interaction
and a Heisenberg interaction using the Fierz identity of the
symplectic Lie algebra [55].

This interaction term is marginal at the large-(N,M) limit
because of power counting, again based on the fact that the
fermion operator has a scaling dimension of 1/4, and in the
large-(N,M) limit all of the renormalization from Eq. (8) to
this term is contained in the renormalization of the fermion
operator. In this limit, the renormalization group (RG) equa-
tion of u can be computed through the standard loop diagram
in the same way as in Ref. [32], using the fermion Green’s
function in Eq. (5):

du

d ln l
= u2√

g2π cos (2θ )
. (20)

Thus the u term is marginally relevant in this limit, and it will
likely lead to the fermion pairing instability just like the BCS
instability of the ordinary Fermi liquid.

Hu and single-particle hopping will compete with each
other under RG. Hu will become nonperturbative at scales T ∗:

T ∗ ∼ g exp

(
−

√
π cos(2θ )

g

u

)
. (21)

Assuming the single-particle hopping becomes nonperturba-
tive at the scale E0 (by naive power counting a single-particle
hopping is indeed relevant and will become nonperturbative at
the scale E0 ∼ t2/g), then, obviously, there are two possible
scenarios: If E0 > T ∗, the hopping term will dominate the
low-energy physics and generate a Fermi sea. And at low
energy the RG flow of u will be controlled by the standard RG
equation of interactions on the Fermi sea, and again, u will
be marginally relevant and lead to a pairing instability [56].
Hu and the band structure together will likely favor a d-wave
superconductor [57–59] on the square lattice near half filling.

The possibility of T ∗ > E0, i.e., u becoming nonpertur-
bative first under renormalization while energy is decreased,
is even more interesting. Without single-electron hopping,
based on the RG equation (20) alone, one cannot determine
the pairing symmetry. In fact, in this case, with decreasing
temperature (energy scale), before forming a superconductor
with global phase coherence, the system would favor forming
Sp(M) spin-singlet fermion pairings on as many nearest-
neighbor links as possible. At half filling, a generalization of
Rokhsar’s theorem [60] can be straightforwardly applied to
our case, and the ground states of Eq. (19) in the large-M
limit are all the “dimerized” configurations with one quarter
of the links occupied by M/2 pairs of fermions that each
form a Sp(M) singlet [61]. All these dimerized configurations
are degenerate in the large-M limit [60]. Weak disorder and
1/M correction could energetically select a certain pattern
of dimerization from the extensively degenerate configura-
tions, as was observed experimentally [62]. This state has
a single-particle excitation gap which necessarily breaks a
Sp(M) singlet on one of the links, but there is no global

FIG. 3. The local density of states at half filling (θ = 0) with
T > T ∗ and 〈�ij 〉 = 0 (top blue curve) and T < T ∗ with nonzero
〈�ij 〉 (bottom red curve). In the former case we have chosen gβ = 2;
in the latter case we have chosen gβ = 4.5 and (u�)/(gM ) = 0.15
for illustration.

fermion-pair phase coherence. This case could be identified
as the pseudogap phase in the cuprate phase diagram above
the superconducting dome.

The “pseudogap” crossover temperature T ∗ is given by
Eq. (21), below which the system develops a nonzero ex-
pectation value of 〈�ij 〉 = � on a maximal possible number
of links based on our physical picture given above. With a
nonzero �, for each pair of sites i and j coupled by the Sp(M )
singlet pair, we consider the perturbation u

M
�∗(Jγ δci,γ cj,δ ) +

H.c. to the original model (3). Let us consider two sites (j =
1, 2) connected by a dimer. We introduce a 2M-component

fermion basis � = (c1,α , c
†
2,α )

T
and the 2M × 2M Green’s

function matrix G(τ ) ≡ −〈Tτ�(τ )�(0)†〉. To the first order
of �, the Green’s function in the imaginary-frequency domain
is given by

G−1(iωn) =
[
G−1(iωn) u

M
�J

u
M

�∗J T −G−1(−iωn)

]
, (22)

where G(iωn) is the original single-fermion Green’s function
given by Eqs. (5) and (4). By inverting Eq. (22), we obtain the
final Green’s function −〈Tτ c1,α (τ )c†1,β (0)〉:

δαβ

G−1(iωn) + u2

M2 |�|2G(−iωn)
. (23)

We can analytically continue this expression to real frequency
to obtain the retarded Green’s function on each site, whose
imaginary part can be identified as the local density of states
(see Fig. 3), where a pseudogap is manifest. In this calculation
the Green’s function depends on only the amplitude of 〈�ij 〉;
thus even if the phase angle of 〈�ij 〉 is disordered, the
pseudogap in the local density of states is still expected to
exist.

A schematic global phase diagram with the parent strange
metal phase dominated by Hs and the competition between
perturbations Hu and single-particle hopping parametrized by
t are depicted in Fig. 1.

We must stress that all the analysis discussed in this section
is based on the physics of the tetrahedron model in the soluble
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limit, which is identical to the disorder-averaged physics of
the SYK model. No matter how exactly the SYK physics is
realized in the real system, this analysis always applies. Our
Eqs. (1) and (8) give only one possible realization of this
physics. Very similar physics can be realized in another model
discussed in the following section.

IV. ANOTHER POSSIBLE MODEL

Another model which is slightly less natural but probably
leads to very similar physics is also worth discussion. Again,
the most important term (but not the only term) of the Hamil-
tonian reads

H =
∑

j

Hj ,

Hj = Un̂2
j +

∑
ê=ê1,ê2

J

(
�Sj · �Sj+ê − 1

4
n̂j n̂j+ê

)

−K (εαβεγσ c
†
j,αc

†
j+ê1+ê2,β

cj+ê2,γ cj+ê1,σ + H.c.), (24)

where ê1 = x̂ + ŷ and ê2 = x̂ − ŷ. This term has no interac-
tion between sublattices A and B yet, and like before, we will
consider the single-particle hoppings and interactions that mix
the two sublattices as perturbations.

The advantage of this model is that we no longer need
a large-N generalization of the hopping term. The ordinary
nearest-neighbor hopping bridges the two sublattices; that is,
it bridges two “SYK clusters” similar to the previously studied
coupled SYK cluster models [63,64]. The nearest-neighbor
hopping with coefficient t is a relevant perturbation based on
the scaling dimension of the fermion operator �[cj ] = 1/4 in
the soluble limit. The scaling dimension of t is �[t] = 1/2.
Thus with the perturbation of the nearest-neighbor hopping,
we expect the large-(N,M) solution of the tetrahedron model
to be applicable roughly to the energy window (t2/g, g),
and within this window the longitudinal conductivity σ (ω, T )
takes the same form as the previous case. Other analysis
like the perturbation of Hu [Eq. (19)] and pairing instabil-
ity remains unchanged compared with the last model we
considered.

V. SUMMARY AND DISCUSSION

In this work we proposed two strongly interacting electron
models on the square lattice, with one orbital per unit cell. And
we demonstrated that in a certain limit these models mimic
the behavior of the “tetrahedron” tensor model and hence
can be solved. The physics in this limit is consistent with
the main phenomenology of the strange metal non-Fermi-
liquid phase observed in the cuprates. We argue that away
from this exactly soluble limit, there is still a finite-energy
window where the solution is applicable. We then checked our
predictions numerically by exactly diagonalizing the minimal
version of the proposed Hamiltonian (which is away from
the soluble limit and hence takes a realistic form) on a small
lattice. We also discussed effects of perturbations, including
the single-particle hopping, and argued that depending on
the competition between two perturbations, the system can
develop either a d-wave superconductor or a pseudogap phase
at low temperature.

More numerical effort is demanded in the future to further
analyze both our models, Eqs. (1) and (24). Also, more pre-
dictions on thermodynamics and transport can be made below
the crossover temperature T ∗ where the system enters the
pseudogap phase driven by Hu. The exact phase boundaries
in the phase diagram (Fig. 1) also need further detailed calcu-
lations. In this work we have treated single-particle hopping
as a perturbation on top of the SYK-like physics. A complete
treatment of the interaction term [Eqs. (1) and (24)] together
with single-particle hopping is demanded in the future in order
to study the momentum space structure of our theory. We will
leave these open questions to future studies.
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