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Four types of atomic-scale multipoles (electric, magnetic, magnetic toroidal, and electric toroidal multipoles)
give a complete set to describe arbitrary degrees of freedom for coupled charge, spin, and orbital of electrons.
We here present a systematic classification of these multipole degrees of freedom towards the application
in condensed matter physics. Starting from the multipole description under the rotation group in real space,
we generalize the concept of multipoles in momentum space with the spin degree of freedom. We show
how multipoles affect the electronic band structure and linear responses, such as the magnetoelectric effect,
magnetocurrent (magnetogyrotropic) effect, spin conductivity, piezoelectric effect, and so on. Moreover, we
exhibit a complete table to represent the active multipoles under 32 crystallographic point groups. Our
comprehensive and systematic analyses will give a foundation to identify enigmatic electronic order parameters
and a guide to evaluate peculiar cross-correlated phenomena in condensed matter physics from the microscopic

point of view.

DOI: 10.1103/PhysRevB.98.165110

I. INTRODUCTION

The multipole moments characterize electric charge and
current distributions, whose concept has been widely devel-
oped in various fields of physics at different length scales,
such as classical electromagnetism [1-4], nuclear physics [5—
8], solid-state physics [9-13], and metamaterials [14—18].
It was well-known that there are four types of fundamen-
tal multipoles according to their spatial inversion and time-
reversal properties [4,19-21]: electric (E: polar/true tensor
with time-reversal even), magnetic (M: axial/pseudotensor
with time-reversal odd), magnetic toroidal (MT: polar/true
tensor with time-reversal odd), and electric toroidal (ET: ax-
ial/pseudotensor with time-reversal even) multipoles. A recent
study has shown that the four fundamental multipoles in
atomic-scale constitute a complete set to span the Hilbert
space under the space-time inversion group. They can be
applied to not only a classical but also a quantum-mechanical
picture [21]. The mutual relationship between four multipoles
and their schematic pictures in the quantum-mechanical rep-
resentation are shown in Fig. 1.

In condensed matter physics, the multipoles have been
recognized as important quantities to describe multiple de-
grees of freedom of electrons in solids, e.g., charge, spin, and
orbital, in a unified way. Especially, the atomic-scale multi-
poles have been extensively studied in f-electron systems, as
the interplay between the Coulomb interaction and spin-orbit
coupling due to its strongly localized nature gives rise to
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anisotropic charge and spin distributions [9,11,12]. In fact,
higher-rank multipole orders beyond the conventional E and
M dipole orders have been established by mutual interplay
between experimental and theoretical investigations, for in-
stance, E quadrupole in Pr7, X»o(T = Ir, Rh, V, Ti, Nb and
X = Al, Zn) [22-30] and M octupole in Ce;_,La,Bg [31-34].

On the other hand, such a multipole concept can be ap-
plied to a cluster consisting of several atomic sites, which
is so-called a cluster multipole [35-46]. The complex elec-
tric and magnetic orderings in cluster are regarded as the
ferroic arrangement of higher-order cluster multipoles from
the symmetry aspect. For example, the all-in/all-out ordering
of magnetic moments on the pyrochlore structure is regarded
as an M octupole order (precisely speaking, M pseudoscalar
in the point group) [47], while a staggered antiferromag-
netic ordering on the zigzag chain is regarded as a ferroic
order of MT dipole and M quadrupole [35,39,48]. More
recently, the concept of multipoles is extended to multiple
hybrid orbitals [21], and to the momentum space relevant
with topologically nontrivial excitations through the Berry
curvature [49-53].

In this way, studies of the multipoles are useful to cover
various unconventional order parameters in a systematic
manner and understand/expect physical phenomena from
the symmetry viewpoint. For example, the nematic order
in iron-based superconductors [54-59] and magnetic insula-
tors [60-63], Pomeranchuk instability [64-69], anisotropic
density wave including staggered flux phases [70-76], ex-
citonic insulators [77-81], and spin chirality accompanying
Berry phase [82-84] are also described by multipole ter-
minology. It is advantageous for the multipole description
that once a type of the multipoles is identified, it is easy
to understand/predict how the band structure is deformed
and what types of cross-correlated couplings and transport
phenomena occur. For example, the magnetoelectric effects in
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FIG. 1. Four types of multipoles under the space-time inversion
group. The E (M) multipole transforms the MT (ET) multipole
by reversing the time-reversal property, while the E (M) multipole
transforms ET (MT) multipole by reversing the spatial-inversion
property. Schematic pictures of the wave functions for the E dipole,
M dipole, MT dipole, and ET quadrupole are shown in each panel.
The shape and color map of the pictures represent the electric charge
density and the z component of the orbital angular-momentum
density, respectively.

Cr,03 [85-87] and CosNb,Og [88-92] are understood by the
M quadrupole, magnetocurrent effect in metallic UNiyB by
the MT dipole [93-95], valley splitting in the electronic band
structure by the MT octupole [96], nonreciprocal magnon
excitations in BiTeBr [97] and «-Cu,V,0; [98-102] by the
E and MT dipoles, orbital Edelstein effect in Te by the ET
monopole and quadrupole [103,104], and large anomalous
Hall effect, Nernst effect, and Kerr rotation in Mn3Sn by the
M octupole [40,105-108]. Moreover, unconventional super-
conductivities are also discussed in the language of multi-
poles [109—112]. Since the microscopic quantum-mechanical
definition of multipoles has been obtained recently [21], it
enables us to describe a variety of these order parameters in a
systematic way by means of the atomic-scale multipoles, and
gives further understanding in cross-correlated responses.

In the present paper, we push forward these multipole
studies for a comprehensive classification of multipoles in real
and momentum spaces and to elucidate the physical properties
brought by the multipole degrees of freedom. In order to
deduce an unknown order parameter, a comprehensive clas-
sification is also very useful to narrow down a candidate.
Starting from the multipole description under the rotation
group in real space, we generalize the concept of multipoles
in momentum space with the spin degree of freedom. We
show how multipoles affect the electronic band structure and
linear responses, such as the magnetoelectric and magnetocur-
rent (magnetogyrotropic) effects. Moreover, we demonstrate

a complete table to display the active multipoles under 32
crystallographic point groups. Our systematic study will en-
courage a direction for material design based on multipole
(electronic) degrees of freedom.

The organization of this paper is as follows. In Sec. II,
we give a definition of four multipoles in both real and
momentum spaces. In Sec. III, we show how the emergent
multipoles affect the electronic band structure and linear re-
sponses including magnetoelectric and magnetocurrent (mag-
netogyrotropic) phenomena. After presenting the crystalline-
electric-field potential under all the point groups, we clarify
what types of multipoles are active and become potential order
parameters under the point-group irreducible representation in
Sec. IV. Section V is devoted to a summary of the present pa-
per. In Appendix A, we show the atomic basis wave functions
fors, p, d, and f orbitals. We discuss a possible extension of
the momentum-space multipoles to multiorbital system in Ap-
pendix B. In Appendix C, we show transformation properties
of linear response tensors under the spatial inversion and time-
reversal operations. We present which multipoles are relevant
with rank-3 linear response tensors, such as the spin conduc-
tivity tensor and piezoelectric(current) tensor in Appendix D.
In Appendix E, we show the active multipoles for atomic basis
functions for the cubic Oy, and its subgroups. Appendix E con-
tains various tables for the hexagonal Dgy, and its subgroups to
complete all the point groups. For completeness, we use here
some of our results previously reported in Ref. [21].

II. DEFINITION OF MULTIPOLES

The concept of multipoles is useful to describe electronic
degrees of freedom in a systematic way, and it is capable to
express arbitrary type of order parameters in phase transi-
tion and physical responses to external fields at microscopic
level [113]. As mentioned in Introduction, there are four
types of multipoles, E (electric: Qy,), M (magnetic: M;,,),
MT (magnetic toroidal: Ty,,), and ET (electric toroidal: Gy,,),
according to the time-reversal and spatial inversion proper-
ties [1,19,20].

In this section, we introduce microscopic expressions of
four types of multipoles. First, we give the expressions in
real space in Sec. Il A, and then we give them in momentum
space in Sec. II B. With these prescriptions, we summarize in
Table III, which type of multipoles are activated in the atomic
basis functions with the spin degree of freedom.

A. Multipoles in real space

Based on the standard multipole expansion of the elec-
tromagnetic potentials ¢(r) and A(r) in the presence of the
source electric current j (r) = ¢V x M(r) and the magnetic
current j..(r) =cV x P(r) (M and P are the magnetiza-
tion and electric polarization) [114], and by inserting the
quantum-mechanical expressions of j. and j, including spin
contributions, two of the present authors have shown the
quantum-mechanical expressions of multipoles as [21]

Oim ==Y Opu(r)), (0
J
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where my, t;, and gf‘ﬁ are defined in terms of the dimen-
sionless orbital and spin angular-momentum operators /; and
0 ;/2 of an electron at r ; as

my(r;) = l—i—]l (5)
fr ) = rj 21 6)
ir; +1° <1+2 ) (

&) =mer il (r)). )

We have introduced

O = | T rlye 3. ®)
20 + 1 Yim

where Y}, (#) are the spherical harmonics as a function of
angles # = r/r [8,9] with the azimuthal and magnetic quan-
tum numbers, [ and m (—I < m < ). We adopt the phase
convention so as to satisfy Y,,(#) = (=1)"Y;*, (#). The in-
dex [ represents the rank of multipoles: / = 0 (monopole),
1 (dipole), 2 (quadrupole), 3 (octupole), 4 (hexadecapole),
and so on. Strictly speaking, the rank is meaningful as the
irreducible representation only if rotational symmetry is pre-
served, otherwise, the same irreducible representations appear
in different ranks in general, and they mix with each other.
Hereafter, we omit “elementary charge” for multipoles, i.e.,
—e and —pup, for notational simplicity.

In the rotation group, arbitrary linear combinations within
the same rank can be taken as an irreducible basis set. It
is often useful to introduce the tesseral harmonics O,° (r)

and O( )(r) which correspond to the real expressions for the
spherlcal harmonics [115]:

05 (r) = On(r), ©)
0.(r) = ( f) [0 (r) + OF, ()], (10)
0“)()—( )[ozmm o}, (], (11)

7

form =1,2,...,1. Since the multipole operator X (X =
0, M, T, G) transforms like Oy, (r) by the rotational opera-
tion, similar linear combinations are applied to X;,, as well. In
what follows, the symbols Oy, and le are used to represent
the set of harmonics in the real expression, either the tesseral
harmonics or cubic harmonics, or hexagonal harmonics, and
so on, with rank /. For later convenience, the even- and
odd-parity cubic harmonics in Oy group are summarized in
Tables I and II, respectively. The hexagonal harmonics in the
Dgn group are also summarized in Tables XXII and XXIII in
Appendix F.

These four multipole operators are clearly independent
with each other under the space-time inversion operations
as shown in Fig. 1. This is readily confirmed by using the
facts that Oy, (r) has parity (—1)' under the spatial inversion,

and / and o are odd under the time-reversal operation. Q;m
and f}m in Egs. (1) and (3) (see also the left panels in
Fig. 1) represent the polar E and MT multipole operators,
while M,,, and G, in Egs. (2) and (4) (see also the right
panels in Fig. 1) represent the axial M and ET multipole
operators. Note that M monopole My = My, MT monopole
To = Too, ET monopole Go= Gy, and ET dipole Gy =

(Gx, G ¥ G ) vanish in Eqgs. (2) (4) owing to the identity
VO()()(I‘) =0 and V Vlg Olm(l‘) =

In the spinless basis functions under the rotation
group, (L, M) [L=0(s),1(p),2(d),3(f) and M =
—L,—L+1,...,L] shown in Appendix A, the multipoles
given by Egs. (1)—(4) without spin contributions constitute
a complete set to express an arbitrary degree of freedom
[21]. In other words, the even-rank E and odd-rank M
multipoles are active in nonhybrid (intra) orbitals, such as
d-d and f-f orbitals. Meanwhile, the odd(even)-rank E and
MT and even(odd)-rank M and ET multipoles are active in
odd(even)-parity hybrid (inter) orbitals, such as p-d (s-d)
and d-f (p-f) orbitals [21]. The total number of these
independent active multipoles equals to the number of matrix
elements in the relevant Hilbert space.

Since le transforms like Oy, (r) by the rotational op-
eration, the matrix elements of four multipoles are related
with each other. According to the Wigner-Eckart theorem, the
matrix elements can be divided into the purely angular part
and common part as

(Ly M| Xy | LoMy) = (Ly||X)|La) (Ly My |LaMas Im), (12)

where (L1||Xl||L2) and (L{M,|L,M,;lm) are the reduced
matrix element independent of M and M, and the Clebsch-
Gordan coefficient, respectively. Note that the reduced matrix
elements for Q;m and Tlm vanish when those for Mlm and
G, are nonzero, and vice versa (see Table III, for example).
Therefore the matrix elements for ﬁm are proportional to
those of le and the proportional coefficient, R;(L{, L»), is
independent of M, and M,, i.e.,

(LyMi| T | LoMa) = R(Ly, Lo)(LyMy|Quu|LaMy).  (13)
Similar proportionality holds between Glm and Mlm as
(LiM\|Gim|LaMy) = Ri(Ly, Ly){Ly My | My | Ly M) (14)

The proportional coefficients turn out to be common as

Li||T||L L1||G||IL
R(Ly. Ly) = ( 1||A1|| 2) =( 1||A1|| 2)
(L1l QillL2)  (L1lIM;]|L2)

_ Li(Li41)— Ly(Ly + 1)i
- L+ 1)1 +2) '

The result is consistent with the fact that the toroidal
multipoles, f}m and (A?lm, vanish for nonhybrid orbitals, i.e.,
L, = L,. For the spinful basis, as discussed below, a similar
proportionality also holds, in which the spinless basis (L, M)
is replaced by a spinful one (J, J;). In other words, we can
define arbitrary type of MT and ET multipoles in the total
(orbital) angular-momentum basis through the proportional-
ity, and it is sufficient to calculate the matrix elements of the
E and M multipoles.

Next, let us extend to the situation where the total angular-
momentum basis (J, J;) is appropriate rather than (L, M) by

s5)
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TABLE I. Even-parity cubic harmonics (E multipoles in unit of —e in the cubic Oy group). The linear combinations of the tesseral
harmonics are shown where (Im) and (Im) correspond to O,(,fl)(r) and OI(:,)(r), respectively. In the irreducible representation (irrep.), the
subscript represents the spatial parity (even:g, odd:u), while the superscript represents the time-reversal property (even: +, odd: —). A, A, E,
Ty, and T, correspond to I'y, T'p, I's, 'y, and I's, respectively, in the Bethe notation.

rank irrep. symbol definition linear combination
0 A, Qo 1 (00)
2 E} 0., 0, 1322 —1?), L(? —y?) (20), (22)
T;, 0y Qv Ouy V3yz, v/3zx, V/3xy 21y, (21), 22y
4 Aj, 04 WAGA 4yt 4zt - i) 4) = 72[V5(44) + V7(40)]
E} Ou. W[4 - 2t 32322 2] — 55 [VT(44) — V/5(40)]
04, DBt -yt — 82 (x? — y?)] ~42)
T}, 03, Byz(y* = 22) — 555 1(43) + V(41
03, Lzx(? - x?) —551(43) = V74D
0s. Ly —y?) 44y
TS, 0l Lyz(Tx> —r?) sEIVT@3) — @1y]
ol Lax(Ty? = r?) —55V7(43) + 41)]
0. LBy —r?) 2y
6 Af, Qs BIE[2\2:2 4 2(xh oyt gh — 3y - 2 (6) = 515 [=V/7(64) + (60)]
Ad, o YO (y? — ) + yH 2 — 2 + 247 — 2] (61) = 1[—v/5(66) + v/11(62)]
Ef Os. R = B P P ) SL5164) + V/7(60)]
Q. e R A T CoER B TG ) LIVTI66) + V/5(62)]
T}, 0¢, M yz(y? — 2)(11x% = r?) +[=+/22(65) — /30(63) + 24/3(61)]
g, W2 — x2)(11y* —r?) HV/22(65) — V/30(63) — 2+/3(61)]
0:. My — y?) (1122 = r?) (64)
TS, 0l SZ o[yt 24— 357 + 2] LIV3(65) +V/55(63) +3+/22(61)]
Qy L2 ox[g* +x* — 322+ x%)) LIV3(65) — v/35(63) + 3v/22(61)]
%! A2 yy[xt + y* = (7 +32)] (66)
T, m S0y, 7(33x4 — 18x2% + %) L[VI65(65) — 9(63) + /10(61)']
o L0,y (33y* — 18y%r2 + 1) LIVI65(65) +9(63) + V/10(61)]
o Y200y (3324 — 18227 + 1) (62

taking into account the spin degree of freedom. In the one-
electron state, the total angular momentum J is represented
by J=L—-1/2or L+1/2and J,=—-J,—J +1,...,J.
Similar to the argument for the spinless basis, the active
multipoles are uniquely identified for the spinful basis as well
from the following conditions: (1) the even-rank E multi-
poles and the odd-rank M multipoles are active in nonhybrid
orbitals, such as s-s and p-p orbitals with the same total
angular momentum J. (2) The even(odd)-rank E and MT mul-
tipoles and odd(even)-rank M and ET multipoles are active
in the even(odd)-parity hybrid orbitals with different J or L.
(3) The rank of active multipole / is determined by |J; —
L <1 < Jy + Jp, where J; and J; are total angular momenta
in the bra- and ket-basis functions. For example, in p-d
orbitals with the same total angular momentum J = 3/2, the

number of the independent active multipoles is 32 as indicated
by the 11th row in Table III, which consist of M/ET monopole,
E/MT dipole, M/ET quadrupole, and E/MT octupole without
excess or deficiency. We summarize all the active multipoles
in the spinful nonhybrid and hybrid orbitals in Table III, which
will be useful to narrow down candidates of potential order
parameters according to knowledge of relevant spin-orbital
Hilbert space. In contrast to the cases for the spinless basis,
My, Gy, and G are active in the spinful basis.

The necessity of M and ET monopoles and ET dipole,
which do not appear in the multipole expansion, implies that
the corresponding quantum-mechanical operators My, Gy,
and G are definable in the spinful basis. To obtain explicit
forms of these multipoles, we focus on the fact that the inner
product between the M dipole M = m,(r) and the position

165110-4
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TABLE II. Odd-parity cubic harmonics (E multipoles in unit of —e in the cubic Oy, group).

rank irrep. symbol definition linear combination
1 Ty, Q.. 0y, 0 X, ¥ 2 (11), (11), (10)
3 Al [ V15xyz (32)
T, 01 X (5x% = 3r?) 75V5(33) = V33D
o 1y(5y* —3r?) —555V333) +V331)]
0° 12(52% = 3r%) (30)
T, o} WBx(y? = 2) —5151V3(33) + V/5(31)]
o)8 By(22 - x?) S51-V333) +V/531)]
0* Mzx? - y?) (32)
5 E} 0s.. Os, B ryz(x — y?), =B xyz(32% - r?) (54), —(52)
T}, ol L[8x* — 40x2(y2 + 22) + 15(y* + 22)°] 75[3v7(55) — v/35(53) + v/30(51)]
a9 $[8y* —40y*(2* + x?) + 15(z* + x2)] $[3ﬁ(55)’ +4/35(53) +/30(51)]
04! £[8z% — 4022(x + y?) + 15(x% + y*)’] (50)
T}, a2 B[y 42— 302 + 2] LIVIOS5) + 9v2(53) + 2v/21(51)]
03} Byt 4t = 3@+ 2] EIVI0(55) — 9v2(53) +2v/21(51)]
0% B2t 4yt = 202 + )] (54)
T+ 0! LB (32 — 22)(3x> — 1?) 3l=V15(55) — V/3(53) + V14(51)]
05, A8y (22— x)(3y? — r?) 5IVI5(55) — V3(53) — VI4(51)]
0% LB (x2 — y2)(32 — r?) (52)

vector r has the same symmetry as the M monopole in the
rotation group. Thus we define the M monopole as

A(’)EZml(rjyrj:Zaj-rj, (16)
J J

where we have used I - r = 0, and the prime represents that
it does not appear in the multipole expansion. M|, in Eq. (16)

clearly exhibits a property of a time-reversal-odd pseudoscalar

and is valid only for the spinful basis. Similarly, by using
the fact that the MT dipole T = ¢,(r) has the same spatial

TABLE III. Active multipoles in nonhybrid (intra) and hybrid (inter) orbitals with the spin degree of freedom. The number of independent
multipoles within the relevant Hilbert space is indicated in parentheses. The columns of /P and [ represent the spatial parity and the rank of the
active multipoles, respectively. The column of “orbital” indicates the atomic orbital that consists of the basis.

basis orbital P ) 1(3) 2(5) 3(7) 4(9) 5(11) 6(13) 7(15)
1/2-1/2 (4) 58, p-p + M - - - - -
3/2-3/2 (16) p-p, d-d M E M - - -

5/2-5/2 (36) d-d, f-f M E M E M - -
7/2-7/2 (64) f-f M E M E M E M
1/2-3/2 (16) s-d, p-p T M/ET E/MT - - - _
1/2-5/2 (24) s-d - E/MT M/ET - - - -
3/2-5/2 (48) p-f, d-d M/ET E/MT M/ET E/MT - - -
3/2-7/2 (64) p-f - E/MT M/ET E/MT M/ET - -
5/2-7/2 (96) f-f M/ET E/MT M/ET E/MT M/ET E/MT -
1/2-1/2(8) s-p - M/ET E/MT - - - - - -
3/2-3/2 (32) p-d M/ET E/MT M/ET E/MT - - -
5/2-5/2 (72) d-f M/ET E/MT M/ET E/MT M/ET E/MT - -
1/2-3/2 (16) s-p, p-d - E/MT M/ET - - - -
1/2-5/2 (24) s-f, p-d - M/ET E/MT - - -
1/2-7/2 (32) 5- - - E/MT M/ET - - -
3/2-5/2 (48) p-d, d-f E/MT M/ET E/MT M/ET - - -
3/2-7/2 (64) d-f - M/ET E/MT M/ET E/MT - -
5/2-7/2 (96) d-f E/MT M/ET E/MT M/ET E/MT M/ET -
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TABLE IV. Operator expressions of even-parity multipoles up to / = 4 in the cubic Oy group. For a noncommute product, a symmetrized
expression should be used, e.g., AB — (AB + BYA")/2. m;, t,, and g,“‘g are defined in Eqgs. (5)—(7). The multipole with the prime requires

complementary definitions other than Egs. (1)—(4).

rank type irrep. symbol definition
0 E AE Qo 1
MT Al, Ty i (off-diagonal element)
1 M Ty, M., My, M, my, my, m;
ET T, G,, G, G, xl-(rxo), yl-(rxo),zl-(r xo)
2 E Ef Qu, Oy %(3z2 —r?), 73(x2 — )
T3, Qyzr Qurs Oy V3yz, 3zx, V/3xy
MT E; T,, T, 3285 — 1 -1y, N3(xt — y8)
T, Tyeo Tovy Ty V3 +28)), V3 + x6)), V3t + yi)
3 M Ay M,y V15(yzm} + zxm? + xym3)
T, My, My, M 3[%(3){2 — rHm3 — x(ym; + zm?)], (cyclic)
T, ME, MP, MFP VI5[3(? = 22)m3 + x(ym}, — zm3)], (cyclic)
ET A3, Gy 2V15(xgy" + ygi* +283")
T}, G2, G, G* 9xg — 6(yg + 2g5) — 3x 3, 82, (cyclic)
T2 G, G, Gt VI5[2(ygy" — z83") + x(3” — gi)1. (eyclic)
4 E Al 04 WA 4yt 2t - 3h)
Ef Quu, Oun @[14 - # —3r2(3z% — )], %[}c4 -yt =82 (x? = y?)]
T}, Q> 94y 0% LS yz(y* — 2%), (cyclic)
TS, 0., 0. 0L Byz(7x? = r?), (cyclic)
MT Ay I S 4 ] + 2 — 22 1)
E; T S5S a(5a? —3r)g — 3x(x® = 3y +3y(Gx® -y ]
s, V5l (x? = 3291 — y(y? = 320 — 3z(x> — y2)ii]
T, Th T4 T4 ‘/7?5[2(3))2 — 2 + y(y* — 3291, (cyclic)
T3, T, ng-’ T 6v/5xyztf + %(7)62 —r2)(zt] + yt5) — VSyz(yt] + z£), (cyclic)

inversion property as the E dipole, it is natural to define a
time-reversal-even pseudoscalar G|, as

Go=6Y mi(r))-tirp)=Y_1;-(rjxa;), (17
J J

where we have used (r xI)-l =(r xo0)- oc=0 and the
prefactor 6 for notational simplicity. Since Gy acts as an

elementary charge for the ET multipoles, the ET dipole G =
(G, G';, G}) is obtained by multiplying the position vector r
to G} as

G =) (Gyri=)rill;-(r;xa)l.  (18)
- .

J

It is noteworthy that 66 and G are also valid only for the
spinful basis.

On the other hand, the MT monopole is identically zero
even by taking an inner product between the MT dipole ¢, (r)
and the position vector r, since ¢;(r) is perpendicular to r.
This is consistent with the fact that the MT monopole is
unnecessary to span an arbitrary matrix in both nonhybrid and
hybrid orbitals as shown in Table III. It is interesting to note

that the MT monopole becomes active in hybrid orbitals with
different additional quantum number within the same total
angular momentum, e.g., 2p-4p and 3d-5d orbitals. From
the correspondence between the E and MT multipoles, the
expression of f"o’ should be given by

(M LM|TlnaLM) =i (n) # ny), (19)

where n; and n, are the quantum numbers other than L and
M, such as principal quantum numbers. Equation (19) means
that 7, represents the imaginary hybridization between the
different orbitals with the same L and M.

Finally, let us make a remark on the further extension of
multipoles in the spinful basis. In the spinful basis, the scalar
product of I and o can also be regarded as the E monopole,
ie.,

0h=>1;-0;. (20)
J
Then, by combining this elementary charge Q{) with the

polynomial Oy, (r), we obtain the higher-rank E multipoles
including the spin degree of freedom. Similar extensions for
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TABLE V. Operator expressions of odd-parity multipoles up to / = 4 in the cubic Oy, group.

rank type irrep. symbol definition
0 M A, M) r-o
ET Al G, I-(rxo)
1 E T7, O:, Oy, O: X, v,z
MT T, I, Ty, T: L
2 M E; M,, M, 3zmi — r - my, /3(xmi — ym3)
T, M., M., M,, VB3yms + zmd), V3mi + xm3), /3(xm) + ymi)
ET E;} G., G, 3¢5 — Y, 85, V3(g —8)")
T3, Gy:r Guvs Gy 2V3¢°, 2V/3g5", 2v3¢,”
3 E A;u Ouy: «/Exyz
T “ 0%, 0 1x(5x% = 3r?), (cyclic)
TS, 0f, 0f, 0f Bx(y? = 2, (eyclic)
MT A3, T,y \/E(yztg‘ + zxt] + xyt})
T;, T, T, T 3[1Bx? — r)ty — x (8 + z65)], (cyclic)
Ts, T¢, TP, TF VI5[3(y? — 28 + x(y3 — z5)], (cyclic)
4 M A M, S 3my + yimy + 2mi — 2r2(r - my))]
E; My, L[S a(5e? — 3r)mg — 3x(x® — 3y*)m} + 3y(3x> — y*)m}]
My, V3lx(x? = 322)ml — y(y? = 3z8)m — 3z(x? — yH)m3]
T, Mg, Mg, M, LE[(3y? — 2ym} + y(»* — 3¢%)m3). (eyclic)
T, MY, M, My 63/5xyzmy + L (Tx2 — r2)(@m) + ym3) — v/Syz(ym’} + zm3), (cyclic)
ET Af, Gy —4V/21(xygy" + yzgi® + zxgi") + V21 1, (3 — r¥)gs®
Ef G VI5[(3y? — r2)gi* 4+ (Bx2 = r?)gy + (322 — r?)gi + 4(2xygy — x2gi" — yzgi5)]
Ga 3V51(x? — gt + (2% — yhgy + (07 — xD)gi — 4(xzgy® — yzgy )]
T}, G4, Gi,, G5, 3v/35[yz(gy” — i) + (v* — 22)g3°1, (cyclic)
TS, G, Gi,. Gi. 3V5[4x(ygy® +280) + y2(283" — &) — §) + (3x? — r2)g3"], (cyclic)
M, , T; ,and G;, are possible by combining the elementary ~ (k x &) - Vi, which reverses its time-reversal property while

charges, M/, YA"O’, and CA}E) with Oy, (r).

The proper expressions of the even- and odd-parity mul-
tipole operators up to [ = 4 in the cubic Oy group are sum-
marized in Tables IV and V. For the hexagonal Dg, group,
the proper expressions are also summarized in Tables XXIV
and XXV in Appendix F. These expressions are sufficient to
consider symmetry-classified multipoles in any point groups
as they are subgroup of Oy, or D¢, groups.

B. Multipoles in momentum space

The classification of multipoles is also applicable in mo-
mentum space. We present the momentum-based multipoles
in single-band systems, which are expressed in terms of
(k, oy, o), where k is the wave vector of electrons, and oy
and o are the identity and Pauli matrices in the spin degree of
freedom. The extension to multiband systems is not unique.
We discuss a possible extension in Appendix B.

To construct the multipoles in momentum space, we first
introduce the harmonics Oy, (k) by replacing the position
vector r with the wave vector k in Oy, (r). Reflecting the polar
vector of k, the harmonics oy O, (k) represent the polar-type
E and MT multipole degrees of freedom. As k is odd under
time-reversal operation, the even-rank oy Oy, (k) represents
the E multipoles, while the odd-rank oy Oy, (k) represents
the MT multipoles. By multiplying Oy, (k) by the operator

keeping its parity and rank, the expressions of the odd-rank E
multipole and the even-rank MT multipole are obtained. Thus,
the expressions of E and MT multipole in momentum space
are given by

00Oy (k) (1=0,2,4,6,...)
le(k)E{(kxa)~Vk01m(k) (1=1,3,5..) "
20
0 (I =0)
Ton(k) = Lk x 6) - ViOmk) (=2,4,6,...). (22)
00Oy (k) (=1,3,5,...)

Note that 7j vanishes owing to the derivative of Oy, (k).
Similarly, the axial-type M and ET multipoles in mo-
mentum space are expressed by multiplying oo Oy, (k) by
the operator o - Vi, which reverses its parity while keep-
ing its time-reversal property and rank. Therefore the odd-
rank M multipoles and the even-rank ET multipoles are
given by o - Vi Oy, (k). On the other hand, it is impossi-
ble to construct the even-rank M multipoles and the odd-
rank ET multipoles within the single-band systems. They
require the multiorbital or sublattice degree of freedom, as
discussed in Appendix B. Thus the M and ET multipoles are
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TABLE VI. Even-parity multipoles in momentum space up to / = 4 in the cubic Oy group. The higher-order expression with respect to k
is also shown for Q¢ and (M., M,, M) in the bracket. The multipole with the prime becomes active in the multiorbital systems as discussed

in Appendix B.
rank type irrep. symbol definition
0 E Aitgv 0o oo [(K* + ki + kf)ao]
MT A, T i
1 M Ty, M., M, M, oy, 0y, 0, [(k - 0)k, — %kzax, (cyclic)]
ET T, G. G, G io,, ioy, io.
2 E  Ef Qu. Q. L3k — koo, L (k2 — k2)op
T;—g Qyz’ Qz,n Qxy \/gkykzo‘o, (CyCliC)
MT E; Tus Tu 3kz Qz —k- Q7 \/g(kx Qx - kyQy)
Ty, Tyoo Tor, Ty V3(k, Q. + k. Q,), (cyclic)
3 M A, M,,. V15(kyk 0, + k:kyoy + kokyoo)
Ti, Mg, Mg, M? 3[3(3k2 — k*)oy — ki (kyoy + k.0.)], (cyclic)
T,, Mf ML mP V5[5 (k; — k2)o, + ki (kyoy — k.02)], (cyclic)
ET A;g G;yz V15i(k k.0 + k ko) + kikyo)
T{, GY.GY.G¥ 3i[(3k% — K)o, — k. (kyo, + k0], (cyclic)
TS, GY.GY. GY VI5i[3 (k2 — k2)o, + k. (kyo, — k.0.)], (cyclic)
4 E  Aj 04 S2L(kE 4 kK — 2oy
4 .4
E} Ouir Oy S [s — B 323k — K)]op, DO — k4 — SRR — kD))o
Tfrg Qzﬂ sz’ sz @k\kz(k)z - kf)ﬂo, (CYCHC)
T;, 0f. 0%, Ol B k.(Tk2 = K)oy, (cyclic)
MT A, T, B2 [ (k2 = 20, + k(2 = 160, + k(2 = 1) Q]
E; Lo @[Za ko (Sky — 3k%) Qo — 3k, (ki — 3k3) O + 3k, (3k; — k3) 0,1
Ty, V5lke (k2 = 3k3)Q, — ky(ky = 3k2)Qy — 3k (k; — k) Q:]
T, Ty, T T4 @[ky(kﬁ —3k2)Q: — k. (k2 — 3k})Q,], (cyclic)
T,  TL.TL.TL  Ll12kkyk, O + k{(Sk2 — 3k%) = 3(k2 — 3k2)}Q, + k, {(5k2 — 3k%) — 3(k2 — 3k2)} Q. ], (cyclic)
given by the multipole moment affects the electronic band structures in
Sec. IIIB. We also classify linear response tensors, such as
My, (k) = 0 (1=0,2,4,6,...) (23) magnetoelectric and magnetocurrent tensors, from the multi-
" 0 -ViOp(k) (1=135,...) ~° pole point of view in Sec. III C.
k-o (1=0)
Gmky=10-ViOp(k) (1=2,4,6,...). (24) A. Electromagnetic potential and electric
0 (l=1,3,5...) and magnetic fields

We complementarily define Gy(k) as k - ¢ from the symmetry
consideration. The even- and odd-parity multipole operators
in momentum space in the Oy group up to [ =4 are sum-
marized in Tables VI and VII. The hexagonal version is
summarized in Tables XX VI and XXVII in Appendix F.

III. PHYSICAL PROPERTIES IN THE PRESENCE
OF MULTIPOLES

When a thermodynamic average of a multipole degree of
freedom X, = (X;m), which we call a multipole moment,
becomes nonzero, it generates anisotropic electric and/or
magnetic fields via electromagnetic potentials. Moreover, it
affects electronic states and leads to unconventional physi-
cal phenomena, such as the magnetocurrent effect through
multipole-multipole interactions. In this section, we first give
the formula for electric and magnetic fields in the presence
of the multipole moment in Sec. III A. Then, we show how

By the definition of the multipole expansion of the scalar
and vector potentials with the Coulomb gauge V - A = 0 [21],

we obtain
47 Y, (%)
= w— 25
$(r) %Jy+1@ . (25)

CfArd 4+ YL (F)
A(r) = IZ[I /(21+1)l My, ;1+1

e Y ®)

where Yf;n(f) (I’ =1—1,1,1+ 1) is the vector spherical har-
monics that transforms like Y}, (#) under spatial rotation and
[’ is its orbital angular momentum [8,9]. By taking derivatives,
we obtain the electric and magnetic fields in the presence of
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TABLE VII. Odd-parity multipoles in momentum space up to / = 4 in the cubic Oy, group.

rank type irrep. symbol definition
0 M A, M ik-o
ET A}, Go k-o
1 E T 0., 0y, O; kyo, — k.0, k.0, — k.0, keoy — ky0,
MT T T, T, T, k.09, kyo9, k.09
2 M E; M, M, i(3k.0, — k- a), V/3i(k,o, —ky0,)
Ty, M. M. M, V3i(kyo. + k.0), (cyclic)
ET E} G., G, 3k.0, — k- o, N3(keo, — kyoy)
TS, G, G, G, V3(kyo, + k.0,), (cyclic)
3 E A QW VI5(kyk. QO + koki Qy + kiky Q)
T}, % 0Y, 07 3[3(3k; — k) 0y — ki (ky Oy + k- 0.)], (cyclic)
T, g,m,@ VIS[3(2 = k) Q. + ko(ky @y — k. Q2)], (cyclic)
MT A, Ty V15k k, k.o
T Te, TS, T Lk (5K — 3k*)oy, (cyclic)
T,  TL TP TS Bk, (k2 — k2)0p, (cyclic)
4 M A, M; Uik (k2 — 2k2)0, + ky (k2 — 2k2)0y + k(K2 — 2k%)0]
E; M}, 5[5, ke (52 — 3K2)0, — 3k (K2 — 3k2)0, + 3k, (3k2 — k2)o, ]
M, V5ilk, (k2 = 3k, — ky(k2 — 3k2)0, — 3k (k2 — k2)o:]
T, M. Mg, Mg LBk, (k2 — 3k2)0, — k. (k2 — 3k2)0,], (cyelic)
T, My, MY, MY Bi[12kk k.o, + k(K2 — 3K) — 3(K2 — 3k2)}o, + k, {(5k2 — 3K%) — 3(k2 — 3k2)}o ], (cyclic)
ET A}, Gy SOk (k2 — 220y + ky (K2 — 2k%)0, + k(K2 — 2k%)o,]
E} G LSV ko (5K — 3k2)0, — 3k, (k2 — 3k2)0, + 3k, (3K — k2)o, ]
G V3lk (k2 = 3k2)0, — ky (k2 — 3k2)0, — 3k (k2 — k2)o2]

+
Tlu ng ’ Ggy ’ Gzz
T3,  Gi. Gl Gl

u

L5 [y (k2 —
B2k kyk,0, + k(K2 — 3K7) —

3k22)03 — k; (kz2 — 3k}2,)ay], (cyclic)
3(kz2 —3k)}o, + k}.{(Ski —3k%) — 3(k§ — 3k2)}o.], (cyclic)

the multipole moment as

l+1
E(r)=-V¢=— Z~/4n(l +1DQm l+(2r), @7

Y1+1

Bir)=V xA=-Y \Jax(+ DM, HP.(%)
Im

Note that E(r) and B(r) have formally equivalent forms
with Q;,, and M,,,, and no toroidal moments G, and T},
appear in these expressions. Thus the toroidal moments G,
and Ty, affect physical quantities not through classical elec-
tromagnetic interactions but through the quantum-mechanical
multipole-multipole interactions. The latter also affects the
phase of electrons through the vector potential, eA.

It is interesting to note that by using the dual nature
of electric and magnetic quantities, we can introduce dual
potentials with opposite space-time-parity counterparts as

N 4 Y (7)
0= DS M
Im
. CAmd+1) YL (@)
AT(r) = Z[l Q1+ 1) Oim ,l,H—l
Im

\/4— Y”l(r)
7l + )G ——— 2| 30)

(29)

Then, the electric and magnetic fields are given by E =V x
A* and B = —V¢*. If a magnetic monopole charge ¢* were
present, Gy, could affect the phase of electrons via e*A*.
The expression in Eq. (30) indicates why the electric toroidal
multipoles G, is the counterpart of magnetic toroidal multi-
poles 7}, and represents a time-reversal-even axial degree of
freedom in electrons.

B. Electronic band structure

By using the expressions of multipoles in momentum space
in Sec. I B, we find the effect of multipoles on the electronic
band structure from the microscopic viewpoint. Conversely,
we can deduce what type of multipoles are activated when
the electronic band structure is determined from the first-
principles band calculations or detected by the ARPES and
de Haas-van Alphen measurements, and so on.

A Hamiltonian in condensed matter physics must be totally
symmetric and time-reversal even. Therefore the one-electron
Hamiltonian must be in the scalar-product form as

0.M.T.G

Z Z Z XeXtXZg (k)c;rca (% (3 1)

koo’ Im

where c;m (ck.a) is the creation (annihilatism) operator of
an electron with the wave vector k and spin o. Note that
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TABLE VIII. Representative external fields. u represents a dis-
placement vector field.

multipole P T external field symbol

G +  + rotation w=(Vxu)2
oL o + strain &ij = (Oiuj + 0ju;)/2

M —  magnetic field H

o™ -+ electric field E

T — electric current J,VxH

we assume X, in real representation so that the Hermite
conjugation is omitted in the scalar product. For example, the
lower-rank contributions read from Tables VI and VII as

R*k?
"= Z|: 2m

koo’

eXt'(kXO')‘I‘MEXl'O'

+ T kop+ Gk - o) + - i| Cltacka” (32)

where it has taken the form Q¢ = /?/2m.

X (X=0Q,M, T, and G) represent “symmetry-
breaking” fields, which bring about symmetry-breaking for
the c-electron systems. The microscopic origins of X' are the
external fields applied to the systems, the crystalline electric
field (CEF) from ligand ions, and molecular fields originat-
ing from multipole-multipole interactions by the spontaneous
electronic orderings, and so on. For example, M arises
from an external magnetic field H or molecular field of
ferromagnetic ordering. The representative external fields are
summarized in Table VIII.

In order to examine the effect on the band structure, the
classification according to their spatial-time inversion proper-
ties is useful. In the single-band systems, the Hamiltonian in
Eq. (31) can be divided as

H:Z[s

koo’

+ Lo () + S )]y s (33)

5(k)S5e + (k)50

where ¢( f,,) is the charge(spin) sector and the superscript
S(A) represents symmetric(antisymmetric) contribution with
respect to k. As the even-rank Qy,,(k), T;, (k), and the odd-
rank M, (k) are even function of k, and other multipoles are
odd function of k, each coefficient is identified as

even

&5 (k) = Z O Qun (), (34)
odd
et k) = Z T Tim (), (35)
odd even

S (k) = ZM?“M;;;’ (k) + Y T k), (36)

Im
even odd

Z Gex{ lm (k) + Z sz"t

Im Im

fA (k) = oo’ (k). (37)

TABLE IX. Interplay between the multipole moments and space-
time classified part of electronic structure. P and 7T represent
the spatial inversion and time-reversal operations corresponding to
(k,00,0) > (—=k,00,0) and (k, 0y,0) - (—k, 09, —0), respec-
tively. S(A) represents the symmetric (antisymmetric) contribution
arising in the band structure, and SS is the abbreviation of the spin
splitting.

type P multipole band structure
eS(k) + + o (even) S w/o SS
5 .(k) - M (odd), TS (even) S w/SS
A (k) — + G (even), O (odd) A w/SS

A (k) — Tj,n (0dd) A w/o SS

When we consider the electronic band structure under
symmetry-breaking fields, we apply symmetry operations
only to the c-electron systems X,,(k) without acting on
XX, Thus, for single-band systems, the spatial inversion
operation P corresponds to (k, 0y, 0) — (—k, 09, 0), while
the time-reversal operation 7 corresponds to (k, 0y, 0) —
(—k, 09, —0). The effects of the multipole moments on each
part of the electronic structure are summarized in Table IX.
We discuss coefficients in Egs. (34)—(37) one by one below.

eS(k) in Eq. (34) represents the symmetric-type band
dispersions without the spin splitting. This band structure
is present when there are both the spatial inversion and
time-reversal symmetries. For example, the kinetic energy
of free electron, which is given by £5(k) = i*k*/2m, cor-
responds to the E monopole in terms of multipole ter-
minology. The higher-rank quadrupole-type deformation in
the band structure is attributed to the presence of QS% =
(0, O, ;’;‘, o Qe’“) The band deformation caused
by e’“ is shown in Fig. 2, for instance. This quadrupole-type
deformatlon corresponds to orbital (nematic) orderings, which
have been discussed in iron-based superconductors [116—121]
and Sr3Ru,O7 [122-124].

ffg,(k) in Eq. (36) represents the symmetric-type band
dispersions with the spin splitting. This band structure ap-
pears once the time-reversal symmetry is broken while the
spatial inversion symmetry is still present. The odd-rank M
multipoles and even-rank MT multipoles are categorized in
this symmetry group. The band structure shows the spin
polarization owing to the time-reversal symmetry breaking.
The typical example is the band structure in the ferromagnetic
ordering; the M dipole M, leads to the symmetric spin split-
ting with the dispersions

hZ 2
=—+0oH, (38)
2m
where M = H, and o = +£1. The results indicate a uniform
spin sphttmg in the band structure, as shown in Fig. 2. In the
case of the higher-rank multipoles, e.g., the MT quadrupole
T.,, the band dispersions are given by

&5 (k)

212

Sa(k) =

+ aT;';t\/ (k2 — k2)* + (k2 + K2)k2,  (39)

which indicates the quadrupole-type spin splitting, as shown
in Fig. 2.

165110-10



CLASSIFICATION OF ATOMIC-SCALE MULTIPOLES ...

PHYSICAL REVIEW B 98, 165110 (2018)

Rank Electric Magnetic Magnetic toroidal | Electric toroidal
Qo Go

=0
ES (k:) f?o" (k

FIG. 2. Examples of the typical electronic band modulations in the k. -k, plane at k, = 0 in the presence of the E, M, MT, and ET multipoles
up to the rank / = 3 in the single-band picture. The blue (red) boxes stand for the band modulations by the even-parity (odd-parity) multipoles.
The green arrows represent the in-plane spin moments at k, while the red (blue) curves show the up (down)-spin moments along the out-of-plane
direction. The dashed circles in each box represent the energy contours in the absence of the multipole, which corresponds to the energy contour

for QF*. The superscript “ext” of X;X' is omitted for simplicity.

fja,(k) in Eq. (37) represents the asymmetric-type band
dispersions (the antisymmetric contribution to the back-
ground symmetric band dispersions) with the spin splitting.
The odd-rank E multipoles and even-rank ET multipoles
contribute to f(f:,,(k). This band structure is character-
ized by the breaking of the spatial inversion symmetry
and is often realized in the presence of the spin-orbit
coupling. For example, the Rashba-type spin-orbit cou-
pling with the form of ko, —k,0, corresponds to the
E dipole Q,, while the Dresselhaus-type spin-orbit cou-
pling kx(k§ — kzz)ax + ky(kz2 — kf)ay + kz(k?( - ki)aZ corre-
sponds to E octupole Q,,;, as shown in Table VII. In
other words, the Rashba-type (Dresselhaus-type) spin-orbit
coupling appears when the corresponding odd-parity Q'
(Qi’;fz) is present due to the crystal structure. To be spe-
cific, the E dipole component in f(ﬁ,,(k) is induced by polar
point groups (Cy4y, C4, Cay, Cz, Cs, Coy, Cg, C3y, C3, Cy),
while ET monopole, E dipole, or the ET quadrupole

component in f2 (k) is induced by gyrotropic point

groups (O, T, D4, Dy, Cay, C4, S4, D2, Cay, Ca, Cs, De,
Cev, Ce, D3, C3y, C3, Cy), as discussed in Sec. IV.
e2(k) in Eq. (35) represents the asymmetric-type band
dispersions with the spin degeneracy. This band structure is
obtained when the systems lack both the spatial inversion
and time-reversal symmetries. The multipoles in this category
are the odd-rank MT ones, which exhibit the odd-order k
dispersions. For example, the MT dipole T, order leads to the
k-linear dispersions,
272
e(k) = ﬂ + T™k,, (40)
2m <

whereas the MT octupole leads to the third-order modulations
with respect to k; kX(Skﬁ — 3k2) for T ext which is schemat-
ically shown in Fig. 2.

Note that asymmetric band modulations are also ob-
tained by combining the multipoles belonging to f> (k) and
fA (k). For example, the noncentrosymmetric polar ferro-
magnets where the M dipole moment lies in the x direction

165110-11



HAYAMI, YATSUSHIRO, YANAGI, AND KUSUNOSE PHYSICAL REVIEW B 98, 165110 (2018)

TABLE X. Relation between the components of the linear-response rank-2 tensors Xi( = XLJ) + Xl(JE) and relevant multipoles in the

presence () or absence (x) of (P, T,PT), where the superscript J (E) represents the current driven dissipative (electric-field driven
nondissipative) part. The superscripts S and A represent the symmetric and antisymmetric components of the linear-response tensor,
respectively. The symbol “=" represents that there are no additional contributions from that in the presence of both spatial inversion and
time-reversal symmetries. Note that we restrict our discussion only to the electronic contributions in the thermal conductivity although phonons

usually contribute to it as well. The Seebeck coefficient corresponds to the symmetric components of j;;.

tensor type P.T.PT)=(O.0,.0) (O, x,x) (X0, x) (X,x,0) (X, %,x%)
electric conductivity polar al-(jj’s) +oy; (EA) = = both
thermoelectric conductivity [127-129]  polar /3;;) +8;; S = = both
thermal conductivity [127-130] polar i(;) +Ki(;:) = = both
magnetoelectric(current) tensor axial - - l(JJ) ,(JE) both
symmetric (S) components Qo, Qij Ty, T;; Gy, Gj; My, M;;
antisymmetric (A) components G; M, or T;

(M) with the amplitude H, and the E dipole moment lies in
the z direction (Q$*) with the amplitude of E. In this case,
the Hamiltonian is written as

k> .
—E. (k, + + H
H = 2m. < (ky hzlisz) ). @
—E (ky, —iky) + H, S

where the eigenvalues are easily obtained as

R k>

e, (k) = + \/Eg(kg +K2) + H2 — 2E.Hoky.  (42)
The obtained band dispersions clearly show a shift of the
band bottom along the k, direction when E.H, # 0, which
indicates the emergence of the MT dipole along the y di-
rection T = Q™ x M*™' = E H,e,, where e, is the unit
vector along the y direction. Note that there is no spin
degeneracy in this situation because the symmetry of the
product P7T is broken. This result is also confirmed by
the multipole-operator aspect in momentum space, since the
direct product of M, o, and Q, k.0, — k,0,, which are
given in Tables VI and VII respectively, leads to the functional
form of the MT dipole as {oy, k,o, — kyo,} = =2k 009 o< T.
Similar discussions can be stralghtforwardly extended to the
antiferromagnets accompanied by spatial-inversion symmetry
breaking. For example, the staggered-type antiferromagnetic
orderings on the one-dimensional zigzag and two-dimensional
honeycomb structures are regarded as the MT dipole and
octupole orders, respectively [35,39,48,93].

C. Linear-response tensors

Next, we discuss the cross-correlated phenomena in terms
of multipole degrees of freedom. We examine what types of
linear responses are expected in the presence of multipoles
on the basis of the Kubo formula. In the linear response

=)_; xijFj, where F; is an external field along the
] d1rect1on (i, j =x,y,2), the coupling with the external
perturbation is given by Heyx = C F;, and B =dC; i/dt,
the linear response tensor is generally written by

(2) Z fnk - fmk I/fnklA I‘ﬁ[/mk)(llfmle h[/nk)

Enk — Emk +l)/

nm Enk — Emk
(43)

where V is the system volume, y is a broadening factor,
Sk = f(&mx) is the Fermi distribution function, and ¢&,,; and
Y are the eigenvalue and eigenstate of the Hamiltonian. m
and n are the band indices. This expression does not take
account of the orbital motion due to the Lorentz force in
the presence of the external magnetic field, which could be
important for some response functions such as the normal
Hall conductivity [125,126]. A,- and B ; are rank-1 tensor and
Hermite operators and Xi(jz) is rank-2 tensor [the superscript
(/) in x;; represents the rank-/ tensor], although the follow-
ing discussion is straightforwardly extended to higher-rank
operators, such as the E quadrupole representing the elastic
property, as discussed in Appendix D.

We decompose Xi(]-z ) in Eq. (43) into the energy degenerate
(J: enk = emr) and nondegenerate (E: €,; # &%) parts as

2) @ (E)

Xij = Xij + Xij >
_ A'.”n an
(J) Z Jok = fuk ik ];c 44)
— Enk — Emk (Enk — Emi)” + V2
| O (ke — k) AT B
=3 ST @)
! 14 (Enk - Smk) + y2

knm
where A" = (Y| Ai| ¥k} and B7 = (k| Bj i), and
(ke = fo)/ ke — i) = 3f /0. %,
(current driven) part, while X-(E) is the nondissipative (electric-
field driven) part. As discussed in Appendix C [42], X(J) nd

i(j ) have different transformation properties under the time-
reversal operation, i.e., the latter (former) changes the sign
when the time-reversal properties of A; and B; are the same
(different). On the other hand, the spatial inversion changes
the sign of X(J ) when the parities of A; and B ; are different.
These facts indicate that different multipoles contribute to
xl(jj) and Xi(;:)' The relation between the 2nd-rank linear-
response tensors and relevant multipoles is summarized in
Table X.

The linear-response (rank-2) tensor Xi(jz ) has nine indepen-

is the dissipative

dent components when A; and B ; are rank-1 tensors. As
will be discussed in Appendix D, each component is related
with the multipole degree of freedom. Xi(jz ) is spanned by the
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multipoles in the following form:

XO_Xu+Xv Xxy+Yz sz_yy
X(Z)z Xxy_Yz Xo— Xy, — X, Xyz+Yx s
X +7, X,. =Y.  Xo+2X,
(46)

where X =Q or T (Gor M)and Y =G or M (Q or T)
for the polar (axial) 2nd-rank tensor depending on their time-
reversal property. Among 9 multipoles, rank-0 (Xy), rank-1
Yy, Y,,Y;), and rank-2 (X,, X,, X,;, X;,, X,,) multipoles
represent the isotropic component, and antisymmetric and
symmetric traceless components, respectively.

Since Xi(jj) and X;(jE) have definite parities under spatial
inversion and time-reversal operations (Xi(;) and X,-(,E) have
opposite time-reversal property), the type of multipoles is
determined so as to share the same parities. When the linear-
response tensors Xi(jj) or Xi(jE) are both the time-reversal and
spatial inversion even, i.e., time-reversal-even polar tensor, the
relevant multipoles are the E monopole Qy, ET dipole G;, and
E quadrupole Q;;. When the time-reversal (spatial inversion)
operation changes the sign of the linear-response tensors, i.e.,
time-reversal-odd polar tensor (time-reversal-even axial ten-
sor), they are characterized by the MT monopole 7y, M dipole
M;, and MT quadrupole 7;; (ET monopole Gy, E dipole Q;,
and ET quadrupole G;;), which become finite in the absence
of the time-reversal (spatial inversion) symmetry. Moreover,
the M monopole My, MT dipole 7;, and M quadrupole M;;
contribute to the time-reversal-odd axial tensors, and it can
be finite in the case where there are no time-reversal and
spatial inversion symmetries while their product is preserved.
In the following, we discuss two fundamental examples of
the linear-response tensors: one is the electrical conductivity
tensor and the other is the magnetoelectric (current) tensor.
We also discuss the other linear-response tensors, such as the
spin conductivity tensor and piezoelectric (current) tensor in
Appendix D.

1. Electric conductivity tensor

First, we consider the polar second-rank electric conduc-
tivity,

J=6E=6Y+6®)E, (47)

namely, we adopt Ai = 1§,~ = f, in the general formula (43).
As the electric current operator J; is both time-reversal and
spatial-inversion odd, the polar electric conductivity ten-
sor 6B (electric-field driven nondissipative part) becomes
nonzero only when the time-reversal symmetry is broken,
while there is no symmetry restriction for the current driven
dissipative part 6. Meanwhile, from Eqgs. (45) and (44),
6® is the antisymmetric tensor o0’ = —o" = o7 and

1 1l
Y is the symmetric tensor ai(jl) =0 = ol.(jj‘s). According

to these facts, the corresponding multipole degrees of freedom

)

,,"Magneto-current effect
* (Magneto-gyrotropic effect)

(G(]v lea G2m)

Magneto-electric effect
(Mo, Ty, Mon,) Magneto-elastic effect

(]\[1 ms TQm ) A‘?\'Ifim )

Piezo-electric effect

(_«, +) (le, G277],7 Q.‘jm)

(++)

FIG. 3. Schematic picture of a revised Heckmann diagram show-
ing the relation among electric, magnetic, and mechanical properties
in solids. E, H, J, and ¢y = ey + Zm €umw,; are the external
electric field, magnetic field, electric current, and strain-rotation
field, while P, M, and o;; represent the electric polarization, mag-
netization, and stress tensor, respectively. The relevant multipoles in
the linear-response tensor for each cross-correlated coupling are also
shown.

for 699 and 6 ®A) are identified as

s Qo—0u+ 0, Qxy Qe
595 — Oy Qo— Qu— 0, Qy: >
Ozx Qyz Qo +20.
0 M, _My
sEN | M. 0 M, |. (48)

M, -M, 0

The result shows that the anomalous Hall conductivity cor-
responding to the antisymmetric nondissipative part becomes
nonzero in the presence of the M dipole moment, and arises
from the interband contribution.

2. Magnetoelectric(current) tensor

Let us consider the magnetoelectric (current) effect where
the magnetization is induced by the electric field (current),

M =aE =@V +a®)E. (49)

The axial second-rank magnetoelectric (current) tensor & is
obtained by using A; = M; and ﬁj = fj in Eq. (43). As M;
is time-reversal odd and spatial inversion even, the dissipative
part @9 becomes nonzero in the absence of only the spatial
inversion symmetry. On the other hand, the nondissipative
&® becomes nonzero only in the absence of both the time-
reversal and spatial inversion symmetries. Thus & and &®
are identified as

GO - Gu + Gv ny + Qz sz - Qy
aV=| G,-0. Go—-G,—Gy, Gy +0:].
sz + Qy Gyz - Qx GO + 2Gu
My — M, + M, My, + T, M, —T,
a® = My, — T, My—M,—M, M, +T,
M, +T, My, — T, My + 2M,
(50)
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TABLE XI. Finite CEF parameters in terms of the tesseral harmonics under the point group except for triclinic crystals (C;, C;), where
(Im), (Im)', and (/) means the presence of 0,(;), 0,(,‘;) , and O; (see Table I for the expressions of O;). The checkmark in the columns N, P, C,
and G represents the noncentrosymmetric (no inversion operation), polar (presence of rank-1 CEFs, see also rank-1 multipoles in Table XVI),
chiral (no improper rotations, PC,), and gyrotropic (presence of less than rank-2 odd-parity multipoles in Table XVI, i.e., presence of Xi?)
point groups, respectively. We take the x axis as the C} rotation axis. For Cs,, we take the zx plane as the o, mirror plane. For monoclinic

crystals, the standard orientation is taken.

crystal system pointgroup N P C G even-parity CEF odd-parity CEF

cubic Oy (4), (6) -
o v v Y 4), (6) -
Ty v 4), (6) (32y
T v v v 4), (6), (6t) 32y
Ty 4), (6), (61) -
tetragonal Dyp (20), (40), (44), (60), (64) -
D, v v v (20), (40), (44), (60), (64) 54y
Doy v v (20), (40), (44), (60), (64) 32y, (52)
Cyy v v v (20), (40), (44), (60), (64) (10), (30), (50), (54)
Can (20), (40), (44), (60), (64), (44), (64) -
Cy v v v Y (20), (40), (44), (60), (64), (44), (64Y (10), (30), (50), (54), (54
Sy v v (20), (40), (44), (60), (64), (44), (64Y (32), (52), (32), (52)
orthorhombic Doy, (20), (22), (40), (42), (44), (60), (62), (64), (66) -
D, v v v (20), (22), (40), (42), (44), (60), (62), (64), (66) (32), (52), (54)
Cyy v v v (20), (22), (40), (42), (44), (60), (62), (64), (66)  (10), (30), (32), (50), (52), (54)
monoclinic Cop (20), (22), (40), (42), (44), (60), (62), (64), (66) -
(22, (42), (44Y, (62), (64), (66)
C, vV v v v (20), (22), (40), (42), (44), (60), (62), (64), (66)  (10), (30), (32), (50), (52), (54)
(22, 42), (44), (62), (64), (66) (32, (52), (54)Y
C, v v v (20), (22), (40), (42), (44), (60), (62), (64), (66)  (11), (31), (33), (51), (53), (55)
(22), (42), (44), (62), (64), (66) (ary, @1y, 33y, (51), (583), (55)
hexagonal Dg, (20), (40), (60), (66) -
D v v v (20), (40), (60), (66) -
Dy, v (20), (40), (60), (66) (33), (53)
Cey v v v (20), (40), (60), (66) (10), (30), (50)
Cen (20), (40), (60), (66), (66) -
Cs v v v Y (20), (40), (60), (66), (66) (10), (30), (50)
Csp v (20), (40), (60), (66), (66) (33), (53), (33), (53)
trigonal D3y (20), (40), (60), (66), (43), (63) -
Ds v v v (20), (40), (60), (66), (43), (63) (33), (53)
Csy v v v (20), (40), (43), (60), (63), (66) (10), (30), (33), (50), (53)
Gsi (20), (40), (43), (60), (63), (66), -
43Y, (63), (66)
Cs v v v Y (20), (40), (43), (60), (63), (66), (10), (30), (33), (50), (53),

(43), (63)', (66)

(33, (53)

The isotropic longitudinal magnetoelectric (current) response
is realized in the presence of the M (ET) monopole, the
antisymmetric transverse response in the presence of the MT
(E) dipole, and the symmetric transverse and traceless longi-
tudinal responses in the presence of the M (ET) quadrupoles.

The nondissipative &®) originates from the nondegenerate
(interband) contributions, while the dissipative @ mainly
arises from the intraband contributions. In other words, &@®
plays an important role in insulating systems, while &\
becomes important for metallic systems. Especially, in the
presence of P77 symmetry, the latter contribution is forbidden.
From the above considerations, the former tensor is called
magnetoelectric tensor and the latter tensor is called magne-

tocurrent (magnetogyrotropic) tensor, which has essentially
the same origin as the so-call Edelstein effect [131,132]. The
relations between the cross-correlated responses including the
piezoelectric effect and the relevant multipoles are summa-
rized in Fig. 3.

IV. POINT-GROUP IRREDUCIBLE REPRESENTATIONS

In the crystal systems, the rotational symmetry and inver-
sion symmetry in some cases, are lost. In such cases, the
components of the same rank (the irreducible representation
of the rotational group) split into subgroups according to
the point-group irreducible representation. In this section, we
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TABLE XII. Multipoles under cubic, tetragonal, orthorhombic, and monoclinic crystals. The upper and lower columns represent even-
parity and odd-parity multipoles, respectively. We take the x axis as the C) rotation axis.

E ET M MT Oy, O Ty T, T Dy Dy Cy Dy Cs Ci Sy Dy Dy Cy Cy Cr Cy
0o, 04 - - To,Ta A, Al Al A, A A, A, A, A, A A A A, A A A, A A
- Gy M., - Ay Ay A, A, A B, B, B, Bb B B B A, A A A, A A
0., Ou - - T..Tw. B, BE E E, E A, Ay, A, A, A, A A A, A A A, A A
0., O4 - - T, Ty B, B B, B, Bb B B A, A A A, A A
02, G.,G* M,M* T T, T, , T, T EZ, E Ei E E E E By, B; B, B, B A"
04, Gy, G¢ M, M* Tf B, B, B B, B A’
05, G., G* M., M* T Ay Ay A, A, A, A A B, B A, A, A A
0., 0, Gf Mf T,,T. Tp T, T, T, T EiL, E Ei, E E E E By B; B, B, B A"
0... 04,  G! Mf T, T B,, B, B B, B A’
0.. 0. Gf Mf T, T, B, B, B, B, B, B B By, B, A, A, A A
- Go, Go  M,, M, — Aw A A, A, A A, A A, B, A, A B A, A A, A, A A
Oy - - To: Aw A, Aj A, A B, B, B, A, B, B A A, A A A, A A"
- Gu, Gy M, My, - E, E E E, E A, A, A, B A, A B A, A A A, A A
- Gy, Gy M,, My, - B, B B, A, B, B A A, A A, A, A A
0., 0% GS, M, T.,T* T, T, T, T, T E, E E, E E E E By By B, B, B A
0, 0% G Mg, T, TS B, B, B, B, B A
0., 0° GS. ME, T., T¢ Aw Ay A, B, A{ A B B, B A A, A A"
old G,., G M., M, T T, T, T, T, T B, E E, E E E E By By B, B, B A
0t Gux. Ghy M., M, — Tf By, B, B, B, B A
of G, Gi M, M TF B,, B B, A», B, B A B, B, A A, A A

discuss such a reduction for multipoles. First, we discuss the
CEF potential under all the point groups in Sec. IV A, which
is nothing but the sum of the E multipoles in the totally
symmetric AE representation. Then, we show how to classify
multipoles under point-group irreducible representations in
Sec. IV B. Such analyses offer a microscopic investigation of
potential active multipole degrees of freedom in solids. We
show several examples by considering specific basis functions
in the tetragonal D,q4 group.

Similar analysis can be applied to any point-group sym-
metry. For such purpose, we provide various tables for the
parent cubic Oy group in the main text and the hexagonal
D¢y, group in Appendix F, and the compatible relations be-
tween these parent groups and subgroups in Tables XII and
XXVIIIL

A. CEF potential

Under the point-group symmetry, some components of
the E multipoles reduce to the totally symmetric Afrg repre-
sentation. These components constitute the CEF potentials.
Therefore the CEF potential is represented by

¥
€AY,

V(r)= Z Cim O (1),

Im

(5D

where ¢y, is the CEF parameter. Since we consider the largest
orbital-angular momentum L = 3 corresponding to the f or-
bital in the one-electron state, going up to the rank/ = 2L = 6
is sufficient in the summation. The even-parity (even-rank)
CEF leads to even-parity hybridizations such as s-d and p- f
orbitals, while the odd-parity (odd-rank) CEF leads to odd-

parity hybridizations for s-p, p-d, d-f, and s-f orbitals at
the same site. Note that the odd-parity CEF is present only in
the lack of inversion center at lattice sites.

The nonzero CEF parameters under each point group ex-
cept for triclinic crystals (Cy, C;) are summarized in Table X1,
which is constructed by reading the E multipoles belonging to
Af'g representation in the reduction rules in Tables XII and
XXVIII in Appendix F. The relevant harmonics are given in
Tables I, II, XXII, and XXIII.

Now, let us consider a typical example by considering the
system with the p-d hybridized orbitals under the D,q group.
From Table XI, the atomic CEF Hamiltonian is represented by

Hepr = HES + HEE + Ha, (52)
HED = 2008 + 400 + 4,0, (53)
HEE = ¢y 03(;)~ (54)

Note that cgg, ce4, and cgz become zero for the p-d hybridized
systems, as the maximum rank is given by 2max(L; =
1, Ly = 2) = 4. HggE represents the even-parity CEF Hamil-
tonian, which splits three p orbitals (¢x, ¢y, ¢;) into two
orbitals (¢, ¢,) with the irreducible representation E and
an orbital ¢, with the representation B,; the five d orbitals
(Pu, dv, dyz, Gox, Pxy) split into three single orbitals ¢, with
Ay, ¢, with By, and ¢, with B;, and two orbitals (¢,., ¢..)
with E. Meanwhile, HOC%F leads to the odd-parity hybridiza-
tion between p and d orbitals belonging to the same irre-
ducible representation. In the present case, ¢, hybridizes with
@y, and (¢, ¢,) hybridize with (¢,., ¢, ). Ha represents the
atomic energy level for p and d orbitals where the energy
difference is taken as A = ¢, — &4.
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FIG. 4. Odd-parity CEF dependencies of the atomic energy level
for p-d hybrid orbitals under the tetragonal D,4 group. The colors
show the weights for p and d orbitals. The difference of the atomic
levels for p and d orbitals is taken as (a) A = —0.7 and (b) A = 0.2,
and the CEF parameters are ¢y = 1, ¢4 = 0.5, and ¢4y = 0.4.

The CEF levels in Eq. (52) are shown in Fig. 4, which
largely depends on the model parameters. Strong odd-parity
hybridization between ¢, and ¢,, is expected for A = —0.7
in Fig. 4(a), while that between (¢, ¢, ) and (¢,., ¢..) occurs
for A = 0.2 in Fig. 4(b).

B. Active multipoles under point groups

When a CEF splitting is large and one of CEF multiplets
dominates the low-energy physics, the point-group irreducible
representation is suitable to classify multipole moments. The
classification is done by using the reduction rules, which are
summarized in Tables XII and XXVIII in Appendix F for 32
point groups in seven crystal systems.

Tables XII and XXVIII are useful to investigate what
type of multipoles are activated in the specific crystal
structures, which stimulate microscopic understanding of
physical phenomena induced by multipoles, as discussed
in Sec. IIl. For example, the magnetocurrent effect, where
the uniform magnetization is induced by electric current
as was discussed in Sec. IIIC, can occur in the point
groups (0, T, D4, C4, D¢, Cs, D3, C3, Dy, Dog, Cay,
S4, Cp, Cs, Cey, C3y, Coy, C1), which is the so-called
gyrotropic point groups. This is because any of the relevant
multipoles for the magnetocurrent effect [Gy, (Q., O, Q),
and (G, Gy, Gy;, G«, G«y)] belong to the totally symmetric
representation in the gyrotropic point groups.

Moreover, Tables XII and XXVIII show what multipoles
are potential order parameters in the systems. Note that as the
E (M) and ET (MT) multipoles belong to different irreducible
representations in some point groups, the distinction of them
should be essential in such point groups.

Let us demonstrate how to identify active multipole de-
grees of freedom in the low-energy multiplets by using the
p-d hybridized CEEF states in the tetragonal D,4 group as was
discussed in the previous subsection. First, we consider the
basis functions (¢,., ¢.,) in the representation E under the
Dy, group, which is the parent group of Dyq and does not
show orbital hybridization with different parities (cj, = 0).
By taking the direct product of the basis functions, the active
multipole degrees of freedom is obtained as

E, ®E, = Af, ® A}, ® B}, ®Bj,. (55)

TABLE XIII. Multipoles under the tetragonal crystal system (D, and related groups) in the spinless basis. We introduce the abbreviation

+ _ AE
(gv u) - Alg,u 2g.u 1g,u 2g.u

® A7, @®BE  @®BI . The subscripts g, u are omitted for the D, group. The subscripts 1,2 are omitted for the Cy, group.

Ay, < By, and A, < By, and then, the subscripts g, u are omitted for the D,y group. A, <> By, and A,, < B,,, and then, the subscripts
g, u and 1,2 are omitted for the Sy group. A;, < A, and B}, < By, and then, the subscripts g, u are omitted for the Cy, group. A;, < Ay,
and By, < By, and then, the subscripts g, u and 1,2 are omitted for the C, group.

(S) Alg (p) A2u Eu (d) Alg Blg B2g Eg (f) Blu A2u Eu BZu Eu
(s) Ay, Af, As EF Aig Big Big EZ Biu Aziu EF Biu EF
(P) A2u Ai:: EZIE A2u BZu Blu Eu:t Bzg Alg E;’t Blé’ EZ'E
E, (8" Er E/ Ex (u)* Ef EX (8)* Ef (8)*
(d) A, Af, Bljg ngf By Bf;u Aj;u Ei B% Ei
By, Af, A3, Ef AL“ Bziu EZ Aziu E?

+

B2g Alg E; A2u Blu Eui Alu Eui
E, (&) Ef Ef (u)* EF (u)*
(B, Al B, B A, E
Aoy Af, E: BY, E*
E, " Ey ()"
B, Ay E;
E, (e

165110-16



CLASSIFICATION OF ATOMIC-SCALE MULTIPOLES ... PHYSICAL REVIEW B 98, 165110 (2018)

TABLE XIV. Multipoles under the tetragonal crystal system (Dg, and related groups) in the spinful basis. We introduce the abbreviation
(g, u)* = Alig’u ®AJ, , ®E],, and (g, wyt = Bf'g.u @ Bzig.u @ Efu The subscripts g, u are omitted for the D, group. The subscripts 1,2
are omitted for the Cyy, group. Ay, < By, Ay, < By, and Eij5, <> Esjs,, and then, the subscripts g, u are omitted for the D4 group.
Ay, < B, Ay < By, andE;jy, <> Esj,, and then, the subscripts g, u and 1,2 are omitted for the S, group. A, < A,, and By, < By,
and then, the subscripts g, u are omitted for the Cy, group. Ay, <> A,, and By, <> B,,, and then, the subscripts g, u and 1,2 are omitted for

the C4 group.

() Eij2¢ @ Eijou Eijow Esjou (d) BEijog E3pg Esppg Eijog Esppg () Ezjou Eij2u Eirjau Esjouw Espouw Eijow Ezpou

(DA ® Eippg = Eip, (@7 *  )F w)* (@F (9 @F ©F ©F W W* @F W @ w* w*
() Az, ® Eijog > Eijo ©F @F ©F W W W W W @ ©F @F ©F & ©@* @
E,® Ejp, — Ei ) @ (®F W W W @ W (9F (©F ©F @ @©F ©* (@F

Es/ou ©F  W*  WF @ W wE ©F @) (©F ©F ©F @F (@
() A1y ® Eijoe > Eipg ©F ©F ©F @F @F W W W W W W W’
B, ® Eipg —  Eipg ©F ©F ©F @©F W* W* W* w* w* W* w?*
By, ® Eijpg =  Espg @ (©*F @ W* W* w* w* w* w* w?*
E, ® Eip — Eis, @F (©F W* W* * W* w* w* u*

Es)2, ©F  @* W W @ @ W w*
(HB1u ® Eijoe > B3 @7 @ (@F @F ©F (" (@
Ay ® Bipy—  Eip, ©) (@©F ©*F (&)F (©* (&*
E, ® Eip, — Ei (®)F (&)F ©*F (©F (&

Es /o ©)F (@F (©* (»*
By, ® Eipp, — Es ;2 ©F (&)* (&)*
E, ® Eijp, — Ei/u (" (g)*

Esz/ou (et

where the superscripts + (—) represent time-reversal even
(odd), and all the multipoles are even-parity (the subscript g).
Note that the symmetrized (antisymmetrized) product of bases
corresponds to time-reversal even(odd) operators when the
basis functions are spinless (the angular momentum is an in-
teger). On the other hand, the symmetrized (antisymmetrized)
product of the basis functions correspond to time-reversal
odd(even) operators when the basis functions are spinful (the
angular momentum is a half integer). The above irreducible
decomposition for the spinless basis in the tetragonal crystal
system is summarized in Table XIII.
The corresponding multipoles are given by

Al bo < Qo, (56)
As: by o M., (57)
Bi, 1 f. < Qu, (58)
By, fAx < O, (59)

where 9y and p are 2 x 2 unit and Pauli matrices for doubly
degenerate orbitals (¢,., ¢, ), respectively. Obviously, only
even-parity E and M multipoles are active in these CEF
multiplets.

Next, let us consider the basis functions (¢, ¢,,) be-
longing to the representation B, under the D,y group. The
multipole degrees of freedom are obtained by decomposing
the direct product of the basis functions (using Table XIII) as

(BZ @ BZ) & (BZ @ BZ) = (ZAT)intra ® (AT @ A;)inter,
(60)

where (... )inra and (... )iner represent the multipoles acti-
vated in nonhybrid and hybrid orbitals, respectively. A set of
independent operators in the basis (¢;, ¢x,) is given by

Al (o, ) < {Qo. Ol

AT T, o M,

T, < Gy,

(61)

(62)

where %y and 7 are respectively a 2 x 2 unit matrix and
Pauli matrices in the basis (¢, ¢,y,), and {...} represent
the appropriate linear combination. 7y and t, represent the
intraorbital degree of freedom, while 7, and t, represent the
interorbital degree of freedom.

The expected linear responses are uniquely found once
the multipole degrees of freedom are identified. In this case,
the magnetocurrent effect is induced by the emergence of the
ET quadrupole G, « k.0, — ky0o,; the induced magnetization
M, by the electric current in the x direction and M, by
the electric current in the y direction should have opposite
sign and the same magnitude. The result implies that a larger
magnetocurrent response is expected for larger ET quadrupole
G,. In a similar way, the magnetoelectric effect is anticipated
once the time-reversal symmetry breaking occurs, as the anti-
symmetrized representation is the M quadrupole M,,.

In the spinful basis, possible multipoles are obtained by
changing the irreducible representation of the basis function
as B> ® Ej;, — E3j, and the decomposition according to
Table XIV gives

(E3o @ E30) ® (E3j2 @ E3p2)
= (2AT @ ZAE @ 2E7 intra

@A DAY BE" DA DA BE iper.  (63)
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TABLE XV. Even-parity multipoles belonging to a totally symmetric representation in the point groups except for the triclinic ones
(Cy, Cy). x}; and x,{?,( represent rank-2 polar and rank-3 axial tensors, respectively. X,-l; ( X,-(jz)) has 9 components and x,{?,( has 27 components at

most. The components of Xi//\'k are decomposed into a symmetric monopole response denoted by 1 with 3 components ( Xi(l)), antisymmetric

dipole response denoted by 2 with nine components ( xl-(jz)), and symmetric quadrupole response denoted by 3 with 15 components (Xi(f,:),
respectively. The independent number of components in X,-l; and Xil?'k is shown for each point group. Responses in the absence of time-reversal
symmetry, such as the magnetoelectric effect and Nernst effect, are obtained by replacing (Qyy, G ) With (T, Miy).

totally symmetric rep. x5 X
crystal system pointgroup N P C G rank(O rankl1 rank 2 rank 3 rank 4 2 1 2 3
cubic Oy Qo [on 1 1
0 v v v Qo [on 1 1
Ty v Qo (o 1 1
T v < v 0 Giy: 0. 1 11
Th QO nyz Q4 1 1 1
tetragonal Dy, Qo 0. QO4, Ouu 2 2 1
D, v v v Qo Q. Q4, Quu 2 2 1
Dsyq v v Qo o Q4, Quu 2 2 1
Cu v v v Qo 0. O4, Ou 2 2 1
Can Qo G, 0. G? Qs, Qui, OF, 3 1 3 3
Cy v Vv VY 0 G, 0. G? O4, O, 0F, 3133
Sy v v O G, 0, G? Oy, Ou, 0%, 3 133
orthorhombic Doy, Qo Ou, Oy Gy Q4, Quur Quv 3 33
D2 v v v QO Qua Qu nyz Q4, Q4m Q4v 3 3 3
C2v ‘/ ‘/ ‘/ QO Qua Qu nyz Q47 Q4u7 Q4v 3 33
monoclinic Can QG Qu Qv Oy Gy G% G Q4 Quy Qu, 05,0 5 1 57
G v Vv VY O G.  Qu Ou Oy Gu G GP Q4 Qui 040, 05,04 5 1 5 7
G V.V V0 G Qw0 Qg Gy GNGP Qs Quy Qu, 05,05 5 15 7
hexagonal D, Qo 0. Qa0 2 2 1
Ds v v v Qo Oy [om 2 2 1
D3y, v Qo 0. o 2 2 1
Cov v v v Qo 0, O 2 2 1
Con Qo G Q. G? [ 3 133
CG v v v v Q() (;Z Qu G? Q40 3 1 3 3
Can v Qo G, 0, G? O4 3133
trigonal Dsq Qo O, G3, 040, Quaa 2 2 2
Ds v v v Qo o G, 040, Qua 2 2 2
Csy v v v o Qo 0, G Qua0, Qu 2 22
Csi Qo G, 0. G?, G, Gy Q405 Quaa O 3135
G v vV VY Qo G 0. G?, G4, Gy Qa0, Qas Ouwp 3135

A set of independent operators in the basis (¢;, ¢x,) is given
by

Al {f6o, 260} < {Qo, Qu), 060 < Gy, (64)

Af: $6. o Gy, (65)

ET: (8,61, ,6y) © (Qx, Q) (66)

AT 2,60 < M, (67)

AS o (106, 1.6} « (M, M7}, 1.6, < M, (68)
E™ : {(%6y, T06y), (£.6%, 1,6,)}
<~ {(M)H My)9 (Mg’ M;t)}9

(1:6%, 1:6y) < (I, T)), (69)

In the case of the spinful basis functions, several odd-
parity multipole degrees of freedom are potentially activated
in addition to M, and G, in the spinless basis functions.
For example, the MT dipole (7%, Ty), which is the origin
of the magnetoelectric effect, can be a primary order pa-
rameter when the thermodynamic averages of (#:6%, £:6y)
become nonzero. Interestingly, it is also possible to activate
the MT dipole (7, T,) by an external magnetic field or
spontaneous magnetic ordering in the xy plane, since the
M dipoles (M., M,) belong to the same irreducible repre-
sentation as (7, T,). This fact indicates that E dipole Q
is not necessary for the emergence of the MT dipole T,
which has never been clarified in previous interpretations
of the MT dipole. Similarly, the M quadrupole M,, be-
comes active under an external magnetic field along the z
direction.
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TABLE XVI. Odd-parity multipoles belonging to a totally symmetric representation in the point groups except for the triclinic ones (C;, C;)
and other centrosymmetric point groups. x{? and x}; . represent rank-2 axial and rank-3 polar tensors, respectively. X;? has nine components
and Xil; . has 27 components at most. Note that the polar point groups (P) have rank-1 E multipoles (@), the chiral point groups (C) have rank-0
ET multipoles (Gy), and the gyrotropic point groups (G) have less than or equal to rank-2 E/ET multipoles (G, Q, G2,,) yielding nonzero Xl.’;.‘.
The gyrotropic point groups with only rank-1 E dipoles (Q) in (C4y, Cgy, C3y) are called the weak gyrotropic point groups, which do not show

a natural optical rotation.

totally symmetric rep. Xy
crystal system pointgroup N P C G rank(O rankl rank 2 rank 3 rank 4 2 12 3
cubic (0] v v Gy Gy 1 1
Ty v O.y: 1
T v v v Gy Oxyz G, 1 11
tetragonal D, v v v Gy G, Gy, Gy, 2 21
Dy v v G, Oyy: Gy 1 12
Cay v v v 0. o? Gy, 1 112
Cy v Vv Vv v Gy 0. G, o2 G4, Gy, G, 3133
S, v v Gy, Gyy Q.. OF G, Gh, 2 2 4
orthorhombic D, v v v Gy G, G, Oxy: Gy, Gy, Gy 3 3 3
Cay v v v 0. G, « Qf Gs,, G}, 2 12 4
monoclinic C, vV Vv v v Gy 0, Gy, Gy, Gy Quyz, 0%, 0F Gy, Gy, Guy, GS,, sz 5 157
Cs v v v 0., 0, Gy, G., °, 0% 0% 0F  G4.Gi.Gh.Gi 4 2438
hexagonal Dy v v v Gy G, Gy 2 2 1
Dy, v Oz, Gug 1
Cey v v v 0. o 1 112
Cs v Vv v v Gy 0, G, Q2 Gy 3133
Can 4 O34, O3 Gaa, Gap 2
trigonal D; v v v Gy G, (OF% Gao, Gug 2 2 2
Cyv v v v Q. 07, Qs Gua 113
G v v VY G 0 Gy 07, O34, O3 Gao, Gaa, Gup 3 135

The final example is the basis functions (¢x, @y, yz, d21)
belonging to the E representation under the D,y group. The
direct product of the basis functions is given by

(E®E)® (E®E)
= (2A] ©2A; 2B} @© 2B} Jinwa © (AT ® AT
®Bl @By DA A, ®B] ®B) iner-  (70)

This gives us a set of independent operators as

ATt {poto, ot} < {Qo. Qu},  Botx < Gy, (T1)
AT pyty © Gy, (72)
B 1 {p:fo. po:} < (Qu. Quul,
By i {peto, Al < {00, 0L}, At o Q. (74)
Al poty < M, (75)

Pty < Gy, (73)

Ay byt bt} o (ML M), byt o My, (76)
B : p.t, o M, 7)
By : puty o T, (78)

where %y and 7 are the unit and Pauli matrices acting on the
different parity orbitals. In the case of the basis functions

(¢x, &y, @y, ¢2x), there are several odd-parity multipole de-
grees of freedom even in the spinless basis functions, such as
the E dipole Q. and MT dipole 7.

C. Linear response tensors

Finally, we show nonzero rank-2 and rank-3 tensors in
each point group in terms of totally symmetric even-parity
multipoles in Table XV and odd-parity multipoles in Ta-
ble XVI. As described in Sec. III C, the rank-2 tensor Xi(jz)
has nine independent components, which are characterized
by the rank-0, rank-1, and rank-2 multipoles. Similarly, as
discussed in Appendix D, the rank-2 tensor response by the
rank-1 external field is described by the rank-3 tensor x;jx
with 27 components, which are decomposed into a symmetric
monopole response tensor with 3 components Xl.(l), antisym-
metric dipole response tensor with 9 components Xi(j2)7 and
symmetric quadrupole response tensor with 15 components
Xix- Moreover, the components of %> are characterized
by multipoles. For example, in the case of D,q group, one
component in the rank-2 axial tensor and three components
of the rank-3 polar tensor become nonzero, as odd-parity
multipoles G, and Q,,. belong to the totally symmetric rep-
resentation in D4 group as shown in Table XVI. Nonzero Xi/?'

and X};k imply the emergence of the magnetoelectric effect,
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TABLE XVII. Representative polar (P) and axial (A) tensors in
condensed matter physics. The odd-parity tensors in the lower rows
can be finite only when the spatial inversion symmetry is broken.

tensor rank P

xA 1 + magnetocaloric coefficient

Xi}; 2 (thermo)electric/thermal conductivity
X 3 spin conductivity, Nernst coefficient
X,-}; - 4 elastic stiffness tensor

x5 1 — electrocaloric coefficient

Xi/? 2 linear magnetoelectric tensor

X 3 piezoelectric tensor

X;?kl 4 third-order magnetoelectric tensor

piezoelectric tensor, and so on. We summarize the representa-
tive tensors in condensed matter physics in Table X VII.

V. SUMMARY

In summary, we have investigated a general description
of multipoles from the microscopic viewpoint. We have
presented a definition of four multipoles in both real and
momentum spaces, and how to apply to 32 point groups in
seven crystal systems. We have demonstrated which multipole
degrees of freedom become active in the tetragonal D,y group
as an example. We showed that physical properties in electron
systems, such as the electromagnetic fields, band structures,
and linear responses, are closely related with the multipoles,
and hence, the multipole formulation gives a comprehen-
sive and systematic understanding of physical phenomena in
condensed matter physics at the microscopic level. Such a
comprehensive investigation of multipoles could stimulate an
identification of unknown order parameters, such as MT and
ET multipoles, and a further exploration of cross-correlated
couplings through multipole-multipole interactions, since we
present more than 30 tables as a useful reference in order to
cover most cases in all point groups.
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APPENDIX A: ATOMIC BASIS WAVE FUNCTIONS

We show the atomic spinless basis functions for s, p, d,
and f orbitals as a function of angles 7 /r, which are used in
the main text [133]. The basis functions are given by

(AD

for an s orbital,

_ /3 _ |3y 4|3z
O = 47 v’ ¢y = A7 r’ = = 4 r’ (A2)

for three p orbitals,
b = 5 132272 by = 5 J/3x2—y?
““Naz2 2 0 TV Nam 2 2 0
5 yz 5 X
. =4 —~V3=, x =4/ —V3=,
28 47'[«/_r2 9: 47t\/_r2
[5 xy
xy =1\ 7 3—,
x) 471\/_}"2

for five d orbitals, and

7 xyz 7 1x(5x% = 3r?)
iy =) — V1575, Y =
Prr: 47 r3 ¢x 4 2 73
o7 [7 1y(5y% =3r2) o7 — [7 12(5z% = 3r?)
Y NVar2 r3 R T V4n2 r3 ’
of — [7 V15x(y* = 2%) o — [7 V15 y(22 — x?)
*Vag 2 P T YA 2 r3

o — [7 V15 z(x% — y?)
©  Var 2 B

for seven f orbitals. They are proportional to E multipoles in
the cubic Oy, representation in Tables I and II.

(A3)

(A4)

APPENDIX B: MOMENTUM-SPACE MULTIPOLES
IN MULTIORBITAL SYSTEMS

As mentioned in Sec. II B, the extension of the momentum-
space multipoles to multiorbital systems is not unique. Here,
we discuss one possible extension.

As was discussed, in the single-band systems, the odd-rank
M and even-rank ET multipoles are given by o - V Oy, (k) in
Egs. (23) and (24). By applying the time-reversal-conversion
operator (o x k) - Vi, we obtain the expressions for the odd-
rank ET and even-rank M multipoles in multiorbital systems
as

Gin = (0 xk)-Vi[o - ViO0,(k)]
My, = (0 x k) - Vilo - Vi O, (k)]

(odd),

(even).

These expressions are simplified by simple algebra as

ik-o
Mim = {ik Vilo - Vi Oy ()]

Glm =ik- Vk[O’ : Vkolm(k)]

(=0
(1=2,4,...)

(=1,3,...), (B2

(BI)

where we have used V20, = 0. The specific form of the
even-rank M and odd-rank ET multipoles up to I =4 and
the MT monopole in momentum space is shown in Tables VI
and VIL

APPENDIX C: SPACE-TIME INVERSION OPERATIONS
OF LINEAR RESPONSE TENSOR

We discuss the space-time inversion properties of linear
response tensors, which is also discussed in Ref. [42]. As
discussed in Sec. III C, the linear response tensors in Eq. (43)
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are generally decomposed into

x =59 4 x®

MU Z Juk — fmk A" Be"

; (CD)
o Enk — Emk (Enk - gmk)z + y2

X(E) _ _l_ Z (fnk - f;nk)Asz]r(nn ’ (CZ)

- 2
Jnm (8nk - 8mk) + y2

where A and B are Hermite operators and these equations
correspond to Egs. (44) and (45), respectively. We assume
that A and B have definite parties with respect to the spatial
inversion and time-reversal operations as

PA) =sA, TA)=tA, (s,t==1), (C3)
PB)=s'B, TB)=tB, (s',f'==l). (C4)

Moreover, for the Bloch states, P|nk) =|n —k) and
T|nk) = |n — k), where 71 is the time-reversal partner of n
state. As 7 is antiunitary, these relations lead to A" =
SAML, A" =tA™, BY™ = s'B"7, and B]'" =t'B"}.

Thus, in the presence of the spatial inversion symmetry, we
show that

MOU— Z Jak — fux  SAYs'BTY

_ 2 2
V o~ ek — Emk (Enk — Emk)” + ¥

Z _ fm AZmS/an

m8n k= Em—k (Enk — Emi)* + V2

14 i Jak — fuk A" B ,
=—-= s

Vv o Enk — Emk (enk — mp)* + 72

=ss'x"

where we have used &,_; = &,x. A similar discussion holds
for x®, and we obtain

X0 =55y D, 3B = g5y ®), (C5)

On the other hand, in the presence of the time-reversal sym-
metry, we have

X(]) _ _Z i fnk — fmk tArf;lct/BTlrcl
o~ Enk — Emk (Enk — emk)? + ¥2
N4 Z Sk — fixk 1Ayt By
— &k — &k (Ep—k — i k)’ + 2

Anm an

z_lzfmk_fnk k k 2”/
n

Vv o Emk — Enk (Emk — 8nk)2 +vy

=tt'x"

where we have used e;_ = &,%. Similarly,

(Snk - Smk)z + yZ

knm

i (fk —
_VZ

knm (Sm_k -

Sacit A" B
k) + y?

(fmk - fnk)AZm Blr(nn tl/
(emk - 8nk)2 + )/2

knm
=—1t'y®
Thus we obtain
O =1/ x D, B =y ® (C6)

Due to the above symmetry properties, in the case of s #
s" a breaking of the spatial inversion is necessary to obtain a
finite x "B, Similarly, in the case of t # ¢’ (t = t’), a breaking
of time-reversal symmetry is necessary to obtain a finite )
x®).

APPENDIX D: OTHER LINEAR RESPONSE TENSORS

In this section, we show a natural extension of linear-
response tensors as discussed in Sec. IIIC. In the main text,
we discuss the rank-2 linear-response tensors Xi(jz) with nine
independent components when A; and B ; are both rank-1
tensors. The extension of the linear response tensors when A;
and B ; are higher-rank tensors is straightforward.

Let us consider the rank-2 response to the rank-1 external
field, namely,

Ajj = ZXijkBk~ (D1)
k

We can decompose A;; into the monopole, dipole, and
quadrupole contributions as

D2)

M
A,‘j = SUA + ZE,'J'IAI + AS,
I
where ¢;;; is the totally antisymmetric tensor (Levi-Civita

symbol), and AZQ is symmetric and traceless. Note that AP
is polar (axial) when others are axial (polar) since ¢;;; and
8;; are axial and polar tensors, respectively, and AM, A?, and

AS eventually have the same parity. For each contribution, the
linear-response tensor is introduced as

= % Z A =
Ze,,kA,k = Z X5t B (D4)

Z X5 ”Bk, (D5)

Z X Br, (D3)

where Xijk ©)

ie., X,(Sk) = x(?,z and ), Xl(fk) = 0. Note that x corresponds
to Eq. (46) in the main text. By inserting these expressions
into the decomposition of A;;, we obtain the relation to x;jx
as

is symmetric and traceless with respect to (i, j),

k

A=) (&j 0+ Z € + xffk)) (D6)
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Each linear-response function can be decomposed as

1 _

X=X (D7)

Xi(jz) = 8,'.]')(M + Z GiijIP, + Xi?" (D8)
k
Xin =08ixC + > _(€xdim + €jabim) X + X (D)

Im

where Xi?‘ is symmetric and traceless, and Xi?k is totally
symmetric with respect to any permutations of indices and
> X = =30 -

Since xM, x?, Xi?" XzS')k are characterized by Y, (mono-
pole), X; (dipole), Y;; (quadrupole), and X;j; (octupole),
respectively, where X is polar (axial) and Y is axial (polar)

3)". . .. .
when ;7 is polar (axial), we explicitly express the linear-
response functions in terms of multipoles as

J

V=X X, X0, (D10)
Yo—Y,+Y, Yo+X. Y.—X,
xP=1 Yy—-X, Yo—Y.—Y, Y.+X.]|, (D11)
Yoo + X, Y. — X.  Yo+2Y,
X, +7Y,. — X% — X! Xy — Yo — XO+ XY —2X, +2X°
—3X,+ Yy +3X¢— XE 3X,+ V., —3X¢ — XJ —2Y,, +2x7
X® = —3Y, — Yy + Xoy2 —3X. — Yy —2X¢ —2X?  -3X, 4+ V., —2X¢ +2X] |, (D12)

—Y,. —2X% —2X%
2Y, + Xoy

—3X, + Yy, —2X° +2x7 3V, — Yy + Xy —3X,

—3Xy — Yoo —2X% —2X}  —3X, + Y. — 2X% 42X

where we have put xM = Yo, xP = x> = X, 1} = Xl? =Y}, X = Xijt- and xP" = 5X; for notational simplicity. We have
also used the relations

1 1
Z Yii = 0’ Yu = E(ZYZZ - Yxx - Yyy)’ Yv = E(Yxx - Yyy)v (D13)
for quadrupoles and
> Xi=—15X¢  (k=x,y.2),
o 1
Xx = E(zxxxx - 3nyx - 3XZZX)’
1
Xy = 552Xy = 3aoy = 3Ky,
1
X(; = %(ZXZZZ = 3Xaxz — 3Xyy2), (D14)
8 1
X = Z(nyx — X0 )s
8 1
X_v = Z(Xzzy - Xxxy)’
8 1
XZ = Z(Xxxz - nyz),

for octupoles. The prefactors in the right-hand sides are chosen in order to simplify the resultant expressions in the linear-response
tensors. In the expression of x®), the rows correspond to (i, j) = (u, v, yz, zx, xy), e.g., X;i) = (2)(2,2 — XS& - Xy(i;c)/é

according to Eq. (D13).
In order to complete the comprehensive lists, we also give the expression of x ) in the hexagonal Dg;, group as

X, + Yy, +2X3, Xy — Yo +2X5, —2X, +2X°¢
—3X, + Yy + X3g — Xz 3Xy + Yor 4 X3y + Xa, —2Y,, +2X?
x? = —3Y, — Y, + X,z —3X, — Yoy —2X¢ —2X!  —3X, + Y., — 2X% +4X5, |. (D15)
—3X, + Yy, —2X° +2x7 3Y, — Yy + Xy —3X, — Y. — 2X% 4 4X3,
=3X, =Y+ X3 — X3, =3X:+ Y — Xz — Xz 2Yy + Xxy;
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where we have used the relations

Xau = —H(XE 4 X0). X = —3(X5 - X))
X3, = 3(5X¢ —3XF), X3, = —5(5X¢ +3X7). (D16)
We present two examples in the following: spin conductivity and piezoelectric tensors.
1. Spin conductivity tensor
We here consider the axial third-rank spin conductivity tensor, which is defined as
(D17)

s _ s
Jij = § :aijkEk’
k

where A; ;= flsj and B = J ; in the general formula in Eq. (43). Note that there are 9 independent components for the spin

current tensor, as it is characterized by the product of rank-1 tensors, J; and 6 (6 is the spin degree of freedom). From the
symmetry point of view, the spin conductivity tensor is decomposed as

]:J = Jio; zcsijJs’M—i‘ZG,’ij;’D—f‘Jisijy (D18)
k
where
[2J.0, — Jy0, — Jy0,]/3

{ | X 1 Jyor — Jyo,
PM=2d-0 IPP=sUx0). =g 5,0 + J:0, (D19)

JzO'x + Jxaz

Jyoy + Jy0,

J3M 5P and J*Q possess the same symmetry as ET monopole, E dipole, and ET quadrupole, respectively. The corresponding
tensors 6%V, 6@ and 653 are expressed as

60 = (M, M, M), 0B — (G, G, G,), (D20)
To—T,+T, To+M. T,—M,
68(2'J) = Txy - Mz TO - Tu - Tv Tyz + Mx 5
T + M, T,. —M,  Ty+2T,
OE QO - Qu + Qv Qxy + Gz sz - Gy
65( B = Qxy - Gz QO - Qu - Qv Q}'Z + GX ’ (D21)
sz + Gy Qyz - Gx QO + 2Qu
and
M, +T,. — M* — MF My — T.. — M% + MY —2M, +2M?
—3M, + Ty, +3M% = MY 3M, + T, — 3MS — MY —2T,, +2M?
656D = 3T, — T, + M,,. —3M, — Tyy — 2M% = 2M¢  —3M, + T., — 2M2 +2M] |,
—3M, + T, — 2M% +2M! 3T, — T, + M,,. —3M, — T,. —2M% —2M?
—3My — T —2M% —2M{  —3M, + Ty, — 2M2 +2M! 2T, + M.y,
G,+ Q. —G* — G Gy — Qux — G4+ GY —2G, +2G*
—3G. + 0y. +3G% —G{ 3G, + Q.. —3G% - G} 20, +2G¢
68(3713) = =30, — 0, + nyz _3Gz - Qxy - 2G§[ - 2G§ _3Gy + 0 — ZG(}Y' + 2G€ (D22)
—3G. + Qxy — 2G¢ +2G* 30, — Qv + Guy —3G, — 0y, —2G% —2G¥

—3Gy — Q. — 2G% — 2G}

—3G, + Q,. — 2G* +2G*

2. Piezoelectric tensor

2Qv + nyz

Next, we consider a piezoelectric effect where the strain and rotation is induced by the electric field (or current). The polar
third-rank piezoelectric tensor d;j is given by

Gij = ZdijkEk-
k
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ij = du;/0x;, where u is a displacement vector field. It can be decomposed as
Gij =5ij80+Z€ijk i + &ij, (D24)
k

where g9 = (V- u)/3, @ = (V x u)/2,and ¢;; = (&i; + £ji)/2 = dij€0 + &;; represent the bulk modulus, rotation, and symmet-
ric strain, respectively. Since &g, (@, Wy, @;), and (&, &y, €z, £z, Exy) are the same symmetry as E monopole, ET dipole, and
E quadrupole, respectively, the corresponding tensors ), d®, and d® are given by

AW =T, T, T,

d"® =0 0, 0., (D25)
R MO_Mu +Mu Mxy+Tz sz _Ty
d(ZYJ) = Mxy - Tz MO - Mu - Mv Myz + Tx s
sz + Ty Myz - Tx MO + 2Mu
R GO - Gu + Gv ny + Qz sz - Qy
A®® =1 Gy-0. Gy—G.—G, Gy +0:]|, (D26)
G+ 0, Gy, — O, Go+2G,
and
T+ M, — T - T/ Ty — My — TS+ T —2T, + 2T
3T, + My, +3T¢ = TF 3T, + M, —3T¢ — T} —2M,, 4 2T
dch = —3M, — M, + Ty, —3T. — My — 2T =21/ 3T, + M., —2T% + 2T} |,
—3T, + M,, — 2T% 4+ 217 3M, — M, + Ty —3T, — M,. — 2T* — 2T}
—3T, — M, — 2T — 2T/ 3T, + M,, — 2T + 2T/ 2M, + Ty,
Q.+ Gy, — 0% — 0F Q) —Go — 0%+ 0F —20. 420
) —30. + G, +30¢ - 0f  30,+G.-305-0f ~2G. +207
d®® = ~3G, — Gy + Quy: —30. — G, —20Y—20F -30,+G., —20%+20f |. (D27)
—30. + G,y —20% + 207 3Gy — Gy + Quy: —30, — G,. —20% —20F
—30, — G —20% =20} 30, +G,. —20% +20f 2G, + Quy:

For example, the rotation by the electric field, i.e., nonzero d®®), occurs for the gyrotropic point groups, and the symmetric
strain by the electric field, i.e., nonzero d®B occurs for the noncentrosymetric point groups, as shown in Table X VI.

APPENDIX E: O, AND ITS SUBGROUPS

We summarize the active multipoles for the basis for s, p, d, and f orbitals with/without the spin degree of freedom for
the Oy, and its subgroups. The active multipoles for cubic and orthorhombic crystals in the spinless (spinful) basis are shown in
Table XVIII (XIX) and XX (XXI), respectively. The active multipoles for tetragonal crystals in the spinless (spinful) basis are
shown in Table XIII (XIV) in the main text.

TABLE XVIII. Multipoles under the cubic crystal system (Oy,) in the spinless basis. (g, u)* = A]igﬂ @ E[";u @ ng_u @ Ticgvu; (g, u)* =
Azig,u @ E;ﬁu @ Tlig‘u @ Tzig,u. The superscript  includes both time-reversal-even (*) and time-reversal-odd () operators. The subscripts g, u
are omitted for the O group. A}, < Ay, and Ty, < T,, for the Ty group. The subscripts 1,2 are omitted for the 7;, group. The subscripts

g.u, 1,2 are omitted for the T group.

(s) Ayq () T (d) Eg Ty () Az, T To
(s) Al Al TS, Ef Tzig A TS, TS,
(p) Ty, (&) T Ta, (u)* T, ()* (g)*
(d) E, AT AL Ef T;,. To, EF T, T3, T, T3,
Ts, (®)" T3, (u)* (u)*
) A Af, T3, T},
T, (" (g)*
T2u (g)+
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TABLE XIX. Multipoles under the cubic crystal system (Oy) in the spinful basis. (g, u)* = A}, , ® EX, @ T3, , @ AT, , ® 2T}, , ® TS, 5

(g, u)i = E:u ® Tlig,u ® Ti.u. The subscripts g, u are omitted for the O group. A, < Ay,, T\, < Ty,andE ), < Esj, for the Ty group.

The subscripts 1,2 are omitted for the 7;, group. The subscripts g, u and 1,2 are omitted for the 7' group.

) Eipg  MEij2 Gipu (d) Gy Es)2e Gspg (D) Esja Ei 2 G324 Es)2, G324

®) A ® Eipg = Eipg Al T, ALTEL ) () AT, (9F AT, ALTL @ AT, @)
(® Ty ® Eijpe — Eipou ALT, (@F W ALT, W ATy, AT, (F AT, (g7
Giu (&) (u)* (u)* (u)* (&)* (g)* (g)* (8)* (8)*

(d)E; ® Eijpe = Gipa (" (&)* (e)* (u)* (u)* (u)* (u)* (u)*
Toy ® Eippg = Espog Al Ti, (@) ALTL AT @* ALTL (w)*
Gy (8" (u)* (u)* (u)* (u)y* (u)*

(f) A2y ® Eippq = Esp AT, ALT, (9° ALT, (9
T, ® Eij2g = Eirjou A1+g7 Ty, (g)* AZig7 TZig (&)*
G/ &7 (8)* (&)*

Tou @ Eipg = Es)ou Afrgv Ty, (8)*
G3/2u (g)+

APPENDIX F: D¢, AND ITS SUBGROUPS

Here, we summarize various tables for the hexagonal Dgy, and its subgroups. Tables XXII and XXIII represent even- and
odd-parity hexagonal harmonics. Tables XXIV and XXV represent the operator expressions of even- and odd-parity multipoles in
real space. Tables XX VI and XXVII represent the even- and odd-parity multipoles in momentum space. Table XX VIII represents
the relation of multipoles under the Dgj, group and its subgroups. Tables XXIX (XXX) and XXXI (XXXII) represent the active
multipoles under the hexagonal and trigonal crystals in the spinless (spinful) basis, respectively.

TABLE XX. Multipoles under the orthorhombic crystal system (D,,) in the spinless basis. The subscripts g, u are omitted for the D,
group. A,, B, — A, A,,Bi; =& Ay, Bs,, — By, and By, — B, for the Cy, group.

(S) Ag (p) B3u B2u Blu (d) Ag Ag B3g B2g Blg (f) Au B3u B2u Blu B3u BZu Blu

A Al B, B, BL A A By B B, A B, By B, B, B, B
() B, A; B, B, By, By A7 By B, By AF By B A7 Bj, B
Ba, Af By, By B; Bf, Af¥ B; B, Bf, A*¥ Bj Bj, Af B
+ + + + + + + + +

Bl” A; Blu Blu BZu B3u Ai: Blg B2g B3g Az: B2g B3g Ag:
(d) Ag Ay Ay By B, B, A’ Bj, By Bj B B, Bj
Ag Al By, By Bi, A7 By B) By, B; B B
Bag Al BY, By By A7 Bj By A Bj B
Bag A By, By, By A7 By B A7 B
B At Bi, By, Bi A* Bi Bf AF
d £ T £ ES L ES ES :
(f) Au Ag B3g B2g Blg B%g B2g Blg
Ba, Al Bf, B; Af¥ Bj, B

+ + + + +
Ba A B3 By, Ay B3,
B Af By, Bj, Af
B, A BB
Bau Ay By
Blu At
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TABLE XXI. Multipoles under the orthorhombic crystal system (D) in the spinful basis. (g, u)* = Ay, © B, , ® B, , ® B3, . The

subscripts g, u are omitted for the D, group. A,, By, — A;, A,, B, — Ay, B3,, — By, and By,, — B, for the C,, group.

()Ei2¢ () Eij2u Eij2u Eijou () Eij2g Eipog Eij2g Eij2e Eijoe ) Eij2u Eij2u Eij2u Eij2u Eijou Eijou Eijou
()A; ® Ejpp > Eip, ()7 w* @ W (@F (©F @F @F @©F W W w* W w* w*F w*

() Bsu ® Eioy = Eyjou 7 (@ (@ W @ W " @ (@ (@ @ @ @ @ @
By ® Eippg — Ei/u ©F ©F W* W' W @ W (©F ©F ©F ©F ©F ©F (@
B, ® Eipg >  Ey @F  @* @ W @ W (@F @ () @©F (@ ©F (@F
(@ Ay ® Eijpg > Eipg ©F  ©@©F ©@©F @©F @©F W w* W W W Ww* w*
Ay ® Eippy — Ei/2 ©" ©F @©F @ W* wW* Ww* w* W* W* (w*
B3, ® Eijz, —> Ei/2 @7 @F ©F W* W* W* Ww* w* w* w*
By, ® Eippy — Ei) @F ©@F @* @* w* w* w* w* w*
Bi; ® Eippg — Ei2 @ @ w* w* W W w* w*
(H) Ay ® Eijpg =  Eip @ (©F @ @F ©F ©F ©F
B3, ® Ejppe — Ei/u @7 ©F @ @©*F ©F ©*
By, ® Ejppe — Ei/u @7 @F ©* @F (@
B, ® Eipg — Ei o @ (®*F (©F (9*
B3, ® Eipp, — Ei/ou @ ©F (©*
By ® Eippy — Ei/ou @" (&F
B, ® Eipp — Ei/u (&)

TABLE XXII. Even-parity hexagonal harmonics (E multipoles in unit of —e in the hexagonal Dg;, group) up to ! = 6. The correspondence
to the tesseral harmonics is shown. Ay, A,, By, B,, E;, and E, correspond to I'y, ', I'5, ['4, I's, and [, respectively, in the Bethe notation.
Note that Qf, = Q%.. Qf) = — Q4. Q% = 0., Q6 = 0F.. 0fy = 0% and Qf, = 0 in Table I.

rank irrep. symbol definition correspondence

0 Af, 0o 1 (00)

2 A, 0. 1322 —r%) (20)
E}, Oz, Oy: V3zx, V/3yz (21), 21y
E;, 0., Oy LB(x? —y?), V3xy (22), (22

4 A, O 5(35z% —302°r7 + 3r%) (40)
B, 04, Y0 yz(3x% — y?) 43y
BJ, Qu 0 zx(x? - 3y?) 43)
Ef, 05, 05, 0zx(722 = 3r2), Moyz(72% - 3r2) (41), (41)
Ej, b 04, LB (et = 6x2y? 4y, Bay(x? — %) (44), (44)
Ej, b O B2 = )72 = r?), Ly (722 —12) (42), (42)

6 A1+g Oeo %(23126 —315z%r2 + 105z2r* — 5r°) (60)
AT, o2 L2 [x0 — 15x2y2(x? — y?) — ¥°] (66)
A3, Oes L8 ¢ y(3x* — 10x%y% + 3y*) (66)
B, Qta L20y7(3x% — y2)(1122 — 3r?) (63
BJ, Qs L0y (x% - 3y?)(112% — 3r?) (63)
E/, al gl W v — 10622 + 5y%), 23754 — 1027y + y*) (65), (65)
Ef, 2, Q0 Y2 x[5r 4+ 322(112% — 10,)], Y2 yz[5r4 4 322(112% — 10r%)] (61), (61Y
E, poofl T (x* — 6x2y% + yH (1127 = r?), 2xy(x® — y?)(1122 — 1?) (64), (64)
E;, 0ol 02 )[4 43221122 — 6r2)], Lxy[r* 4 322(1122 — 6r%)] (62), (62)
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TABLE XXIII. Odd-parity hexagonal harmonics (E multipoles in unit of —e in the hexagonal D¢, group) up to / = 6. Note that Qsp =

1 B1 2 B1 B2 B B2 .
gz » sy = ng » sy = Q5u’ Su = QSZ’ and QSU = _QSU in Table II.

rank irrep. symbol definition correspondence
1 A7, 0. z (10)
Ef, Q. Oy X,y (1, (ary
3 A7, 0 12(522 — 3r?) (30)
B, 03 y(x? —3y%) (33)
B, 03 L0y(3x% — y?) 33y
Ef, Qs, O3 ‘/TEX(SZZ —r?), 4)’(&2 —r?) (31, @31y
Ef, 0!, 0. LBo(x? - y?), VT5xyz (32), 32y
5 Af, 0% $2(63z% — 702%r% + 15r%) (50)
B, Osa Y03 (x? = 3y%)(92% — r?) (53)
B, 0s» L0y (3x% = y)(92% = r?) (53Y
Ef, 04!, ou! W L (x* — 10x2y? + 5y4), 2 y(5x* — 104257 + y4) (55), (55)
Ef, 022, 022 B[4 4722322 = 2r0)], YBy[r* + 722322 — 270)] (51), (51Y
Ej, ool B 2(xt = 6x2y? + y4), 2B ayz(x? — y?) (54), (54)
ES, Lol AB (32 = y2)(327 = 7). B ayz (327 — 1) (52), (52)
TABLE XXIV. Operator expressions of even-parity multipoles up to / = 4 in the hexagonal Dgj, group.
rank type irrep. symbol definition
0 E Af, Qo 1
MT A, Ty i (off-diagonal element)
1 M A, M. mi
Ef, My, M, my, mj
ET A;g G, 2l (rxao)
Ef, G, G, xl-(rxo), yl-(rxo)
2 E A, O 332 —r?)
ETg Qsz Q,vz ﬁlx, «/?yz
Ej, 0. Oxy L(x? = y?), 3y
MT A17g T, 325 —r -ty
Ef, T, Ty: V3@t +x55), V385 +283)
Ej, T, Ty V3(ty — y8), V33 + yt5)
3 M A;g Mz 3[%(3z2 — r2)m§ —z(xmy + ymg)]
By, Ms, 34001 (x2 — Y2y — 2xym}]
B, My, 3500 20 ym3 + (6% — y*)m}]
Eq, Msu, Msy L[5 — r2ym + 2x(5zml — - m3y)], LO[(522 — rm + 2y(Szmi — r - m3)]
E;, Ml M, VI5[L(x? — y2ym + z(xmy — ym3)], VI5(yzm3 + zxm) + xym3)
ET A%, G 9285 — 6(xgi" +ygy") — 32 Y, 8%
B, Gia 3308 — &) — 28"
B, G 33008 + y(e5 - )]
Ef, Gau. G, JEGeE = X, 85 + 25285 — X, a8, 3585 — X, 85 +26528)° — X, ag™)]
Ef, G?. Gy VI512(xgd — ygi)) + 2(85* — &)1, 2V15(xg™ + ygi* +285")
4 E AT, Q40 §(352% — 30272 + 3r%)
Ej, ol o B2 —y)(722 = r?), Ly —r?)
B, Qua Lyz(3x% — %)
B, Qup zx(x? —3y%)
Ej, 05,. 0%, L0572 = 3r%), Wyz(72% - 3r%)
Ef, oh. 08 LBt — 627y +y4), Py —y?)
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TABLE XXIV. (Continued.)

rank type irrep. symbol definition
MT Aj, Ty L3522 = r)(52tf — 1 - t4) — 4026}
Bl’g Tsa %\/?[6):)111‘{ +3z(x?% — yz)tj' + y(3x% — y2)tj]
B}, m %\/%[31()52 — )t — 6xyzty +x(x2 = 3yH)ii]
Ej, Ty T3, ty- V0§, ts- V05,
E;, i i B = 39205 — y(3x2 — Y]], L [y(Bx2 — yif + x(x2 = 331 ]
E;, T2 1/ V3lx(322 — x2)if 4 y(3*: — 322)1) +3z(x2 — y2)iE], ty - VOI?
TABLE XXV. Operator expressions of odd-parity multipoles up to / = 4 in the hexagonal Dg, group.
rank type irrep. symbol definition
0 M Aj, M, r-o
ET Al G, l-(rxao)
1 E A;u 0. z
E}, Ox, Oy X,y
MT Az T 5
EL T, Ty w1
2 M Al M, 3zmi —r -m,
E, M., M, ﬁ(zm’z‘ + xm3), «/g(ymg + zmg)
E,, M,, M., V3ems — ym3), V3xm} + ym3)
ET A, G, 385 — X, 85
ETu G, Gy, Zﬁgéx, Zﬁg%vz
E;, Gy, Gy V3(g' - &) 238
3 E A o 52(52% = 3r%)
B, O34 @x(}c2 —3y?)
BJ, O3 Ly (3x% — y?)
Ef,  Qu Ox Lx(52 = r?), Ly(52 —r?)
Ej,  0f Q.. B - y?), VT5xyz
MT A T® 31322 — )5 — z(xtf + y1))]
B, Ty 302 =y — 2xy]
B, T3 3Y0xye; + (x% = y)8 ]
EL, T, T3, %[(51z — )ty +2x(5zt5 — 1 - 13)], ?[(&2 — )ty +2y(5z85 — 1 - £3)]
E;, T, Ty, «E[%(x2 — 5 + z(xtf — yt)l, V15(vzts + zxty + xyi5)
4 M Aj, My %[3(512 — rz)(Ssz1 —r-my) —40zm;]
B, M, LB l6rym; + 3267 — ym) + y(Gx® - yymi)
B, My, %@[31(}62 — yHmi — 6xyzm), + x(x? — 3y*)mi]
E}, Mg, . Mg, my - VO35, my- V0O,
By M. MY SB[ = 3y2my — y(3x2 — yHmil, ByGx — ym] + x(x = 3y*)m}]
E;, M Ml V3EIx(Bz2 — x2)m} + y(y* — 322)m), 4 3z(x2 — y ], my - V Q5
ET Af, G B 4 y? —4z)gi 4 (7 4+ 3y? — 427)gy” + 4327 — r)gi 4+ 4xygy” — 162(xgi™ + ygi°)]
BJ, G 3\/§ [yz(gi* — 83" + 2x(2gy" + ygi®) + (¥% = y)gi’]
BY, Gay 3B leney — g) - 2v(gl” + 28 + (7 — )]
El,  G§.G5 Yap 84 Va V5 Qb Yp 88 Va Vs 03,
Ej,  Gi.Gl 32 — y)(gi" — g)) — dxyey’ ] 3VESxy(git — &) + (% — y2)gi’]
Ef, GG} 351 — x2)g + (37 — 2)g) + (82 — ) +42(xgi" — 8] Lop 84 Va Vs Qs
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TABLE XXVI. Even-parity multipoles in momentum space up to / = 4 in the hexagonal Dg, group. The higher-order representation with
respect to k is also shown for Qg and (M., M,, M.) in the bracket.

rank type irrep. symbol definition
0 E A, Qo o0 [(k} + &k + k2)ao]
MT A7, T, ioy
1 M A, M, o.[(k - o)k, — 1k%0.]
E, M,, M, ox, oy[(k - @)k, — 1k0y, (k - 0)k, — 1k%0,]
ET AJ, G. io;
E]*g G, G’y ioy, ioy
2 E Af, 0. 2(GBk2 — k*)oy
Ef, Qurs Oy V3kk.00, /3kyk:00
Ej, 0., Oy Lk — k)00, V3kiky00
MT A, T, 3k.Q.— k- Q
Ej, T, Ty V3(k. QO + k. Q.), V3(ky Q: + k. Q)
E), Ty, Ty V3 Qr —ky Qy), V3(k Qy + Ky Q)
3 M A, MY 3[3(Bk2 — kP)o. — k. (kyo + kyoy)]
B, M3, 3YR[(k2 — k)0, — 2kiky0y]
B, My, 30k kyo, + (K2 — k2]
Ei, Ms,, Ms, %[(Skg — ko, + 2k (Sk,o, — k- 0)], %[(Skg —k*)o, + 2k,(5k.0, — k - 0)]
E;, MP, M,,, VI5[3(2 — )0 + k. (keo, — kyoy)], V15(kyk 0y + k:keoy + kiky02)
ET A, G¥ 3i[1(3k% — ko, — k.(k.o\ + ky0,)]
B, G, 3i YO [(k2 — k)0, — 2kckyoy)
B, Gl 3i 02k, kyo, + (K2 — k2)o,]
Ef, G, Gb, L8i[(5k2 — K)o, + 2k, (5k,0, — k - )], 2Ri[(5k — k*)a, + 2k, (5k.0, — k - 0)]
EJ, G!. G, VI5i[3 (k2 — k2o, + k. (keo, — kyo,)], V15i(kyk.0, + k.keoy + kikyo:)
4 E Aj, Qa0 T(35kF = 30k2K> + 3k")o
B, Oua L0k ke, (3k2 — k2)oy
BJ, Qup Ik k(K2 — 3k2)00
Ef, 04, 0% SOk ke (TK? = 3k>)a0, Lk k, (Tk? — 3k
EJ, . oh) 335 (ke — 6k2k2 + koo, ko, (k2 — k2)oo
EJ, b O L2 — k2)(TKE — kYoo, Lk, (Th? — k)0
MT Aj, Ty 1[3(5k2 — k*)(Sk. Q. — k - @) — 40k, Q.]
Bi, Ti, LB U6k k kO, + 3k (K2 — KO, + k(K2 — ) Q]
B3, Ty LEBh — k)0, — 6k k.0, + k(K2 — 3420
Ej, T T, 0-V05,. 0-V05,
E;, T T Sk, (k2 — 3K2)Qx — ky BK2 — k2)Q, 1. B[k, (3k2 — k20, + ky (k2 — 3k2)0, ]
E;, 7%, T 5Tk (3k2 — k2) Q. + ky (k2 — 3k2)Q, + 3k.(k2 —k2)Q.], Q- VQly
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TABLE XXVII. Odd-parity multipoles in momentum space up to / = 4 in the hexagonal D, group. The higher-order representation with
respect to k is also shown for Qg and (M., M,, M.) in the bracket.

rank type irrep. symbol definition
0 M A M} ik-o
ET Al Go k-o
1 E A, 0. keoy — kyo,
EJ, Q.. 0, kyo, — k.0y, k.0r — k.0,
MT A, T. k.o
El_u T, Ty k.09, kyoo
2 M Ar M 3ik.0. — ik -0
E;, M., M, V3i(k,o, + keo,), V3i(k,o, +k.0,)
E;, M, M., V3ilkeo, — kyoy), V3i(k.oy, +kyo,)
ET Al G, 3k.0. —k-o
E, G.., Gy, V3(k.o, + k.0,), V3(kyo, + k.0,)
Ej, G,, Gy, V3(k,o, — kyo,), V3(k,o, +kyo,)
3 E A3, 0 333k — k) Q. — k.(k: Qx + ky O))]
B, 034 3LO[(K2 — k2) Q. — 2kiky Q)]
B}, 03 302k ky O, + (K2 — K2)0,]
E/, Qsur O3 OISk — k) Qs + 2Kk (5k, Q. — k- Q)] LE[(5K? — k) Q, + 2k, (5k, Q. — k - Q)]
E, 08, Q.. VISR = k) Q. + ko (ke Qi — ky O], VT5(kyk, Qs + koo Oy + kiky ©2)
MT A, T 1k.(5k2 — 3k*)oy
B}, Tx, L0k (k2 — 3k2)o0
B, Ty, L0k (32 — k2)oy
E;, Ty, To LB (52 — k)0, Lk, (5K — K)o
E;, Tf, T, Ik, (k2 — kD)oo, /T5kkyk 00
4 M AL M, TiBGKE = k*)(5k,0, — k- 0) — 40k.0,]
B, M, ;\/% 6k kyk,0 + 3k (k2 — k)0, + ky(3k2 — k2)o]
B;, M, %\/% [3k, (k2 — k)0, — 6k, kyk,0y + ke (k2 = 3k2)0]
E, My, Mg, io -V, io -V,
E;, MY mEY LBk, (k2 — 3k2)0, — ko (3k2 — k20 1. Y2ilk, (k2 — K2)o + ki (k2 — 3k2)07)]
E;, M M VSilki Bk — k2o, + ky (K2 = 3k2)0, + 3k, (K2 — k2)o ), io - VOl
ET Al Gy 1[3(5k2 — k*)(5k.0. — k - ¢) — 40k0:]
B, Gia 8B I6kk koo + 3k (K2 = K)o, + k(B2 = K)o ]
BI, G a/% [3k.(k2 — k2)or, — 6k,kyk.0r, + k(2 — 3k2)0]
Ef, Gl G, 0-VQ5, 0-VO5,
E}, Gh 6o B[ (k2 = 3k2)0, — ky(Bk2 — k)01, B[k, (3k2 — kD)o, + ki (k2 — 3Kk2)0,]
E}, G Gl? VSlke (3K — k)0, + ky (k2 — 3k2)0, + 3k, (k2 — k)01, 0 - VO
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TABLE XXVIII. Multipoles under hexagonal and trigonal crystals. The upper and lower columns represent even-parity (g) and odd-parity
(1) multipoles. We take the x axis as the C} rotation axis. For C3,, we take the zx plane as the o, mirror plane. C5; = Ss. The basis functions
are taken as (x, y) — x x iy for Cg, Cg, Cap, and Cy;.

E ET M MT Dsp Ds Cen Coy Cs Dz Csn D¢ D3 Ciy Gy G
Qo, Qu, Quo - - To, Tu, To,o Ay Ay A, A A Al A A, A A A, A
- G., G M., M? - Ay A A, A A A, A Ay A A A, A
Oua G Ms, T B, B, B, B, B Al A" A, A A A, A
Ou G My, Tuy By B, B, B B Al A" Ay A A A, A
QZX’ qu Gx, G3u MX7 M3u Exy T4D; E]g E] E]g E] E] E// E/, Eg E E Eg E
Qyz, sz Gy’ G3v My, M3v Tyzv T40:)

0,. 0!, of G- M,,. T, 7). 1% E) E, By E, B, E E E, E E E, E
Q.. 04, 04 G! M? Ty, T4, Tiy

- Go, Gy, Gy Mo, M, My - A A A A A AT AT AL A A A A
st Q‘; - - Tzs Tza A2u A2 Au Al A A/zl A" AZu A2 Al Au A
034 Gia My, T3, B, Bi B, B B A A" A, A A A, A
O3 Gy My, T3, B, B B, B, B A, A" Ay A, A, A, A
Ox, Qs G, Gy, M., My, T, Ty, E., E E, E E E FE E E E E, E
va Q3v Gyz, GZU Myzv va Ty, T3v

Quy: G.. Giy. Giyy M, M}, M}, Ty En B, Ey E, E, B B E E E E, E
0! Gy Glyy Gy My, My, MYY T/

TABLE XXIX. Multipoles under the hexagonal crystal system (Dgy) in the spinless basis. (g, u)* = AL ©AT & Ezig,u and (g, u)* =

lg,u 2g.,u
Bligqu ® Bfgqu ® Ei,,u. The subscripts g, u are omitted for the D¢ group. The subscripts 1,2 in A and B are omitted for the C¢, group. A;, <
Ay, and Bj, < By,, and then, the subscripts g, u are omitted for the Cg, group. The subscripts g, # and 1,2 in A and B are omitted for the
Co group. Ajg, By, — A, Ay, Boy — A}, Ay, By, — Af, Ay, Byy = A}, By, Ei; = E”,Ey, and E;, — E’ for the D3, group. Ay,

A2gs Blm B2u g A/, Alu, A2u, Blg, B2g i A”’ EZzu Elg i E”, EZg, and Elu — F for the C3h group.

(s) Ay (p) Az, Ei (d) Ay, Ej, By, () Az, By, B, Ei Ey,
(s) Ay, Af, AL Ef Af, Ef, E3, A B, B3, EE EI,
) A Al Ef, AZ, Er, E3, Al B,  Bj Ej, Ex
Ey, (&))" Ef, (u)* (u)* Ef, E3, E3, (&)* (9)*
() Ay Al Ef, E3, A Bi, B, Ef, E3,
Ej, ()" (¢)* Ei, E;, E3, (u)* (u)*
Ey, () E}, Ep, EL, {u)* (u)*
() Ag, Af, B3, B, Ei, E3,
By, A, A, E3, Ef,
By, Af, E3, Ef,
E " (g)*
Ea, e
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TABLE XXX. Multipoles under the hexagonal crystal system (Dgp) in the spinful basis. (g,u)* = Af, , ® Af, , ®EJ, . (g'.u)* =
Al ® AL, ®BT,, ®B], . and (g, u)* =B, , ® B3, , ®E3, . The subscripts g, u are omitted for the Dg group. The subscripts 1,2 in A
and B are omitted for the Ce; group. A, <> Ay, and B;, <> B, and then, the subscripts g, u are omitted for the Ce, group. The subscripts
g, u and 1,2 in A and B are omitted for the Cg group. Aj,, Biy — A}, Ay, Boy — A), Ay, Big = Af, Ay, By, = A7, By, By —
E”, Ey,, By — E',andE, 5, < E3)y, for the Dy, group. Ay, Ay, By, Boy — A, Ay, Ay, Big, By — A", By, Ejy — E”, By, Eyy — E,
and E; 5, <> E32, for the C3, group.

() Ei2¢ ®) E1j2u Eij2u Bsjpu (D) Eijog Eipg  Esppe Espg Espe (O Ei20 Esppw B By Espw Esjppw Espou

(A, ® Bipg > Bipe (9F @*  @* Ef B (@©F (@ EBLE;, (@F ELE, W W' w* w* E,E, w* E E
() Az ® Eijpg — Eiju @ (@ BB, * @* EiE, W ELE, @ (* (@ (@ EE, (& EE,
B ® Eipg — By (@F BB, * w* BB, * EL.B;, @ (@ (©* (©F ELE, (% Ei.E;
Es (¢)* EL.EX Ef.Ef )" Ef.EX )" EL.EL EL.EL ELLES EL.EDL (g0 EL.EL (¢)*
(@) Aig ® Eijge > Bipgg (@ @ E.EBy (@ E,E, w* w* w* @ E.EB, " E,E,
Eig® Eipg > Eijg ®* Elig,Ezig (g)* Eling;g (u)* (u)y* @*  * E,.BE, W* Ei.E,
Es )2 ()" EL.ES (¢)F Ef.ES B, B3, EfL.ES Ef.Er )t ELLER )*
Ez ® Eijpg = Espg @ ELE, w*  w*  w* W ELE, W' EiE;
Es), (¢)" Ei,E3 Ef Ef Ef,Ef Ef Ef )* Ei.Ef @)*
() Az ® Eijzg = Eij @f  (@* (e  (©F EL.EBy (@* EE;
B ® Eipg =~ Espu @ ©F (&* E{.Ey (©F Ej,.Ej
Bu ® Eijpg = Es @ (& Ef.E, (@ Ei,Ej
Eiw® Eipg > Eij (@ EL.E, (8 Ei.E;
Es/2 ()" ER.E (g)*
Ez ® Eipy — E3/24 (e Eﬁ,sEzig
Es )24 (oM

TABLE XXXI. Multipoles under the trigonal crystal system (Dsq) in the spinless basis. (g, u)* = Aligqu &) A;Fg.u @ E;u. The subscripts
g, u are omitted for the D3 group. The subscripts g, u are omitted, and Q3, <> Q3, for the C3, group. The subscripts 1,2 are omitted for the

C5; group. The subscripts g, « and 1,2 are omitted for the C; group.

(S) A]g (P) A2u Eu (d) Alg Eg Eg (f) A2u Alu A2u Eu Eu
(s) Ay Af, AL EF A, EX EZ A% AL As EF EF
(p) Az Af, ET A5, EF EF Af, AZ, AT, EZ ET
E, (@7 Ef (u)* (u)* EY EY E; (&)* (&)*
(d) Ay, Af, E; E; AZ, AT As, E* EX
E, @7 (®)* Ef Ef Ef (u)* (u)*
E, (&) Ef EF Ef (w)* (u)*
() Ay, Af, As, A;;; E; E;
A Af, Aig E;it Egi
A2u Alg Eg Eg
E, 3 (9)*
E, (&)
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TABLE XXXII. Multipoles under the trigonal crystal system (Dsq) in the spinful basis. (g, u)* = Afg,u ® AL, , ®E], and (g',u")T =

Afg_u D Alig_u D ZAEEN. The subscripts g, u are omitted for the D5 group. The subscripts g, u are omitted, and Qs, <> Qs for the Cs, group.

The subscripts 1,2 are omitted for the Cs; group. The subscripts g, # and 1,2 are omitted for the C3 group.

() Ei2¢ 0 Eijou Erjou Bzjou (@) Eijog Eijog Espag Eijog Eszjpg (0 Eijow Erj2u Eijow Bijou Esjou Eijow Esjou
(5)Ai; ® Eijpy = Eippy  (g)F @)y*  (w* 2By ()" (9)* 2E; (9)F 2E;  w)* @* w)* (w* 2Er (u)* 2Er

(p) A2y ® Eipg = Eiju (@ (9 2BE;  (w)* (w* 2E; w)* 2B (9" (9) (&) (9)° 2E; (9)* 2E;
E, ® Eijp — Ei o (&) 2Bf  (w)* w* 2E; w)* 2E; (9 (9)F (@ (&) 2E; (9" 2E;
Esu ()" 2Bf 2BF ) 2EF W)F 2BF 2EF 2B 2EF (g)F 2EF (¢)F
(d) Aig ® Eippg > Eipgg (" (©F 2E; (9" 2E; ) @* ) w)* 2E; (u)* 2E;
E; ® Eipp, — Ei) (&) 2E; (9 2Bf (w)* ()* w* w)* 2E; (u)* 2Ef
Es)a, (¢)t 2BF (¢)f 2BF 2EF 2B 2B (u)* 2B (u)*
E,® Eipp, — Ei ) (&) 2B (w)* () () (u)y* 2Ef (u)* 2Ef
Es /o (¢)" 2BX 2E* 2E* 2E* (u)* 2EF (u)*
() Az ® Eipp = Eij ()" (@©F () (&) 2E; (g)° 2E;
A ® Eipg — Ei)2u (&) (&) (&) 2E; (g)* 2E;
Ay @ Eippg — E1/ou " (©F 2E§ (®)* ZEﬁ
E, ® Eip, — E1/o (&) ZEgi (&)* ZE:
Es )04 (et 2Ef (g)*
E, ® Eijz, — Ei/u (e ZEZ,E
E3/2u (g')*
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