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Ultrafast transient interference in pump-probe spectroscopy of band and Mott insulators
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Ultrafast pump-probe spectroscopy with high temporal and spectral resolutions provides new insight into
ultrafast nonequilibrium phenomena. We propose that transient interference between pump and probe pulses
is realized in pump-probe spectroscopy of band and Mott insulators, which can be observed only after recent
developments of ultrafast spectroscopic techniques. A continuum structure in the excitation spectrum of band
insulators is found to act as a medium for storing the spectral information of the pump pulse, and the spectrum
detected by the probe pulse is interfered with by the medium, generating the transient interference in the
energy domain. We also demonstrate the transient interference in the presence of electron correlations in a
one-dimensional half-filled Hubbard model. Furthermore, bosons coupled to electrons additively contribute
to the interference. Our finding will provide an interpretation of probe-energy-dependent oscillations recently
observed in the pump-probe spectrum for a two-dimensional Mott insulator.
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I. INTRODUCTION

Ultrafast pump-probe spectroscopy is a good tool to in-
vestigate the nonequilibrium properties of a given system
since a pump pulse triggers ultrafast processes and a sub-
sequent probe pulse monitors the pump-induced dynamical
processes [1–4]. Especially, by using femtosecond pulses,
nonequilibrium dynamics of electrons can be detected since
the timescale of the motion of electrons is of the order of
a femtosecond. However, increasing the resolution of optical
measurements in both the time and energy domains is difficult
and limited by the uncertainty principle.

Recently, ultrafast spectroscopic techniques have been ad-
vanced by using a transform-limited pulse, i.e., a pulse that
has the minimum possible duration for a given spectral band-
width, and have opened a new door to make both temporal
and spectral resolutions as high as possible [2]. These tech-
niques can disclose new ultrafast nonequilibrium phenomena.
In fact, by applying these techniques, interference in the
energy domain has been observed in atomic systems and
nanometric tips [5–9]. This interference is applied to control
the atomic storage medium for recording the information of
optical pulses [10–14]. However, as far as we know, there has
been no such report on transient interference of pump-probe
spectroscopy of band and Mott insulators both experimentally
and theoretically.

In this paper, we investigate ultrafast pump-probe spec-
troscopy of band and Mott insulators and propose transient
interference between temporary well-separated pulses in elec-
tron systems as in the case of atomic systems. We formulate
such transient interference in pump-probe spectroscopy of a
two-band model. We find that the existence of a continuum
structure in the excitation spectrum is important for generating
the transient interference since the continuum structure acts
as a medium for storing the spectral information of the pump
pulse and for creating interference between temporary well-
separated pump and probe photons. The information persists

due to a memory effect, i.e., a relaxation process of electron
systems. As a result, the time-domain pump-probe spectrum
depends on both probe energy ω and the central frequency
of the pump and probe pulses � and thus oscillates with a
frequency

ω0 = ω − �. (1)

In order to demonstrate the transient interference in the pres-
ence of electron correlation, we perform numerical calcula-
tions of the pump-probe spectrum in a one-dimensional (1D)
half-filled Hubbard model. Moreover, we find that bosons
coupled to electrons in the two-band model make an addi-
tional contribution to the interference. Based on the result,
we speculate that the transient interference will be observed
in Mott insulators strongly correlated to magnons. For the
observation of the proposed transient interference, high res-
olution of measurements of both time and energy is required
in ultrafast pump-probe spectroscopy. Recently, oscillations
of electronic states above the charge-transfer gap in a two-
dimensional (2D) Mott insulator Nd2CuO4 were observed on
the reflectivity changes detected by pump-probe measurement
with ultrashort pulses [15]. The time and energy resolutions of
the measurement are as high as 10 fs and 0.01 eV, respectively.
By extracting the oscillatory components from the pump-
probe spectrum, the oscillation component with the frequency
indicated by Eq. (1) was found [15]. We propose that the
transient interference will be one of the possible origins of
the observed oscillations.

This paper is organized as follows. We introduce a two-
band model, which is a minimal model to describe the in-
terference effect by two photon pulses through an electron
system, and show the pump-probe absorption spectrum in
Sec. II. In Sec. III, we calculate the time-dependent optical
conductivity at half filling just after pumping. The effect of
bosons coupled to electrons on the pump-probe spectrum is
discussed in Sec. IV. Finally, a summary is given in Sec. V.
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II. TWO-BAND MODEL

We first introduce a two-band model, which is the minimal
model to describe the interference effect by two photon pulses
through an electron system, and analytically calculate the
pump-probe absorption spectrum. With the assumption of
dipole transitions, the Hamiltonian of the two-band model
under the time-dependent electric field reads

H =
∑

k

εkc
†
ckcck +

∑
k

�kc
†
vkcvk

−
∑

k

[dcvE (t )c†ckcvk + d∗
cvE (t )c†vkcck],

where cc(v)k is an annihilation operator for fermions in the
conduction (valence) band with momentum k. The energies
of the conduction and valence bands are εk = ε + h̄2 k2

2mc
and

�k = � + h̄2 k2

2mv
, where ε and � are the minimum and maximum

of the conduction and valence bands, respectively, and mc and
mv are the effective masses of electrons in the conduction and
valence bands, respectively. We introduce the interband dipole
matrix element dcv and external electric field E (t ). Hereafter,
we set h̄ = 1.

By taking the long-wavelength limit of the electric field,
the optical Bloch equation is written as [16](

∂

∂t
+ i{εk − �k − iγ }

)
p0

vc(k, t ) = dcvE (t ){1 − 2fc(k)}
(2)

and (
∂

∂t
+ �

)
fc(k, t ) = −2Im

[
dcvE (t )p0∗

vc (k, t )
]
, (3)

where fc(k) = 〈c†ckcck〉 and p0
vc(k) = 〈c†vkcck〉, with 〈· · · 〉 rep-

resenting the expectation value. We introduce a phenomeno-
logical damping rate � for fc and dephasing rate γ for p0

vc. We
consider an electric field E (t ) = 1

2 [Ẽ (t )e−i�t + Ẽ∗(t )ei�t ],
where Ẽ (t ) = 2{Ẽp(t )eikp ·r + Ẽt(t )eikt ·r}, and the electric
field and wave vector of the pump (probe) pulse are Ẽp and kp

(Ẽt and kt), respectively. Introducing an expansion parameter
λ through E (t ) → λE (t ), we obtain p0

vc = λp0(1)
vc + λ2p0(2)

vc +
λ3p0(3)

vc + · · · , fc = λf (1)
c + λ2f (2)

c + λ3f (3)
c + · · · . The

shape of the probe pulse is represented by the delta function
Ẽt(t ) = Ẽtδ(t − τ ) (τ > 0), where τ is the delay time
between the pump and probe pulses. The pump-induced
absorption change is given by α = −Im[d∗

cvχ (k, ω)]. Taking
Ẽp(t ) = Ẽpe

−σ |t | and with the rotating-wave approximation,
the probe susceptibility is given by (see Appendix A)

χ (k, ω) � p0(3)
vc (k, ω)

Et(ω)

= 8dcv|dcv|2|Ẽp|2e−(σ−γ )τ eiτ (−�+εk−�k )�σ

(iγ + ω − εk + �k )(i� + iσ + ω − �)v+
k u+

k u−
k

+ · · · , (4)

where u±
k = iγ ± iσ + � − εk + �k and v+

k = iγ + i� −
iσ + � − εk + �k. In the limit γ → 0, the pole of the energy
denominator ω = εk − �k in the third term of χ (k, ω) gives

rise to an oscillatory behavior of ei(ω−�)τ with decay e−(σ−γ )τ .
This is the oscillation component indicated by Eq. (1). Since
the timescale where the oscillation persists is on the order of
γ −1, real-time ultrafast dynamics should be observed with
high accuracy [17].

In order to maintain the oscillation in the two-band model,
we have to select a proper set of parameters that leads to the
coherence and memory effect in the energy domain. First of
all, we examine the coherence in the energy domain. When
σ � 1/τ , i.e., the pulse duration is much shorter than the
time delay τ , we obtain �t ∼ 0, where �t is the uncertainty
in the time domain. Simultaneously, the energy uncertainty
�E ∼ ∞, leading to low energy resolution. As a result, the in-
terference in the energy domain is invisible. This corresponds
to the fact that the interference pattern vanishes in Young’s
double-slit experiment if the path of light is measured [18,19].
In fact, if the electric field of the pump pulse is represented
by the δ function, p0(3)

vc (k, ω) completely cancels out Et (ω),
which means that χ (k, ω) does not have the interference term
ei(ω−�)τ (see Appendix A). In contrast, when σ � 1/τ , the
coherence in the energy domain is obtained, which leads to
the interference in energy space.

Second, we examine the memory effect. When σ 
 γ ,
i.e., the pulse duration is longer than the dephasing time,
�t ∼ ∞ and �E ∼ 0 are simultaneously obtained. This leads
to the relaxation that holds true as long as electrons have
well-defined energies, and their energy changes are slow with
the timescale of 1/�ε, where �ε is the characteristic energy
exchange in a scattering event [20–24]. When σ � γ , the
relaxation involving electrons with ill-defined energies starts
to contribute to the memory effect. Therefore, if σ and 1/τ are
carefully controlled to realize 1/τ � σ � γ , both coherence
in the energy domain and the memory effect are relevant, and
the interference in the energy domain is maintained for the
time γ −1. Usually, γ of a given system cannot be changed.
However, if we make use of the quantum Zeno effect [25–28],
we might be able to control γ , which can help us to observe
our finding.

III. HUBBARD MODEL

Pump-probe spectroscopy has been performed in
strongly correlated systems to investigate exotic phenomena
[4,15,29–39]. Even in correlated electron systems, there is a
continuum structure in the excitation spectrum. This indicates
that interference effects similar to those in the two-band
model may be realized, which will be demonstrated by using
a 1D half-filled Hubbard model, which is given by

H = −th
∑
i,σ

(c†i,σ ci+1,σ + H.c.) + U
∑

i

ni,↑ni,↓, (5)

where c
†
iσ is the creation operator of an electron with spin σ

at site i, ni,σ = c
†
i,σ ci,σ , ni = ∑

σ ni,σ , and th and U are the
nearest-neighbor hopping and on-site Coulomb interaction,
respectively. Taking th to be the unit of energy (th = 1), we
use U = 10.

We investigate the probe-energy dependence of the op-
tical conductivity of a Hubbard open chain with L = 10,
where L is the number of sites. We assume that both the
pulses have the same shape of the vector potential given
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FIG. 1. Reσ (ω, τ ) in the 1D half-filled Hubbard chain with
L = 10 and U = 10 before pumping (τ < 0) and after pumping
(τ = 10, 20, 30, and 40). Since the system is weakly excited, the
dashed line for τ < 0 is almost overlapped by the solid lines above
ω = 7.

by A(t ) = A0e
−(t−t0 )2/(2t2

d ) cos[�(t − t0)]. We set A0 = 0.1,
t0 = 3.0, td = 0.5, and � = Eg = 7.1 for the pump pulse and
A0 = 0.001, t0 = τ + 3.0, td = 0.02, and � = Eg = 7.1 for
the probe pulse unless otherwise specified, where Eg is the
energy of the Mott gap. An external spatially homogeneous
electric field applied along the chain in the Hamiltonian can
be incorporated via the Peierls substitution in the hopping
terms as c

†
i,σ ci+1,σ → eiA(t )c

†
i,σ ci+1,σ . Using the method dis-

cussed in Refs. [40,41], we obtain the optical conductivity in
the nonequilibrium system, σ (ω, τ ) = jprobe(ω,τ )

i(ω+iη)LAprobe(ω) , where
jprobe(ω, τ ) is the Fourier transform of the current induced
by the probe pulse and Aprobe(ω) is the Fourier transform of
the vector potential of the probe pulse (see Appendix B for
details).

To trace the temporal evolution of the system, we employ
the time-dependent Lanczos method to evaluate |ψ (t )〉. Here
|ψ (t + δt )〉 � ∑M

l=1 e−iεl δt |φl〉〈φl|ψ (t )〉, where εl and |φl〉 are
eigenvalues and eigenvectors of the tridiagonal matrix gener-
ated in the Lanczos iteration, respectively, M is the dimension
of the Lanczos basis, and δt is the minimum time step. We set
M = 50 and δt = 0.02.

Figure 1 shows the real part of the time-dependent optical
conductivity Reσ (ω, τ ) of the Hubbard model. Photoinduced
decreases in the spectral weights at absorption peaks above the
Mott gap are small since the system is weakly excited. The
pump photon excites carriers into an optically allowed odd-
parity state. The probe pulse couples in part to the odd-parity
state, resulting in an excitation from the optically allowed state
to an optically forbidden even-parity state. In 1D Mott insu-
lators with open boundary conditions, the optically forbidden
state is located slightly above the optically allowed state [42].
Low-energy in-gap excitation comes from the excitation from
the optically allowed to forbidden state [40]. Inside the Mott
gap, we find photoinduced low-energy spectral weights at

FIG. 2. Reσ (ω, τ ) in the 1D half-filled Hubbard chain with
L = 10 and U = 10 for (a) ω = 7.1, (b) ω = 7.92, (c) ω = 8.98,
(d) ω = 10.08, and (e) ω = 11.18. The power spectra of Reσ (ω, τ )
for (f) ω = 7.1, (g) ω = 7.92, (h) ω = 8.98, (i) ω = 10.08, and (j)
ω = 11.18.

ω � 1.2, 2.2, and 3.3. These energies correspond to the energy
differences between the optically allowed populated state at
ω = 7.1 and the optically forbidden states.

Figures 2(a)–2(e) show the τ dependence of Reσ (ω, τ )
above the Mott gap with probe energy ω = 7.10, 7.92, 8.98,
10.08, and 11.18, respectively, whose energies agree with the
peak energies of the absorption spectrum in Fig. 1. We find
that the frequencies of the oscillations depend on ω. The larger
ω is, the larger the frequency is, which is consistent with our
argument in the two-band model discussed above.

In order to further examine the probe-energy dependence,
we show the power spectra of Reσ (ω, τ ) with respect to τ

in Figs. 2(f)–2(j) for ω = 7.1, 7.92, 8.98, 10.08, and 11.18,
respectively. We discuss two possible contributions to the
power spectra. The first one is the contribution from the Rabi
oscillation, whose frequencies are related to the low-energy
in-gap states at ω = 1.2, 2.2, and 3.3. In fact, we find the
Rabi-oscillation contributions to the spectral weights at ω0 =
1.2, 2.2, and 3.3 in Figs. 2(f)–2(j). Since our system is of
finite size, energy levels are discretized. Therefore, there are
oscillations with resonant frequencies between the levels. In
the thermodynamic limit, the number of the levels is infinite,
and thus, we expect that the contributions from a huge number
of such resonances with various frequencies cancel out, giving
rise to an infinite number of infinitesimal weights in the
power spectra. Thus, we consider that the Rabi-oscillation
contribution to the power spectra is visible only in finite-size
systems and negligible in the thermodynamic limit.

The second one is the contribution from the interfer-
ence effect, which gives rise to the ω dependence of the
pump-probe spectra as discussed in the two-band model.
The oscillations with the frequencies ω − � appear at
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ω0 = 7.92 − 7.10 = 0.82, 8.98 − 7.10 = 1.88, 10.08 − 7.10 =
2.98, and 11.18 − 7.10 = 4.08. These energies correspond to
the energy difference between the levels at ω = � = 7.1 and
the excited states above the Mott gap, all of which belong
to the same electronic states with odd parity. We consider
that this origin makes the dominant contribution to the power
spectra in the thermodynamic limit. In order to induce the
transient interference, we should use the pump pulse whose
spectrum covers some energy levels. Then we can store the
information of the pump pulse in electronic states with a wide
range of energies above the Mott gap.

According to the two possible contributions to the power
spectra, in Fig. 2(g), for example, we find peak structures at
ω0 = 0.82, 1.2, and 2.2. The peak structures at ω0 = 1.2 and
2.2 come from the Rabi oscillation of the two odd- and even-
parity states. On the other hand, the origin of the structure at
ω0 = 0.82 is the interference because ω0 = 0.82 corresponds
to one of the energy differences between the odd-odd states
mentioned above. Similarly, Figs. 2(h)–2(j) are understood in
the same way (see Appendix B for details).

IV. ELECTRON-BOSON COUPLING
IN THE TWO-BAND MODEL

Finally, we discuss the effect of bosons coupled to elec-
trons on the probe-energy-dependent oscillation. Nonequi-
librium electron dynamics coupled to a boson driven by a
laser has been extensively studied. Furthermore, since non-
Markovian relaxation is important in electron systems cou-
pled to a bosonic environment, open quantum systems with
non-Markovian properties have been studied for a long time
[43–51]. The additional Hamiltonian due to boson degrees of
freedom is

Hph =
∑

q

ωqa
†
qaq +

∑
k,q

gq (a†
−q + aq )(c†ck+qcck + c

†
vk+qcvq ),

(6)

where aq is an annihilation operator for bosons with momen-
tum q, ωq is the boson frequency, and gq is an electron-boson
coupling constant.

We examine the two-band model with electron-boson cou-
pling under the application of the exponential pump pulse. To-
tal polarization is given by pvc(k, t ) = p0

vc(k, t ) + pb
vc(k, t ),

where p0
vc(k, t ) is from the one-particle contribution, as

discussed above, and pb
vc(k, t ) is from the electron-boson

coupling. Solving the kinetic equation with Hph (see Ap-
pendix A), the probe susceptibility is given by

χb(k, ω)

� pb(3)
vc (k, ω)

Et(ω)
=

∑
q

g2
qNq · 4iσdcv|dcv|2|Ẽp|2

×
[

e−τ (σ−γ )eiτ (−�+εk−�k )(−iγ − 2i� − ω + εk − �k )

(iγ + ω − εk + �k )2(iγ + ω − εk+q + �k + ωq )v+
k

× (2iγ + 2ω − εk − εk+q + �k + �k−q + 2ωq )

(i� + iσ + ω − �)(iγ +ω − εk + �k−q + ωq )u+
k u−

k

]
+ · · · , (7)

where Nq = 1
eωq /kB T −1

. In the limit γ → 0, the pole of the
energy denominator ω = εk − �k gives rise to an oscillatory
behavior of ei(ω−�)τ with decay e−(σ−γ )τ , which is the same
behavior as the third term in Eq. (4). Therefore, the informa-
tion of pump and probe pulses is transmitted with the help
of boson-assisted electron scattering, which gives one of the
possible origins of the transient interference.

In Mott insulators, magnons are strongly coupled to pho-
toexcited electrons in 2D Mott insulators, in contrast to the
1D Mott insulator where spin and charge degrees of freedom
are separated. Therefore, the interference proposed in this
work will be easily realized in the 2D Mott insulators. We
thus speculate that the oscillations observed by the pump-
probe spectroscopy of the 2D Mott insulator Nd2CuO4 [15]
come from the interference effect. In order to confirm this
speculation, we need to investigate theoretically the pump-
probe spectrum of the 2D half-filled Hubbard model, but it
remains for a future work.

V. SUMMARY

In summary, we suggested the transient interference in
the energy domain between temporary well-separated light
pulses using electronic states of band and Mott insulators as a
medium, which manifests as the oscillation of the pump-probe
spectrum whose frequency is indicated by Eq. (1). This inter-
ference could be observed only after recent developments of
ultrafast spectroscopic techniques. The transient interference
reflects the universal property of interference between two
photon pulses mediated by electron systems, which does not
depend on the details of the electron systems. Therefore, the
interference is also realized in the presence of electron corre-
lation since there is a continuum structure. We examined this
by calculating the pump-probe spectrum in the 1D half-filled
Hubbard model. To verify our prediction, we suggested an
experiment for Nd2CuO4 with varying pump-pulse duration
and delay. Since our theory predicts the transient oscillation
even in the 1D Mott insulators, we proposed a pump-probe
experiment in Sr2CuO3. Furthermore, we found that bosons
coupled to electrons in the two-band model make the addi-
tional contribution to the transient interference. Based on the
result, both magnons coupled to electrons and the continuum
structure in electronic excitation spectrum would be possible
origins of the oscillation observed in Nd2CuO4.
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APPENDIX A: PUMP-PROBE ABSORPTION SPECTRUM
OF THE TWO-BAND MODEL

We provide the solution of the optical Bloch equations (2)
and (3) and derive the pump-probe absorption spectrum. With
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the assumption of dipole transitions, the Hamiltonian (5) of
the two-band model under the time-dependent electric field
reads

H =
∑

k

εkc
†
ckcck +

∑
k

�kc
†
vkcvk

−
∑

k

[dcvE (t )c†ckcvk + d∗
cvE (t )c†vkcck], (A1)

where cc(v)k is an annihilation operator for fermions in the
conduction (valence) band with momentum k. The energies
of the conduction and valence bands are εk = ε + h̄2 k2

2mc
, �k =

� + h̄2 k2

2mv
, where ε and � are the minimum and maximum of

the conduction and valence bands, respectively, and mc and
mv are the effective masses of electrons in the conduction and
valence bands, respectively. We introduce the interband dipole
matrix element dcv and external electric field E (t ). Hereafter,
we set h̄ = 1. Taking the long-wavelength limit of electric
field, the optical Bloch equations (2) and (3) are written as(

∂

∂t
+ i{εk − �k − iγ }

)
p0

vc(k, t ) = dcvE (t ){1 − 2fc(k)}

(A2)

and

(
∂

∂t
+ �

)
fc(k, t ) = −2Im

[
dcvE (t )p0∗

vc (k, t )
]
, (A3)

where fc(k)=〈c†ckcck〉 and p0
vc(k)=〈c†vkcck〉, where

〈· · · 〉 represents the expectation value. We introduce
a phenomenological damping rate � for fc and a
dephasing rate γ for p0

vc. We consider an electric
field E (t ) = 1

2 [Ẽ (t )e−i�t + Ẽ∗(t )ei�t ], where Ẽ (t ) =
2{Ẽp(t )eikp ·r + Ẽt(t )eikt ·r}, and the electric field and wave
vector of the pump (probe) pulse are Ẽp and kp (Ẽt and kt).
Introducing an expansion parameter λ through E (t ) → λE (t ),
we obtain p0

vc = λp0(1)
vc + λ2p0(2)

vc + λ3p0(3)
vc + · · · , fc =

λf (1)
c + λ2f (2)

c + λ3f (3)
c + · · · . The shape of the probe

pulse is represented by the delta function Ẽt(t ) =
Ẽtδ(t − τ ) (τ > 0), where τ is delay time between the pump
and probe pulses. With the rotating-wave approximation,
p̃0(3)

vc (k, t ) = p̃
0(3)
vc,A(k, t ) + p̃

0(3)
vc,B(k, t ) is given by

p̃
0(3)
vc,A(k, t ) = −i2dcv|dcv|2eikt ·r

∫ t

−∞
dt ′e−i{εk−�k−�−iγ }(t−t ′ )Ẽp(t ′)e−�(t ′−τ )Ẽt θ (t ′ − τ )

∫ τ

−∞
dt ′′′ei{εk−�k−�−iγ }(τ−t ′′′ )Ẽ∗

p(t ′′′)

− i2dcv|dcv|2eikt ·r
∫ t

−∞
dt ′e−i{εk−�k−�−iγ }(t−t ′ )Ẽp(t ′)

∫ t ′

−∞
dt ′′e−�(t ′−t ′′ )Ẽ∗

p(t ′′)Ẽt θ (t ′′ − τ )e−i{εk − �k−�−iγ }(t ′′−τ ) (A4)

and

p̃
0(3)
vc,B(k, t ) = − i2dcv|dcv|2eikt ·re−i{εk−�k−�−iγ }(t−τ )Ẽt θ (t − τ )

∫ τ

−∞
dt ′′Ẽp(t ′′)e−�(τ−t ′′ )

∫ t ′′

−∞
dt ′′′ei{εk−�k−�−iγ }(t ′′−t ′′′ )Ẽ∗

p(t ′′′)

− i2dcv|dcv|2eikt ·re−i{εk−�k−�−iγ }(t−τ )Ẽt θ (t − τ )
∫ τ

−∞
dt ′′Ẽ∗

p(t ′′)e−�(τ−t ′′ )
∫ t ′′

−∞
dt ′′′Ẽp(t ′′)e−i{εk−�k−�−iγ }(t ′′−t ′′′ ),

(A5)

where we are interested in contributions with a phase factor eikt ·r , i.e., in the direction of the probe beam. We include only terms
which are linear in Ẽt and ignore all terms that are higher than second order in Ẽp. We use the delta function Ẽt (t ) = Ẽt δ(t − τ )
to represent a probe pulse.

Taking Ẽp(t ) = Ẽpδ(t ), from Eqs. (A4) and (A5), we obtain

p̃0(3)
vc (k, t ) = p̃

0(3)
vc,B(k, t ) = −2idcvθ (τ )Ẽt |dcv|2|Ẽp|2θ (t − τ )e−�τ+ikt ·r+(−γ−i�k )(t−τ ), (A6)

where �k = εk − �k − �. The Fourier transformation of p0(3)
vc (k, t ) is given by

p0(3)
vc (k, ω) =

∫ ∞

−∞
dteiωtp0(3)

vc (k, t ) = 2dcvθ (τ )Ẽt |dcvẼp|2ei[kt ·r+ τ (i�+ω−�)]

iγ − εk + �k + ω
. (A7)

The probe susceptibility reads

χ (k, ω) � p0(3)
vc (k, ω)

Et (ω)
= 2dcvθ (τ )|dcvẼp|2e−�τ

iγ − εk + �k + ω
, (A8)

where Et (ω) = ∫ ∞
−∞ dtEt (t )eiωt � Ẽt e

i(ω−�)τ eikt ·r . Since the oscillatory term ei(ω−�)τ of p0(3)
vc (k, ω) cancels out that of the probe

electric field Et (ω), χ (k, ω) does not have terms depending on ei(ω−�)τ .
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However, if we consider a pump pulse written by Ẽp(t ) = Ẽpe−σ |t |, we obtain

p̃0(3)
vc (k, t )

= 2idcvẼt |dcv|2|Ẽp|2θ (t − τ )eikt ·r

⎡
⎣ ie−(γ+i�k )(t−τ )

(
− e−2σ t−e−2στ

2σ
+ e−2στ −et (γ−�+i�k−σ )−τ (γ−�+i�k+σ )

γ−�+i�k−σ

)
−iγ + i� + �k

− [σ (−1 + 2eτ (γ+i�k+σ ) ) + γ + i�k]eτ (�−σ )−t (γ+i�k )(et (γ−�+i�k−σ ) − eτ (γ−�+i�k−σ ) )

(γ + i�k − σ )(γ + i�k + σ )(γ − � + i�k − σ )

+
(

− eτ (�−2σ ) − 1

(� − 2σ )(γ + i�k + σ )
− 2σ (−1 + eτ (γ+�+i�k−σ ) )

(γ + i�k − σ )(γ + i�k + σ )(γ + � + i�k − σ )
− 1

(� + 2σ )(γ + i�k − σ )

)

× e−�τ−(γ+i�k )(t−τ )

+
(

− eτ (�−2σ ) − 1

(� − 2σ )(−γ − i�k + σ )
− 2σeτ [−(γ−�+i�k+σ )](−1 + eτ (γ−�+i�k+σ ) )

(γ + i�k − σ )(γ + i�k + σ )(γ − � + i�k + σ )
+ 1

(� + 2σ )(γ + i�k + σ )

)

× e−�τ−(γ+i�k )(t−τ )

⎤
⎦. (A9)

The probe susceptibility is given by

χ (k, ω) � p0(3)
vc (k, ω)

Et (ω)
= idcv|dcv|2|Ẽp|2

u+
k u−

k

[
4e−(γ+σ )τ eiτ (�−εk+�k )σ

(iγ + ω − εk + �k )v−
k

− 4e−(σ−γ )τ eiτ (−�+εk−�k )σ

(i� + iσ + ω − �)v+
k

− 8ie−(σ−γ )τ eiτ (−�+εk−�k )�σ

(iγ + ω − εk + �k )(i� + iσ + ω − �)v+
k

+ e−�τ (· · · ) + e−2στ (· · · )

]
, (A10)

where u±
k = iγ ± iσ + � − εk + �k, v±

k = iγ ± i� ∓ iσ + � − εk + �k, and (· · · ) represents an abbreviation of the τ -
independent part of the corresponding term. The third term is shown in Eq. (4).

Next, we consider the contribution from electrons coupled to bosons to the interference. The additional Hamiltonian (6) due
to boson degrees of freedom is

Hph =
∑

q

ωqa
†
qaq +

∑
k,q

gq (a†
−q + aq )(c†ck+qcck + c

†
vk+qcvq ),

where aq is an annihilation operator for bosons with momentum q, ωq is the boson frequency, and gq is an electron-boson
coupling constant. Total polarization is given by pvc(k, t ) = p0

vc(k, t ) + pb
vc(k, t ), where p0

vc(k, t ) is from the one-particle
contribution, as discussed above, and pb

vc(k, t ) is from the electron-boson coupling.
If carriers are created by optical pulses, the wave function is a superposition of states in the conduction and valence bands.

As long as this phase coherence is maintained, i.e., at times shorter than the dephasing time, the carriers are not in definite-
energy eigenstates, which requires the non-Markovian description of relaxation. To obtain the quantum kinetic equation with
non-Markovian relaxation, we use the Keldysh nonequilibrium Green’s function that is a two-time generalization of the density
matrix. Two characteristic timescales of the scattering time and the duration of the interaction process determine the dynamics
of the carriers. The optical Bloch equation with electron-boson coupling is given by using the nonequilibrium Green’s function
and reads

(
∂

∂t
+ i{εk − �k − iγ }

)
pvc(k, t ) = dcvE (r, t ){1 − 2fc(k)} + (−i)

∑
q

[
g2

qNq{P +
vc (k, k + q, t ) − P +

vc (k − q, k, t )}]

+ (−i)
∑

q

[Nq ↔ Nq + 1, ωq ↔ −ωq], (A11)

(
∂

∂t
+ i{εk+q − �k − ωq − iγ }

)
P +

vc (k, k + q, t ) = i{pvc(k + q, t ) − pvc(k, t )}, (A12)

and (
∂

∂t
+ �

)
fc(k, t ) = − 2Im[dcvE (t )p∗

vc(k, t )], (A13)
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where P +
vc (k, k + q, t ) are boson-assisted excitonic transitions, γ accounts for all dephasing processes other than electron-boson

scattering, and Nq = 1
eωq /kB T −1

is a thermal magnon distribution [20,52]. Solving the equation of motion, we obtain

pb
vc(k, t ) =

∫ t

−∞
dt ′e−i{εk−�k−iγ }(t−t ′ )(−i)

(∑
q

[
g2

qNq{P +
vc (k, k + q, t ′) − P +

vc (k − q, k, t ′)}]

+
∑

q

[Nq ↔ Nq + 1, ωq ↔ −ωq]

)
, (A14)

where the last term means the replacement of Nq with Nq + 1 and ωq with −ωq in the previous terms. P +(3)
vc (k, k + q, t ) and

pb(3)
vc (k, t ) are written as

P +(3)
vc (k, k + q, t ) =

∫ t

−∞
due−i(t−u)(εk+q−iγ−ωq−�k )i

[
p(3)

vc (k + q, u) − p(3)
vc (k, u)

]

�
∫ t

−∞
due−i(t−u)(εk+q−iγ−ωq−�k )i

[
p0(3)

vc (k + q, u) − p0(3)
vc (k, u)

]
(A15)

and

pb(3)
vc (k, t ) = (−i)

∑
q

g2
qNq

∫ t

−∞
due−i(εk−�k−iγ )(t−u)

{
P +(3)

vc (k, k + q, u) − P +(3)
vc (k − q, k, u)

}
+ [Nq ↔ Nq + 1, ωq ↔ −ωq], (A16)

respectively. If Ẽp(t ) = Ẽpδ(t ) is used, we obtain

χb(k, ω) � pb(3)
vc (k, ω)

Et (ω)
=

∑
q

g2
qNq

2dcvθ (τ )|dcv|2|Ẽp|2e−�τ

(iγ − εk + �k + ω)2

[
εk − εk−q + �k−q − �k

(iγ − εk−q + �k−q + ω)(iγ + ωq − εk + �k−q + ω)

− −εk + εk+q − �k+q + �k

(iγ − εk+q + �k+q + ω)(iγ + ωq − εk+q + �k + ω)

]
+ [Nq ↔ Nq + 1, ωq ↔ −ωq]. (A17)

When the pump pulse is represented by the δ function, we cannot obtain the oscillating term ei(ω−�)τ , even if we take into
account the boson-assisted transition.

If the pump pulse is written by Ep(t ) = Epe−σ |t |, we obtain

χb(k, ω) � pb(3)
vc (k, ω)

Et (ω)
=

∑
q

g2
qNq · 4iσdcv|dcv|2|Ẽp|2

×
[

e−τ (σ−γ )eiτ (−�+εk−�k )(−iγ − 2i� − ω + εk − �k )(2iγ + 2ω − εk − εk+q + �k + �k−q + 2ωq )

(i� + iσ + ω − �)(iγ + ω − εk + �k )2(iγ + ω − εk+q + �k + ωq )(iγ + ω − εk + �k−q + ωq )v+
k u+

k u−
k

+ e−(σ−γ )τ eiτ (−�+εk+q−�k+q )(iγ + 2i� + ω − εk+q + �k+q )

(i� + iσ + ω − �)(iγ + ω − εk + �k )(iγ + ω − εk+q + �k+q )(iγ + ω − εk+q + �k + ωq )v+
k+qu

+
k+qu

−
k+q

+ e−τ (σ−γ )eiτ (−�+εk−q−�k−q )(iγ + 2i� + ω − εk−q + �k−q )

(i� + iσ + ω − �)(iγ + ω − εk + �k )(iγ + ω − εk−q + �k−q )(iγ + ω − εk + �k−q + ωq )v+
k−qu

+
k−qu

−
k−q

+ e−(γ+σ )τ eiτ (�−εk+�k )(2iγ + 2ω − εk − εk+q + �k + �k−q + 2ωq )

(−iγ − ω + εk − �k )2(−iγ − ω + εk − �k−q − ωq )(−iγ − ω + εk+q − �k − ωq )v−
k u+

k u−
k

− e−(γ+σ )τ eiτ (�−εk+q+�k+q )

(−iγ − ω + εk − �k )(−iγ − ω + εk+q − �k+q )(−iγ − ω + εk+q − �k − ωq )v−
k+qu

+
k+qu

−
k+q

+ e−(γ+σ )τ eiτ (�−εk−q+�k−q )

(−iγ − ω + εk − �k )(−iγ − ω + εk−q − �k−q )(−iγ − ω + εk − �k−q − ωq )v−
k−qu

+
k−qu

−
k−q

]

+ [Nq ↔ Nq + 1, ωq ↔ −ωq] + (· · · ). (A18)

The first term is shown in Eq. (7).
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APPENDIX B: TIME-DEPENDENT OPTICAL
CONDUCTIVITY IN THE NONEQUILIBRIUM STATE

Using the method discussed in Refs. [40,41], we obtain
optical conductivities in the nonequilibrium system. In order
to identify the response of the system with respect to later
probe pulses, subtraction is necessary; that is, two successive
steps are involved in order to calculate the optical conduc-
tivity in nonequilibrium. First, a time-evolution process that
describes the nonequilibrium development of the system in
the absence of a probe pulse is evaluated, which gives rise to
jpump(t ). Second, in the presence of an additional probe pulse,
we get jtotal(t, τ ). The subtraction of jpump(t ) from jtotal(t, τ )
produces the required jprobe(t, τ ), i.e., the variation of the
current expectations due to the presence of the probe pulse.
Then, the optical conductivity in nonequilibrium is proposed
to be

σ (ω, τ ) = jprobe(ω, τ )

i(ω + iη)LAprobe(ω)
, (B1)

where Aprobe(ω) is the Fourier transform of the vector poten-
tial of probe pulses and L is the number of sites.

We find photoinduced spectral weights at ω � 1.2, 2.2,
and 3.3 inside the Mott gap, as shown in Fig. 1. Low-energy
in-gap excitation comes from the excitation from the optically
allowed to forbidden state [40]. These energies correspond to
the energy differences between the optically allowed popu-
lated state with the odd parity at ω = 7.1 and the optically
forbidden states with the even parity.

Figures 2(h)–2(j) can be understood as discussed in
Sec. III. In Fig. 2(h), we find peak structures at ω0 = 1.2
and 1.88. The frequency ω0 = 1.2 corresponds to the energy
of a photoinduced low-energy state, which comes from the
Rabi oscillation of the odd- and even-parity states. The origin
of the structure at ω0 = 1.88 comes from the interference
effect that gives rise to the energy difference between the two
states with the odd parity, i.e., ω − � = 8.98 − 7.10 = 1.88.

In Fig. 2(i), we find peak structures at ω0 = 1.2, 2.2, and
2.98. The frequencies ω0 = 1.2 and 2.2 correspond to the
energy of photoinduced low-energy states. The origin of the
structure at ω0 = 2.98 comes from the interference effect. In
Fig. 2(j), we find peak structures at ω0 = 2.2, 3.3, and 4.08.
The frequencies ω0 = 2.2 and 3.3 correspond to the energy of
photoinduced low-energy states. The origin of the structure at
ω0 = 4.08 is the interference effect.

If we take � = 7.92, which is larger than the Mott gap of
7.10, we also find the peak structures that come from the inter-
ference effect. We find that the oscillations with the frequen-
cies |ω − �| appear at ω0 = |7.10 − 7.92| = 0.82, 8.98 −
7.92 = 1.06, 10.08 − 7.92 = 2.16, and 11.18 − 7.92 = 3.26.
Therefore, the oscillation due to the transient interference
appears even when ω − � < 0. This property may give useful
information for experiments on the transient interference in
the pump-probe spectroscopy of the Mott insulators [53].

In order to obtain the contribution from the interference,
three conditions are needed. First, we should not impose a
step function on the vector potential, but rather the Gaussian
function to give the electric field of the probe pulse. Although
the same optical conductivity is obtained in equilibrium by
using the two kinds of vector potentials of the probe pulse, this
is not the case in nonequilibrium [41]. If we impose the step
function on the vector potential of the probe pulse, we cannot
obtain the spectral weights originating from the interference.
An oscillating probe field with a central frequency will be
needed to interfere with a pump pulse. Second, in order to
generate the interference, the frequencies of the pump and
probe pulses should be (nearly) the same. Third, the spectral
width of the pump pulse should not be too small. The coop-
eration of electronic states in the band structure is important
for persisting the information of the pump pulse. To excite
electronic states with a wide range of energy above the Mott
gap, we have to use the pump pulse whose spectrum covers
some energy levels.
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