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We investigate the nature of doped Mott insulators using exact diagonalization and density matrix renor-
malization group methods. Persistent spin currents are revealed in the ground state, which are concomitant
with a nonzero total momentum or angular momentum associated with the doped hole. The latter determines
a nontrivial ground state degeneracy. By further making superpositions of the degenerate ground states with
zero or unidirectional spin currents, we show that different patterns of spatial charge and spin modulations will
emerge. Such anomaly persists for the odd numbers of holes, but the spin current, ground state degeneracy,
and charge/spin modulations completely disappear for even numbers of holes, with the two-hole ground state
exhibiting a d-wave symmetry. An understanding of the spin current due to a many-body Berry-like phase and
its influence on the momentum distribution of the doped holes will be discussed.
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I. INTRODUCTION

The low-energy physics of the interacting fermions is
generally described as a Luttinger liquid (LL) [1,2] in one
dimension (1D), characterized by gapless charge, neutral den-
sity wave, and current excitations [3,4]. In general, the LL
theory breaks down in higher dimensions due to the absence
of forbidden regions in the spectrum to protect the current
excitations, with the exception for some fractional quantum
Hall systems [5,6] in two dimensions (2D) where the gapless
edges are protected by the gapped bulk. Another class of
strongly interacting fermion systems is the doped Mott insu-
lators, relevant to high-temperature superconducting cuprates
[7,8], for which Anderson [7,9,10] was the first to suggest
that doped holes may induce scattering singularities leading
to LL-like behaviors in 2D. Its microscopic mechanism was
attributed [9] to an unrenormalizable Fermi-surface phase
shift generated by the doped holes, which was later identified
with a many-body Berry-like phase in the t-J model known as
the phase string [11–13]. The latter is responsible for the LL
behaviors in the 1D t-J model as confirmed both analytically
and numerically [12,14]. Then a natural question is if such an
effect can lead to a current-carrying ground state [15,16] in
the 2D doped Mott antiferromagnet to give rise to non-Fermi
liquid (NFL) features.

In this paper we reveal unconventional properties of the
doped Mott antiferromagnets based on exact diagonalization
(ED) and density matrix renormalization group (DMRG)
simulations. For the odd numbers of doped holes, we iden-
tify the symmetry-protected degeneracy with nontrivial total
momentum K0 �= 0 or angular momentum Lz �= 0 for the
ground states, and more importantly, it is concomitant with
permanent spin currents, as illustrated in Fig. 1 by taking
one-hole ground state as an example. Such spin current pattern
is robustly present in different sample sizes and parameter
regimes, adapting to different geometries [e.g., under the

periodic boundary condition (PBC) in Fig. 1(a) and under
open boundary condition (OBC) in Fig. 1(b)]. It indicates a
nontrivial many-body Berry-like phase induced by the doped
holes. In particular, by making superpositions of the degener-
ate ground states with diminished or unidirectional spin cur-
rents, we show that different patterns of the spatial charge and
spin modulations emerge. In contrast, the degeneracy and its
associated spin currents disappear simultaneously for the even
numbers of holes, say, in the two-hole ground state, which
exhibits a d-wave symmetry. Such even-odd effect persists
over a few hole cases and may have important implications
for finite doping, which is potentially relevant to the supercon-
ductivity and pseudogap physics in high-Tc cuprates [7,8,17].

We shall study the simplest model of a doped Mott insula-
tor, i.e., the t-J model, which reads

Ht = −t
∑
〈ij 〉,σ

(c†iσ cjσ + H.c.),

HJ = J
∑
〈ij 〉

(
Si · Sj − 1

4
ninj

)
. (1)

Here c
†
iσ is the electron creation operator at site i, Si is the

spin operator, and ni is the electron number operator, and the
summation is over all the nearest-neighbor (NN) sites 〈ij 〉.
The Hilbert space is always constrained by the no-double-
occupancy condition, i.e., ni � 1. We use both ED [18] and
DMRG [19,20] to study the ground states of Eq. (1) on a 2D
lattice of size N = Nx×Ny .

II. ONE-HOLE CASE

A. Ground state degeneracy and hidden spin currents

We begin with the one-hole case, whose basic proper-
ties have been previously intensively investigated [21–24] by
ED. The ground state has a total spin S = 1/2 and nonzero

2469-9950/2018/98(16)/165102(8) 165102-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.165102&domain=pdf&date_stamp=2018-10-02
https://doi.org/10.1103/PhysRevB.98.165102


WAYNE ZHENG, ZHENG ZHU, D. N. SHENG, AND ZHENG-YU WENG PHYSICAL REVIEW B 98, 165102 (2018)

cx

cy

(a) (b)

FIG. 1. Neutral spin currents are revealed in the degenerate
ground states of the one-hole-doped t-J model on square lattices:
(a) On a torus (PBC) with cx and cy denoting two winding paths at
momentum K0 = (−π/2, −π/2) (cf. Table I). (b) The spin current
pattern under the OBC (angular momentum Lz = −1). Here J/t =
0.3 with fixed Sz = 1/2.

momentum (or angular momentum) depending on the ratio
J/t for a fixed spin ẑ-component Sz = ±1/2. For example,
for N = 4×4 and N = 12×4 systems, ED and DMRG cal-
culations show that the ground states have finite total mo-
menta K0 = (±π/2,±π/2) at t/J > 1 with fourfold degen-
eracy [25]. Table I shows the details for the N = 4×4 lattice
under the PBC. In contrast, for a bipartite lattice under the
OBC with π/2 rotational symmetry, a double degeneracy can
be generally identified as characterized by angular momentum
Lz = ±1 [26], with the sample size persisting from a 2×2
plaquette [27] up to 8×8 (see below).

Here the degenerate ground states associated with K0 �= 0
or Lz �= 0 imply that the doped hole acquires a nondissipative
charge current flowing through a neutral spin background.
One may further check the neutral spin current in the spin
background, defined by

J s
ij ≡ −i 1

2 〈ψ |(S+
i S−

j − S−
i S+

j )|ψ〉 (2)

on a given NN link ij with the ground state |ψ〉 labeled
by quantum numbers S and Sz. Indeed J s per link is found
nonzero as illustrated in Fig. 1 for both PBC [Fig. 1(a)] and
OBC [Fig. 1(b) with the arrow and thickness of each link
denoting the current direction and amplitude]. The nontrivial

TABLE I. Momenta and spin currents of degenerate one-hole
ground states on a 4×4 torus determined by ED.

J/t (K0
x , K0

y ) I x
s ≡ ∑

cx
J s

ij I y
s ≡ ∑

cy
J s

ij

0.3 (0, π ) 0.0000 0.0000
(π, 0) 0.0000 0.0000

(π/2, π/2) −0.0991 −0.0991
(π/2, −π/2) −0.0991 +0.0991

(−π/2,−π/2) +0.0991 +0.0991
(−π/2, π/2) +0.0991 −0.0991

3.0 (π/2, 0) −0.0359 0.0000
(−π/2, 0) +0.0359 0.0000
(0, π/2) 0.0000 −0.0359

(0,−π/2) 0.0000 +0.0359

10 (0, 0) 0.0000 0.0000

(a) (b)

FIG. 2. The neutral spin current patterns of J s
ij with a hole

projected onto a lattice site at J/t = 0.3. (a) For the 1D ground
states of a N = 12 loop. (b) For the 2D ground states of N = 4×4
lattice under the OBC. The dashed closed path circulating around
the hole indicates a finite net spin current loop. (a) K0 = −φ/2 and
(b) Lz = −1.

K0 at J/t = 0.3 and J/t = 3.0 are always associated with
nonzero spin currents, I

x(y)
s ≡ ∑

cx (cy ) J
s
ij (cf. Table I) along

the closed path cx or cy defined in Fig. 1(a). At J/t = 0.3
there are actually two more degenerate states at K0 = (π, 0)
and (0, π ) with vanishing I

x(y)
s , which may be due to an

additional special symmetry for the 4×4 lattice but not generic
[22]. At J/t = 10, the nontrivial ground state degeneracy (for
each fixed Sz = ±1/2) and the spin current are both absent,
while the total momentum reduces to trivial K0 = (0, 0).

Note that J s in Eq. (2) only satisfies the continuity equation
for the conserved Sz at half-filling. Upon doping, to satisfy the
full continuity equation, one needs to also include a different
contribution to the spin current at the links involving the
hole(s) determined by the hopping term of the t-J model,
which is also associated with the charge current of the doped
hole (see the Appendix for details). Nonetheless, J s in Eq. (2)
measures the neutral spin current created in the spin back-
ground by the hopping term in Eq. (1). To see that such
neutral spin current is separated from the hole, we may take
the one-dimensional t-J chain as an example, in which the
one-hole ground state has a double degeneracy at momenta
K0 = ±π/2 (with the lattice size N = 12 and J/t = 0.3).
By projecting the hole onto a given lattice site, the neutral
spin current pattern is shown in Fig. 2(a) at K0 = −π/2.
Figure 2(b) further shows the neutral spin current pattern with
a hole projected onto a specific site in an N = 4×4 lattice
under the OBC [cf. Fig. 1(b)].

The amplitude of I x
s is nonuniversal and smoothly changes

with J/t as illustrated in Fig. 3(a) for PBC, while the to-
tal momentum K0 jumps from (+π/2,+π/2) to (+π/2, 0)
around J/t � 2. Actually the spin current I x

s and the ground
state degeneracy simultaneously disappear at J/t � 7.0 as in-
dicated in the inset of Fig. 3 where K0 jumps from (+π/2, 0)
to (0, 0). Here one can clearly see that the novel ground state
degeneracy and nonzero spin currents are concomitant. We
also present larger system results as shown in Fig. 3(b) for
OBC. The finite spin current regime corresponds to Lz = ±1
with the critical transition points identified at Jc1/t � 0.28
and Jc2/t � 1.3 for 4×4 and Jc1/t � 0.08 and Jc2/t � 1.1
for 6×6, respectively. The critical points of Jc1/t � 0.02 and
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FIG. 3. (a) Spin current I x
s for the single hole ground state of

N = 4×4 under PBC. The vertical dashed line marks the jump of
the total momentum from K0 = (+π/2,+π/2) to K0 = (+π/2, 0).
Inset: The spin current eventually disappears in the nondegenerate
ground state with K0 = 0 at a larger J/t > 7. (b) The total spin
currents summed over the outermost bonds of the 4×4 and 6×6
lattices under OBC, respectively, with the nonzero spin current
regimes coinciding with Lz = ±1. The vertical arrows mark the
critical points for the 8×8 lattice (see text).

Jc2/t � 1.1 − 1.2 for 8×8 are also determined by directly
looking for the appearance/disappearance of the novel ground
state degeneracy and nonzero spin currents. Clearly the spin
current phase is robust for a wide range of parameter J/t for
large systems. The current patterns for 6×6 and 8×8 under
the OBC identified by the DMRG calculation at J/t = 1/3
can be found in Fig. 5 and the Appendix, respectively.

B. Charge/spin modulations

One may further construct a zero or unidirectional spin
current state by proper superpositions of the current carrying
states specified by the total momenta K0 = (±π/2,±π/2)
discussed above. As illustrated by Fig. 4(a) for the case
of N = 4×4, by an equal weight superposition of all four
states, the new state exhibits both charge and spin modulations
on top of a uniform background. Furthermore, a stripelike
charge/spin spatial distribution can be constructed in Fig. 4(b)
as a superposition of two degenerate ground states with
vanishing spin currents perpendicular to the stripe direction
(while the quantized momentum remains along the stripe
direction). Furthermore, an N = 12×4 system calculated by
DMRG shows the same fourfold degeneracy states at the
same K0, whose real wave function is a zero-current state
with the similar charge (spin) modulations as illustrated in
Fig. 4(c). Here the charge/spin modulations or nematicity as
the “incipient” translational symmetry breaking [28] may be
viewed as many-body quantum interference states, which are
“dual” to the degenerate spin-current-carrying ground states.

III. A FEW HOLE CASES

Now let us examine the case when more holes are injected
into the Mott insulator. We have seen that there is a ground
state degeneracy associated with nonzero spin currents in the
one-hole case. Surprisingly, the whole ground-state degener-
acy and neutral spin currents disappear simultaneously in the
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FIG. 4. Charge and spin density modulations (〈nh
i 〉 and 〈Sz

i 〉,
respectively) emerge in the degenerate ground states with (a) a net
zero spin-current state and (b) a “stripe” state with zero net spin
current only along the perpendicular direction. (c) Charge density
wave obtained by DMRG. Here J/t = 0.3 with N = 4×4 in (a) and
(b) and for N = 12×4 in (c) under the PBC.

two-hole ground state. In particular, the total angular momen-
tum becomes Lz = ±2 mod 4 [26] at J/t = 0.3, which is
consistent with the d-wave symmetry of two-hole pairing state
(i.e., the wave function changes sign under a π/2 rotation).
Note that previously a strong binding between the two holes
has been indeed shown in the two- and four-leg ladders with
N = Nx×2 and N = Nx×4 by DMRG for the same ratio of
J/t [29].

However, once three holes are doped, the novel degeneracy
and spin currents reemerge again in the ground states. In
Fig. 5 both the spin and charge currents in the N = 6×6
system are shown for (a) the one-hole case and (b) three-hole
case as obtained by DMRG under the OBC. We find that
charge currents show different microscopic patterns with a
staggered current loop pattern in the background [30–32], and
their amplitude distributions are correlated with the ones for
the spin currents. We always find the disappearance of the
degeneracy and spin currents for the even numbers of holes,
while the irreducible double degeneracy (with a given Sz �= 0)
reemerges again when the number of doped hole is odd, where
the nontrivial spin current persists up to an intermediate hole
density for different system sizes and geometries as checked
by DMRG. For example, for an N = 6×6, we find the same
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spin current

(a)

charge current spin current

(b)

charge current

FIG. 5. Spin currents are present in the one-hole and three-hole ground states which are doubly degenerate (for a fixed Sz = 1/2) under
the OBC with the angular momentum Lz = ±1 mod 4. But the spin current is absent in the two-hole ground state, which is nondegenerate
with Lz = 2 mod 4 and S = 0 consistent with a d-wave symmetry. Here N = 6×6 and J/t = 0.3 with the data obtained by DMRG. (a) one
hole and (b) three holes.

degeneracy with nonzero spin current pattern still present for
the hole number equal to 5 (i.e., corresponding to the hole
doping concentration 5/36 ∼ 14%).

IV. LONG-RANGE ENTANGLEMENT DUE
TO A MANY-BODY BERRY-LIKE PHASE

The nonzero spin current is a demonstration of a Berry-like
phase hidden in the background, which is nonlocally entan-
gled with a doped hole as clearly illustrated by, e.g., Fig. 2(b).
In the following we provide a theoretical understanding of
its microscopic origin. It has been previously predicted that
in the t-J model a doped hole will generically pick up a
Berry-like phase τc ≡ (−1)N

↓
h (c) after traversing the quantum

spin background via a closed path c, which is known as the
phase string effect [11–13,33]. Here N

↓,↑
h (c) counts the total

number of exchanges between the hole and ↓ (↑) spins in the
background with τc = e±i π

2 [N↑
h (c)+N

↓
h (c)]e∓i π

2 [N↑
h (c)−N

↓
h (c)]. It is

distinguished [34] from the so-called Sz string [8,21,35–37]
as the transverse component of the defect created by hole
hopping. We note that the first factor in τc will lead to K0 =
(±π/2,±π/2) �= 0 while the second one will be responsible
for generating the spin current as the residual fluctuations once
the hopping t becomes dominant locally. Indeed, by turning
off the phase string τc with replacing the hopping term Ht

by Hσ ·t = −t
∑

〈ij〉σ σ (c†iσ cjσ + H.c.) in the so-called σ · t-J
model [34], all the above novel features disappear and we find
unique ground state as confirmed by both ED and DMRG
calculations. With τc = 1 and K0 = (0, 0) or (π, π ), the
ground state reduces to a trivial “quasiparticle” state without
spin currents, and correspondingly it becomes nondegenerate
and uniform at a given Sz = ±1/2.

V. SUMMARY AND DISCUSSION

In this work we have firmly established an important effect
of the doped Mott insulator by ED and DMRG, which has
been overlooked in the previous studies. Namely, a single
hole or odd number of holes exhibits a composite structure
by generating independent spin currents in the background.
The latter should carry away a partial momentum or angular

momentum. In the one-hole ground state, for example, the
total momentum K0 = (±π/2,±π/2) has been previously
well established [8,15,21,24,38–41] in the t-J model and
experimentally [42,43]. But the corresponding single-electron
momentum distribution shows a much broadened feature
(cf. Fig. 9 and the detailed discussion in the Appendix). In
particular, in contrast to a pointlike quasiparticle without an
internal degree of freedom, here the chirality of the spin
current relative to the hole determines the sign of the total mo-
mentum/angular momentum and thus leads to a novel ground
state degeneracy. The doped hole is no longer a Landau’s
quasiparticle carrying the total momentum/angular momen-
tum satisfying the one-to-one correspondence principle. On
the other hand, the degenerate ground states with the charge
and spin modulations can be reconstructed from the current-
carrying states, with a period of doubled lattice constant in
the one-hole case [cf. Fig. 4(a)], which is consistent with the
observation in the neighborhood of a trapped charge state by
a defect in an undoped cuprate [44]. Furthermore, the novel
degeneracy, spin currents, and the charge/spin modulations
all disappear in the case of even number of holes, indicating
that the spin currents must play an important role to facilitate
pairing. Finally, if one makes an extrapolation to a finite hole
density in the thermodynamic limit, the even-odd effect of
doped holes could have a profound implication. If these holes
are indeed paired up in the ground state to form a d-wave
superconducting state, then a novel “pseudogap” phase may
be conjectured at finite temperature by the presence of a suf-
ficient amount of unpaired single holes, where the finite spin
and charge current loops as well as charge/spin modulations
or nematicity are expected to coexist. In particular, the charge
modulation period would be changed, depending on a Fermi
surface (pockets or arcs) emergent at finite doping as evolving
from the four points at K0 in the one-hole case. These are open
questions to be explored in future studies.
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APPENDIX: SUPPLEMENTARY MATERIALS

In the Appendix we shall define the neutral spin current,
backflow spin current, and charge current, respectively, and
address the continuity conditions of the currents. The DMRG
results of spin and charge currents for a 8×8 system doped
by hole will be also shown. Finally, the violation of Landau’s

one-to-one correspondence conjecture will be discussed based
on the momentum distribution function.

1. Spin and charge currents

Based on the t-J model in Eq. (1), there are two
globally conserved quantities, namely the hole number
Nh ≡ ∑

i (1 − ni ) = N − ∑
iσ c

†
iσ ciσ and the total magneti-

zation Sz
tot = ∑

i S
z
i as [H,Nh] = 0 and [H, Sz

tot] = 0 in the
restricted Hilbert space of ni � 1. In the Heisenberg picture
one has

d[1 − ni (τ )]

dτ
= i[H, 1 − ni] = −i(−t )

∑
〈jk〉,σ

[
c
†
jσ ckσ + H.c.,

∑
η

c
†
iηciη

]
≡

∑
j=NN (i)

J h
ij , (A1)

in which the hole current is identified by

J h
ij = −it

∑
σ

(c†iσ cjσ − H.c.) . (A2)

Similarly, for the local operator Sz
i ,

dSz
i (τ )

dτ
= i

[
Ht, S

z
i

] + i
[
HJ , Sz

i

] = i(−t )
∑
jk,σ

[
c
†
jσ ckσ + H.c.,

1

2

∑
η

ηc
†
iηciη

]
+ iJ

∑
jk

[
1

2
(S+

j S−
k + H.c.),

1

2

∑
η

ηc
†
iηciη

]

≡
∑

j=NN (i)

(
J b

ij + J s
ij

)
, (A3)

where the backflow current J b
ij associated with the hole hop-

ping and the neutral spin current J s
ij in the spin background

are, respectively, defined as follows:

J b
ij = i

t

2

∑
σ

σ (c†iσ cjσ − H.c.), (A4a)

J s
ij = −i

J

2
(S+

i S−
j − H.c.). (A4b)

In the main text, for simplicity, in calculating the neutral
spin current J s

ij we have set J = 1 in the definition of J s
ij in

Eq. (2). Note that in order to have conserved currents, one has
to include both J s and J b to restore the continuity condition.
As illustrated in Fig. 6, we compute J h, J s , J b, and J s

tot ≡
J s + J b in the Lz = −1 state of the t-J model with J/t = 0.3
and N = 4×4 under the OBC. We have checked that the total
spin currents in Fig. 6(d) does exactly satisfy the continuity
condition.

2. Neutral spin and charge currents at N = 8×8 by DMRG

In the DMRG calculations, it is usually difficult to directly
select a translational invariant state with a given momen-
tum quantum number due to the algorithm using local basis
states [19,20]. In our calculation we first calculate real wave
functions which speed up the DMRG process. However, we
can target different ground states and make superpositions
of these states to form momentum or angular momentum
eigenstates. For an open system, we first obtain the lowest
two energy eigenstates, which are always degenerating with
each other for the one-hole doped case with a suitable ratio of
J/t . The complex superpositions of these two ground states
[(|�01〉 ± i|�02〉)/

√
2] will make up two angular momentum

eigenstates with Lz = ±1, respectively. We then can measure
the spin and charge currents from one of these states, whose
patterns are shown in Fig. 7 for a lattice size N = 8×8 for
the t-J model at J/t = 0.3. We see that the spin and charge
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(a) (b)

FIG. 7. Spin and charge currents for the one-hole-doped t-J model on a 8×8 lattice under the OBC with J/t = 0.3. There are double
degenerate ground states associated with Lz = ±1. (a) spin current and (b) charge current.

currents in the ground state remain robust from 4×4 to 8×8,
as well as 12×4, which are tied up with the nontrivial exact
ground state degeneracy at a fixed Sz. It is interesting to
note that there is generally a staggered loop pattern in the
background of the charge current shown in Fig. 7(b), which
is consistent with that discussed in two-leg ladder systems
[30–32]. Its details will be further discussed elsewhere.

3. Momentum distribution: The breakdown
of the one-to-one correspondence principle

To further examine the physical implications of the pres-
ence of the neutral spin currents in the spin background,
we study the change of the momentum distribution of the
electrons upon doping:

δn(k) ≡ ne
0 − ne(k) = 1 −

∑
σ

c
†
kσ ckσ , (A5)

where ne
0 = 1 denotes the electron momentum distribution at

half-filling (the Mott antiferromagnet). So δn(k) measures the
change of the electron momentum distribution upon one hole
doping with

∑
k δn(k) = 1.

Let us consider, as an example, an N = 12×4 lattice with
one doped hole under the PBC, which can be shown to
have fourfold degenerate ground states at four total momenta
K0 = (±π/2,±π/2) by our DMRG calculation. A real-
wave-function ground state determined by DMRG exhibits the
charge modulation as shown in Fig. 4, which is a superposition
of the degenerate ground states of given K0’s. Correspond-
ingly we examine the momentum distribution δn(k) of such a
ground state in the following.

As shown by Fig. 8, δn(k) exhibits two major peaks lo-
cated at (π/2, π/2) and (3π/2, 3π/2). The latter is equivalent
to (−π/2,−π/2) in the first Brillouin zone. However, δn(k)
clearly shows a continuum background, indicating that the
individual electrons gain a broad range of momenta centered
around the total K0 upon one hole doping. Figure 9 further
illustrates the momentum distribution along the kx axis for

given ky’s. Both Figs. 8 and 9 directly indicate that the total
momentum is no longer solely carried by a single charge
carrier or quasiparticle. In other words, Landau’s one-to-one
correspondence principle, which is the basis for a Fermi
liquid, is violated here.

The persistent spin currents in the spin background pro-
vide a microscopic mechanism for such a breakdown of
the one-to-one correspondence. Indeed, the total momentum
is associated with the translational symmetry of the whole
many-body system, which includes both the doped hole and
the background spins. On the other hand, the concomitant
spin currents will carry away partial momentum and the
momentum transfer between the two degrees of freedom is
generally present. In other words, the hole is moving in a
quantum spin background which is not translational invariant

kx

0
π/2

π
3π/2

2π

ky

0

π/2

π
3π/2

2π

0.0

0.1

δnk

FIG. 8. The change of the electron momentum distribution
δn(k), when one hole is injected into the Mott insulator, is ob-
tained by DMRG with lattice size N = 12×4 under the PBC with
J/t = 0.3. Note that the corresponding ground state shows charge
modulation as given in Fig. 3(c).
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0 π 2π
kx

−0.02
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0 π 2π
kx

(b)

0 π 2π
kx

(c)

0 π 2π
kx

(d)

FIG. 9. δn(k) vs kx at fixed ky’s for the same ground state as in Fig. 8. The vertical dashed lines mark the positions of the total momenta
at (π/2, π/2) and (3π/2, 3π/2), by whose ground states the present degenerate state is superposed of. (a) ky = 0; (b) ky = π/2; (c) ky = π ;
and (d) ky = 3π/2.

as far as the doped charge is concerned. As a matter of fact, it
has been shown in Fig. 3 that the strength of the spin currents
is nonuniversal and smoothly changes with the coupling ratio
J/t . As the consequence, it implies that the adiabatic continu-

ity should no longer be valid here even though K0 is still well
defined. A in-depth analysis of breakdown of the one-to-one
correspondence for the two-leg ladder Mott insulators doped
by a hole has been recently given in Ref. [28].
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