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The Casimir effect, a two-body interaction via vacuum fluctuations, is a fundamental property of quantum
systems. In solid state physics it emerges as a long-range interaction between two impurity atoms via virtual
phonons. In the classical limit for the impurity atoms in D dimensions the interaction is known to follow the
universal power law U (r ) ∼ r−D . However, for finite masses of the impurity atoms on a lattice, it was predicted
to be U (r ) ∼ r−2D−1 at large distances. We examine how one power law can change into another with an increase
of the impurity mass and in the presence of an external potential. We provide the exact solution for the system in
one dimension. At large distances indeed U (r ) ∼ r−3 for finite impurity masses, while for the infinite impurity
masses or in an external potential it crosses over to U (r ) ∼ r−1. At short distances the Casimir interaction is not
universal and depends on the impurity mass and the external potential.
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In his pioneering work [1], Casimir showed that a change
of the zero-point energy due to a perturbation of the electro-
magnetic fluctuations by two neutral metallic plates leads to
observable forces between these plates. In fact, this is only one
example of the broad class of phenomena, which are based on
the concept of the perturbation of long-range fluctuations, e.g.,
Goldstone modes in the media with broken symmetry. Nowa-
days, this effect, named after Casimir, can be encountered in
various fields of physics, chemistry, and biology [2–8]. For
instance, in high-energy physics the existence of the Casimir
effect sets natural constraints on the Yukawa forces, appearing
due to the exchange of light elementary particles, and/or extra-
dimensional physics [9]. In cosmology the Casimir effect
helps to interpret the cosmological constant for a scalar field
[10–12]. In chemistry, in particular, it is used to explain the
interactions of molecules [13,14]. In biology, the Casimir
interaction is, for instance, found to be responsible for the
organization of the bilayer structure of cell membranes [15].

In condensed matter physics the effect of the Casimir inter-
action is extensively discussed with respect to the interaction
of conducting surfaces [16], graphene and conducting plates
[17], mesoscopic particles in a critical fluid through critical
fluctuations [18], and ultracold atomic gases [19–23].

In the latter case it is possible to study the Casimir inter-
action in ultraclean bosonic or fermionic gases on tunable
lattices with tunable spatial dimensionality and interaction
strength. In this context, one-dimensional (1D) setups attract
the most attention since the fluctuations are the strongest in
1D.

Precisely this situation was considered in Refs. [19–21].
The authors studied the interaction between two static impu-
rities due to the perturbation of phonon spectra in a Luttinger
liquid. Since the mechanism is similar to the one proposed
by Casimir, we hereafter denote it as the Casimir interaction.
The examination of the energy of zero-point motion of the
Luttinger liquid in the presence of two impurities yielded
the Casimir interaction U (r ) ∼ −1/r . This dependence can

be easily understood considering the zero-point energy of
phonons in a potential well formed by two static impurities.
The direct calculation leads to the following expression for
the Casimir interaction [24,25],

U (r ) = − cπ

24r
(1)

(here and below we use h̄ = 1).
At the same time, for two dynamical impurities which

can move inside the medium, Schecter and Kamenev [26]
proposed an essentially different r dependence, U (r ) =
−mc2 �1�2

32π

ξ 3

r3 , where m is the mass of particles in the fluid,
c is the sound velocity, ξ = 1/mc, and the dimensionless
parameters �1,2 are impurity-phonon scattering amplitudes.
How the power law for dynamic impurities transforms to
another for the static impurities is an open question.

To address this question, we investigate two impurities
interacting with Goldstone phonons. To avoid possible ultra-
violet divergences we map the model on a harmonic crystal
lattice with two impurity neutral atoms. It is arguably the
simplest model in which one can tune impurities continuously
from dynamic to static and keep track of the evolution of the
Casimir interaction.

In this model the Casimir interaction emerges naturally
between two impurity atoms as soon as their mass is different
from the masses of the lattice atoms or an external potential
is applied. Then we consider the corresponding continuous
model of two atoms interacting via virtual phonons.

We find that the Casimir interaction has different asymp-
totics in these two cases. In the former one, for any finite mass
of the impurity atoms, the Casimir interaction tends to the
1/r3 law at large distances, in agreement with Ref. [26]. At the
same time, in the limit of infinite impurity mass the long-range
asymptotic tends to 1/r , in agreement with Refs. [19–21]. In
the case of an external potential the asymptotics is always 1/r .

Our Rapid Communication is organized as follows. First,
we consider two neutral impurity atoms embedded in a har-
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monic crystal lattice. Using the exact diagonalization method
we show that the power law at short distances strongly
deviates from 1/r3 and the characteristic distance of the
crossover to 1/r3 law depends on the masses of the impurity
atoms. Then we provide the exact solution for the model
and formulate the continuum model. In the second part we
formulate and exactly solve the model of two impurity atoms
in an external harmonic potential. We show that the model has
1/r asymptotic behavior. Finally, we provide a discussion of
the obtained results and conclusion.

The model. We analyze an ideal harmonic cubic lattice

described by H0 = ∑
i

p2
i

2m
+ mω2

0
2

∑
〈i,j〉(ui − uj )2, with two

embedded impurity atoms, which have mass or an external
potential different from the mass/potential of the atoms of
the lattice. Here, pi and ui are the momentum and coordinate
operators, m is the mass of the atoms of the cubic lattice, and
mω2

0 is the interaction potential.
The Bogoliubov transformation brings H0 to the Hamilto-

nian of noninteracting phonons,

H0 =
∑

k

ωk

(
b
†
kbk + 1

2

)
, (2)

with the phonon spectrum ωk = ω0
√

Z(1 − γk ). Here, γk =
1
Z

∑
� eik� with the summation over the nearest neighbors

and Z the number of the nearest neighbors. In the one-
dimensional case it reduces to ωk = 2ω0| sin(ka/2)|, where a

is the lattice constant. In the low-energy limit ωk = c|k| with
the phonon velocity c = ω0a. Further, for simplicity, we put
a = 1.

Two impurity atoms having different masses. First, we
consider two impurity atoms with masses M located at the
sites a and b. The resulting Hamiltonian of the system is
H = H0 + V with the perturbation term of the kinetic energy,

V = − g

2m

(
p2

a + p2
b

)
, (3)

where the effective coupling constant g = (1 − m/M ).
Exact diagonalization. The Hamiltonian with two embed-

ded impurity masses M cannot be reduced to the Hamilto-
nian of free phonons. However, one can find the Casimir
interaction, i.e., the dependence of the total energy of zero-
point motion E = 1

2

∑
ka ω̃k of all atoms of the lattice on the

distance between the impurity atoms.
The result of the exact diagonalization method for a 200-

atom chain for various masses of impurity atoms is shown
in Fig. 1. Surprisingly, the Casimir energy U (r ) between
dynamic, finite-mass impurities does not follow U (r ) ∼ 1/r3.
Rather, the interaction is nonuniversal and depends on the
mass of the impurity atoms (Fig. 1). One can note that the
normalized Casimir interaction for masses larger than m is in
the range 1/r3 < E < 1/r for r > 1, and for light impurities
(M < m) it is E < 1/r3. For impurity masses close to m,
the Casimir interaction tends to the 1/r3 law and in the limit
M → ∞ (static impurities) one observes the 1/r law.

Perturbation theory. To find the reason for this drastic
deviation of the r dependence of the Casimir interaction from
the 1/r3 law, we employ the perturbation theory. For the

FIG. 1. Normalized Casimir interaction Ueff (r ) calculated for a
chain of 200 atoms with two impurity atoms with various masses
[27]: Red dots, g = 0.1 (M/m = 1.1); purple, g = 0.6 (M/m =
2.5); green, g = 0.875 (M/m = 8); brown, g = 0.95 (M/m = 20);
orange, g = 0.99 (M/m = 100); blue, g = 0.998 (M/m = 500);
turquoise, g = −0.5 (M/m = 0.5). The red line shows the 1/r3 law,
the blue line shows 1/r .

calculation we express Eq. (3) in the phonon operators,

V =
∑
q,q′

(
V

(1)
q,q′b

†
qbq′ + V

(2)
q,q′

bqbq′

2
+ H.c.

)
. (4)

Here, the vertices are

V
(1)

q,q′ = −V
(0)

q,q′ cos
(q − q′)r

2
,

V
(2)

q,q′ = V
(0)

q,q′ cos
(q + q′)r

2
,

with r = ra − rb and V
(0)

q,q′ = g
√

ωq
√

ωq ′ , where ωq, ωq ′ are
the free-phonon spectra given above. We choose ra + rb = 0
for simplicity.

The first-order term of the perturbation theory is r in-
dependent and therefore does not contribute to the Casimir
interaction. The lowest contributing order is the second order
of the perturbation theory,

U
(2)
eff (r ) = −2T

∑
n

∣∣V (2)
k,k+q

∣∣2
ωkωk+q(

ω2
n + ω2

k

)(
ω2

n + ω2
k+q

) . (5)

Here, ωn = 2πT n is the Matsubara frequency.
At large distances r 	 1 the leading contribution comes

from the small momenta. At zero temperature the integra-
tion Eq. (5) can be performed analytically for the linearized
spectrum ωk = ck with the use of the substitution T

∑
n →∫

dωn/2π . The result is the 1/r3 law,

U
(2)
eff (r ) = −g2ω0

32π

1

r3
. (6)

This dependence agrees with that previously found in
Ref. [26], but disagrees with the results of the exact diago-
nalization.
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FIG. 2. Casimir interaction in the perturbation theory: Gray dots,
second order; brown dots, diagrams up to the third order; red dots, up
to the fourth order; blue dots, energies obtained by the exact diago-
nalization. Inset: Contribution of different orders of the perturbation
theory to the total result.

Higher order of perturbation theory. To understand the
origin of the deviation from 1/r3 law, we explore higher-
order phonon processes, which correspond to the multiple
scattering of phonons on the impurities. The result of the
perturbation theory up to four-phonon processes for g = 0.5
is presented in Fig. 2. Here, we keep only r-dependent terms.
One immediately notes that the third and fourth orders of
the perturbation theory significantly renormalize the Casimir
interaction. Plotting the sum of all terms up to the fourth
order, one can see a good match with the results of the exact
diagonalization.

One can find exactly the thermodynamic potential in this
model. It is given by diagrams shown in Fig. 3. The obtained
thermodynamic potential �(r ) contains an r-independent
term, which is related to the perturbation of the zero-point
motion by uncorrelated impurity atoms (r → ∞). Defining
Ueff (r ) = �(r ) − �(∞) we arrive at the following expres-
sion,

Ueff (r ) = 1

2
T

∑
n

ln

[
1 −

(
gG(ωn, r )

1 − gG0(ωn)

)2
]
, (7)

where G(ωn, r ) are the phononic Green’s functions in the
coordinate space. Here, we define the phononic field so that
k dependence is transferred from the vertex to the Green’s

+ + + 1
4

1
3

1
2

+...

FIG. 3. The diagrammatic representation of the thermodynamic
potential.

function (for details, see the Supplemental Material [28]),

G(ωn, r ) =
∫ π

−π

dk

2π
cos(kr )

ω2
k

ω2
n + ω2

k

= −ω0

c
f

( |ωn|
2ω0

, r

)
, (8)

with

f (x, r ) = x√
1 + x2

(x +
√

1 + x2)−2r ,

and

G0(ωn) = 2
∫ π

0

dk

2π

ω2
k

ω2
n + ω2

k

= 1 − ω0

c
f

( |ωn|
2ω0

, 0

)
. (9)

One can note that the Green’s function for r 	 1 decays
exponentially, ∼e−2rωn/ω0 . It means that the main contribution
to the Casimir interaction comes from the low-energy acoustic
phonons.

Continuum limit. The low-energy Hamiltonian can be ob-
tained from Eqs. (2) and (4) by linearization of the spectrum
for small momenta ωk = c|k|. The corresponding Hamilto-
nian is

H =
∑

k

c|k|b†kbk + gc
∑
k,k′

√
|k||k′|

× cos

[
(k + k′)r

2

](
b
†
kbk′ + bkbk′ + b

†
kb

†
k′

2

)
. (10)

This expression is similar to that used in Ref. [26]. To calcu-
late the thermodynamic potential in the continuum limit we
use the results of the previous section, changing the limits
of the integration from the Brillouin zone to infinity. Note
that the integral in Eq. (9) becomes divergent and has to
be renormalized. For this we use the mapping to the lattice
model of the previous section (this procedure is discussed in
Ref. [29]). In this approach, at T = 0 the Casimir energy reads

Ueff (r ) =
∫ ∞

0

dωn

2π
ln

⎡
⎣1 −

(
gωn

2c
e− ωr

c

1 − g + gωn

2c

)2
⎤
⎦. (11)

To trace the dependence of the Casimir interaction on the
coupling constant g < 1 and distance r at T = 0 we intro-
duce the logarithmic derivative ν = − d ln[E(r )]

d ln(r ) . For power-law
functions 1/rν it gives the power ν. The results are summa-
rized in Fig. 4. The interval 0 < g � 1 describes the impurity
masses m < M � ∞. The line g = 0 is the singular line
where Ueff = 0, and the interval −∞ < g < 0 corresponds to
M < m. One can see from the figure that although for small
distances the Casimir interaction cannot be described by the
functions 1/rν , at large distances the dependence tends to
1/r3. The characteristic distance of the crossover to the 1/r3

law is rg = g

1−g
(see Supplemental Material [28]). Finally, in

the limit g → 1, the Casimir interaction depends as 1/r from
the distance between the impurity atoms and coincides with
Eq. (1).
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FIG. 4. Logarithmic derivative ν = − d ln Ueff (r )
d ln r

as the function
of r and g of the Casimir interaction between two impurity atoms
having different masses.

External potential. Now we consider two atoms in an
external harmonic potential which is defined by the following
Hamiltonian,

V = gmω2
0

(
u2

a + u2
b

)
, (12)

with the interaction constant g � 0. It leads to the new inter-
action term V

(0)
q,q′ ,

V
(0)

q,q′ = − gω2
0√

ωq
√

ωq ′
. (13)

The bosonic Green’s functions are (see Ref. [28] for the
definition)

G(ωn, r ) = ω0

c

ω2
0

ω2
n

f (|ωn|/2ω0, r ), (14)

G0(ωn) = ω0

c

ω2
0

ω2
n

f (|ωn|/2ω0, 0). (15)

The direct calculation exhibits that all orders of the perturba-
tion theory are divergent at the low-energy limit [28], but the
summation of the whole series of the diagrams (Fig. 3) leads
to cancellation of the singularities and a finite expression for
the thermodynamic potential [Eq. (7)]. The phononic Green’s
functions are given by Eqs. (14) and (15).

The correspondent continuous model is different from
Eq. (10) and is given by

H =
∑

k

c|k|b†kbk + g
∑
k,k′

ω2
0

c
√|kk′|

× cos

[
(k + k′)r

2

](
b
†
kbk′ + bkbk′ + b

†
kb

†
k′

2

)
. (16)

FIG. 5. Logarithmic derivative ν = − d ln Ueff (r )
d ln r

as the function of
r and g for the Casimir interaction between two masses in an external
potential.

The Casimir interaction has the form

Ueff (r ) = T
∑
n>0

ln

⎡
⎣1 −

⎛
⎝g

ω2
0

2cωn
e− ωn

c
r

1 + gω2
0

2cωn

⎞
⎠

2⎤
⎦. (17)

A similar expression was obtained in Ref. [20]. To understand
the scaling behavior at T = 0 we plot the logarithmic deriva-
tive ν of the Casimir interaction Ueff given by Eq. (17) as a
function of r and g in Fig. 5. For small values gr the law is
not universal, but Ueff tends to 1/r as soon as gr 
 1. The
integral Eq. (17) in the limit gr 	 1 matches the previously
found expression for M → ∞ [Eq. (1)].

Discussion and conclusions. The obtained long-range in-
teraction can be observed experimentally in ultracold atomic
gases as was shown in Ref. [20]. Since the competing Casimir-
Polder interaction falls off much faster, namely, as 1/r6, in
the experimental setup of Ref. [30] for the impurities at a
distance of 1 μm, the phonon-induced Casimir interaction
should dominate [31].

Summarizing, we have analyzed the evolution of the
phonon-induced Casimir interaction between two impurity
atoms. We have given the exact solution of the model and
have studied the evolution of the Casimir interaction with a
change of the impurity atoms’ masses and the effect of an
external potential. We have shown that multiboson processes
change the scaling of the interaction decay with distance and
the mass of the considered object plays an important role. As a
consequence, the behavior at small distances differs from the
power law at large. At large distances between two dynamic
impurities the Casimir interaction is universal and obeys the
1/r3 law. For static impurities it tends to the 1/r law.
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