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Majorana stripe order on the surface of a three-dimensional topological insulator
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The issue on the effect of interactions in topological states concerns not only interacting topological phases but
also novel symmetry-breaking phases and phase transitions. Here we study the interaction effect on Majorana
zero modes (MZMs) bound to a square vortex lattice in two-dimensional topological superconductors. Under the
neutrality condition, where single-body hybridization between MZMs is prohibited by an emergent symmetry,
a minimal square-lattice model for MZMs can be faithfully mapped to a quantum spin model, which has no
sign problem in the world-line quantum Monte Carlo simulation. Guided by an insight from a further duality
mapping, we demonstrate that the interaction induces a Majorana stripe state, a gapped state spontaneously
breaking lattice translational and rotational symmetries, as opposed to the previously conjectured topological
quantum criticality. Away from neutrality, a mean-field theory suggests a quantum critical point induced by
hybridization.

DOI: 10.1103/PhysRevB.98.161409

Topological states are currently the focus of intensive
research [1–3]. In particular, bulk-boundary correspondence
is a central guiding principle, which predicts low-energy
modes at the interface between topologically distinct states.
It also applies to topological defects (such as dislocations and
superconducting vortices) in topological matter, because they
can be regarded as generalized interfaces bordering on normal
states [4–11]. Of particular interest are Majorana zero modes
(MZMs) at vortices in two-dimensional (2D) topological su-
perconductors. Besides exploring the potential of MZMs for
quantum computation [12–21], the idea of designing lattices
of Majorana fermions out of MZMs is fascinating in its own
right, because the interaction between MZMs may lead to
novel phases and critical phenomena [22–30].

In this Rapid Communication, we study a square lattice
of interacting MZMs, which may emerge at vortices in a
2D topological superfluid and superconductor [31–36], as
predicted for the A phase of 3He and Sr2RuO4 [37–39]. For
definiteness, we consider a surface of a 3D strong topologi-
cal insulator subject to superconducting proximity effect, as
proposed by Fu and Kane [15]. The predicted surface state re-
sembles a spinless px ± ipy superconductor; see Refs. [40,41]
for recent experimental progress. When an Abrikosov vortex
lattice is induced by a magnetic field, MZMs are expected
to emerge at vortices [5], leading to a lattice of Majorana
fermions at low energies. Here we assume additional condi-
tions to stabilize a square vortex lattice such as strong fourfold
lattice anisotropy, which is less common than a triangular
lattice but possible (e.g., LuNi2B2C [42]). We demonstrate
that a faithful spin representation of a minimal interacting
Hamiltonian for Majorana fermions can be derived in the
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square lattice under the neutrality condition, which further-
more allows for employing a quantum Monte Carlo (QMC)
method [43] to investigate thermodynamic properties of very
large lattices unbiasedly. We find a Majorana stripe phase and
present a duality transformation elucidating the nature of this
phase, which supersedes the previously proposed topological
quantum criticality [25]. We then extend our analysis away
from neutrality by a mean-field (MF) theory by including the
nearest-neighbor hybridization, where we find a quantum crit-
ical point induced by Majorana hybridization, beyond which
Majorana fermions have gapless dispersion.

At the noninteracting level, the system is described in
the long-wavelength limit by the Fu-Kane Hamiltonian [15]
ĤFK = 1

2

∫
d2r �̂

†
r H FK(r)�̂r, with �̂r = (ψ̂↑r, ψ̂↓r, ψ̂

†
↓r,

−ψ̂
†
↑r )T being the Nambu spinor of the electronic operators

ψ̂
(†)
αr (α =↑,↓) and

H FK(r) = τ z(−ivFσ · ∇ − μF) + Re �(r)τ x + Im �(r)τ y,

(1)

where σ (τ ) is the Pauli matrix in the spin (Nambu) basis,
μF is the chemical potential, �(r) is the proximity-induced
pair potential, and vF is velocity of the surface Dirac mode
when � = 0. The distribution and structure of vortices are
encoded in �(r). The neutrality condition corresponds to
μF = 0, which has a significant consequence on the emer-
gent symmetry of the effective Hamiltonian [25,26]. When
satisfied, an artificial time-reversal symmetry �eff = σxτ xK

(K is the complex conjugation) with �2
eff = 1 emerges in

addition to the particle-hole symmetry � = σyτ yK inherent
to the Bogoliubov–de Gennes formalism. The consequence
is that the vortex-bound MZM takes the form γ̂ = γ̂ † =∫

d2r(urψ̂↓,r + u∗
rψ̂

†
↓,r ), i.e., with the spin antiparallel to

the magnetic field [26]. Because �̂eff γ̂ �̂−1
eff = γ̂ and �̂eff

is antiunitary, single-body hybridization iγ̂rγ̂r′ is prohibited
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FIG. 1. MZMs and the JW transformation. (a) Square lattice
of MZM, where shaded plaquettes represent the interaction g and
directed links from site r to site r′ represent the hybridization
term it γ̂rγ̂r′ . (b) JW transformation of Ĥg with the column-major
site ordering nCM. Ellipses show pairing of MZMs with crosses
representing σ spins. (c) A plaquette term involving two (four) pairs
is transformed to the Ising (four-spin) coupling, where r′

σ = rσ + 2b.
(d) Lattice of σ spins.

between any pair of MZMs at r and r′. For an interacting
many-body system, this means that the neutrality condition
corresponds to the strong-coupling limit for the Majorana
modes.

Assuming the simplest, quartic local interaction of the
vortex Majorana modes on the square lattice, we consider the
following Hamiltonian Ĥ = Ĥg [25,28] with

Ĥg = g
∑
�

γ̂�1
γ̂�2

γ̂�3
γ̂�4

, (2)

where γ̂r is the Majorana fermion operator at site r satisfying
γ̂
†
r = γ̂r and {γ̂r, γ̂r′ } = 2δr,r′ and the summation runs over el-

ementary plaquettes; �1 − �4 are four corners of a plaquette,
�2 = �1 − b, �3 = �1 + a, and �4 = �3 − b, with a and b
the primitive lattice vectors [Fig. 1(a)].

As the hybridization term allowed for μF �= 0 [44], we con-
sider the following nearest-neighbor hybridization, discussed
in, e.g., Refs. [25,34]:

Ĥt = it
∑

r

[γ̂r γ̂r−b + (−1)ry γ̂rγ̂r+a], (3)

which has a uniform π flux per plaquette because of the
underlying vortices. Equation (3) preserves the full symmetry
of the square lattice (e.g., the translation in the b direction
is accompanied by a gauge transformation). By continuity,
we expect |t | � |g| for small μF. We assume g, t > 0 unless
otherwise mentioned.

We start from Ĥ = Ĥg (2). Assuming a periodic (open)
boundary condition in the a (b) direction, we map it to a
spin model by using a 2D Jordan-Wigner (JW) transforma-
tion. We define a complex fermion ĉrσ

= 1
2 (γ̂rσ ,1 + iγ̂rσ ,2)

by introducing an artificial (but arbitrary) pairing convention
[Fig. 1(b)], where rσ is the position of a pair combining γ̂rσ ,1

and γ̂rσ ,2. Assuming the site-ordering (“column-major”) index

nCM(rσ ) in Fig. 1(b), the transformation is ĉ
†
rσ

ĉrσ
= 1

2 (1 +
σ̂ z

rσ
) and ĉ

†
rσ

= 1
2 (

∏
nCM(r′

σ )<nCM(rσ ) σ̂
z
r′
σ
)(σ̂ x

rσ
+ iσ̂

y
rσ

), where σ̂ α

(α = x, y, z) are Pauli matrices. We find

γ̂rσ ,2γ̂rσ ,1γ̂rσ +a,2γ̂rσ +a,1 = −σ̂ z
r1
σ̂ z

r1+a,

γ̂r′
σ ,1γ̂rσ ,2γ̂r′

σ +a,1γ̂rσ +a,2 = −σ̂ x
rσ

σ̂ x
r′
σ
σ̂ x

rσ +aσ̂
x
r′
σ +a, (4)

with r′
σ = rσ + 2b, where the number of pairs involved in the

interaction is two and four, respectively [Fig. 1(c)]. The string
factor does not appear in either case. We obtain

Ĥg,σ = −J
∑

rσ

σ̂ z
rσ

σ̂ z
rσ +a − P

∑
�σ

⎛
⎝ ∏

rσ ∈�σ

σ̂ x
rσ

⎞
⎠, (5)

with J = P = g, which combines the Ising coupling J on
the horizontal bonds and a transverse four-spin term P as-
sociated with plaquettes (�σ ) of σ spins [Fig. 1(b)]. In this
representation (5), we can apply the world-line QMC method
[43] to study the thermodynamic properties of MZMs without
a negative sign problem. Specifically, we use the directed-loop
algorithm [45,46] in the σx basis. To reduce finite-size effects,
we use a trick of fictitious MZMs to simulate the lattice of
Majorana fermions comprising an even number of plaquettes
in the b direction (see Supplemental Material [47]). We inves-
tigate the spin lattices of L × L up to L = 60, corresponding
to L × (2L − 1) MZMs, significantly larger than the previous
exact diagonalization (ED) study up to 4 × 15 MZMs [25].

Figure 2(a) shows the specific heat C. In addition to the
broad peak around temperature T ≈ g, it exhibits a size-
dependent sharp anomaly at T/g ≈ 0.25, indicating a finite-
temperature transition. This observation points to a symmetry
breaking phase at low T , which contradicts with the previous
ED study, where by introducing a two-site modulation in g

[equivalent to making J �= P in Eq. (5)], it was suggested that
the system becomes gapless when the original translational
and rotational symmetries are recovered (i.e., J = P ) [25].
To clarify the nature of the low-T state, we first note that
the string operator Ô

spin
h (y) = ∏

rx
σ
σ̂ x

rσ =(rx
σ ,y) is a conserved

quantity for any horizontal (‖ a) chain, which flips σ z eigen-
values of all spins at r

y
σ = y. Known as a generalized Elitzur’s

theorem [48], the corresponding gaugelike 1D symmetries
reduce the effective dimensionality of the order parameter
field σ z from 2D to 1D. Hence the conservation of Ô

spin
h (y)

prohibits any kind of long-range order of σ z at T > 0; this 1D
physics may explain the broad peak of C at high T , but not
the transition itself.

To elucidate the nature of the low-T phase and the tran-
sition, we show that Ĥg,σ (hence Ĥg) is dual to decoupled
two copies of a square-lattice quantum compass model (see
Supplemental Material [47]). This model was investigated
in depth in various contexts [49–60], and the corresponding
knowledge is very useful for understanding the nature of
the low-T phase. Explicitly, we first define “τ spins” at
the midpoint of every horizontal link. With the “row-major”
site ordering nRM(rσ ) in Fig. 3(a), the first transformation is
τ̂ z

rτ
= σ̂ z

rσ
σ̂ z

rσ +a, τ̂ x
rτ

= ∏
nRM(r′

σ )�nRM(rσ ) σ̂
x
r′
σ

with rτ = rσ + a
2 ,

by which the J and P terms become an effective magnetic
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FIG. 2. QMC results in the spin representation (5) with J = P = g in the L × L lattice with the fictitious MZM trick (see Supplemental
Material [47]). (a) Specific heat C = (1/L2 )∂〈Ĥg,σ 〉/∂T , (b) the order parameter 〈|D̂σ |〉 of the Majorana stripe state, and (c) the Binder
parameter. The inset in (b) illustrates the local order parameter D̂σ (rσ ) (8) and its relation with a pair of Majorana plaquettes.

field and a four-spin interaction for τ spins, respectively. We
find that the new four-spin interaction does not mix τ spins
in even and odd columns, e.g., σ̂ x

rσ
σ̂ x

rσ +aσ̂
x
rσ +2bσ̂

x
rσ +a+2b =

τ̂ x
rτ −aτ̂

x
rτ +aτ̂

x

rτ −a+2b
τ̂ x

rτ +a+2b [Fig. 3(d)]. Consequently, the dual

Hamiltonian is composed of decoupled even and odd compo-
nents as Ĥg,τ = Ĥ e

g,τ + Ĥ o
g,τ , with

Ĥ e(o)
g,τ =

∑
rτ ∈ even

(odd) columns

(−J τ̂ z
rτ

−P τ̂ x
rτ

τ̂ x
rτ +2aτ̂

x
rτ +2bτ̂

x
rτ +2a+2b

)
.

(6)

To complete the mapping, we introduce “μ spins” at the mid-
point of each vertical link (rτ , rτ + 2b) for τ spins, such that
μ̂x

rμ
= τ̂ x

rτ
τ̂ x

rτ +2b, μ̂z
rμ

= ∏
ñCM(r′

τ )�ñCM(rτ ) τ̂
z
r′
τ

with rμ = rτ + b,
where ñCM(rτ ) is the column-major ordering for τ spins
[Fig. 3(b)]. This preserves the decoupling of Ĥ e

g,τ and Ĥ o
g,τ ,

FIG. 3. Two-step duality transformation, introducing (a) τ spins
and (b) μ spins. (c) The J term is transformed to the interaction
μ̂z

rμ
μ̂z

rμ+2b. (d) The P term (highlighted filled rectangle) is trans-
formed first into a four-spin coupling for τ spins (round rectangle)
and then to μ̂x

rμ
μ̂x

rμ+2a. (e) Resulting decoupled copies of the quan-
tum compass model for μ spins (shifted vertically for clarity).

transforming each into the quantum compass model on a
square lattice with an enlarged unit cell [Figs. 3(c) and 3(e)],

Ĥ e(o)
g,μ =

∑
rμ ∈ even (odd) column

( − P μ̂x
rμ

μ̂x
rμ+2a − J μ̂z

rμ
μ̂z

rμ+2b

)
.

(7)

The total Hamiltonian is Ĥg,μ = Ĥ e
g,μ + Ĥ o

g,μ.
The most crucial input from the duality transformation

is that the compass model with J = P = g is known to
undergo a “nematic” transition in the Ising universality class
at a finite temperature [50,53,54]. Below the critical tempera-
ture T = Tc, the Z2 spin-lattice reflection symmetry [x ↔ z

(a ↔ b) in the spin (real) space] is spontaneously broken,
while any spin-spin correlation function such as 〈μ̂x

rμ
μ̂x

r′
μ
〉 and

〈μ̂z
rμ

μ̂z
r′
μ
〉 remains short ranged. This Z2 symmetry breaking

can be detected by a directional order parameter D̂μ(rμ) =
μ̂x

rμ
μ̂x

rμ+2a − μ̂z
rμ

μ̂z
rμ+2b [49]. Back to the language of Majo-

rana fermions, the even-odd decomposition (Ĥg,μ = Ĥ e
g,μ +

Ĥ o
g,μ) corresponds to the geometrical checkerboard decompo-

sition of Ĥg (2). Defining ĤA
g and Ĥ B

g as composed of quartic
interactions in one sublattice (A) of the checkerboard decom-
position and its complement (B), respectively [Fig. 4(a)], we
find Ĥg = ĤA

g + Ĥ B
g and [ĤA

g , Ĥ B
g ] = 0. Here, ĤA

g corre-
sponds to Ĥ e

g,μ or Ĥ o
g,μ and Ĥ B

g does to the other. In fact,
each Ising-like bond interaction in Ĥ e(o)

g,μ (7) corresponds to
a plaquette term that it graphically overlaps in the lattice, as
illustrated in Fig. 4(a). Hence the nematic order quantified by
D̂μ corresponds to a spontaneous energy density modulation
associated with the plaquette interaction g. As shown in
Fig. 4(b), the even-odd decoupling implies that the energy-
density wave order emerges in the two sublattices A and
B independently (Z2 × Z2 symmetry breaking), resulting in
fourfold degenerate ground states modulo the aforementioned
1D symmetries.

We confirm this Majorana stripe order by evaluating the
order parameter by QMC. Figure 2(b) shows 〈|D̂σ |〉 with
D̂σ = N−1 ∑′

rσ
D̂σ (rσ ), where the summation runs over ei-

ther even or odd columns, N is a proper normalization (see
Supplemental Material [47]), and

D̂σ (rσ ) = σ̂ z
rσ +aσ̂

z
rσ +2a − σ̂ x

rσ +2bσ̂
x
rσ

σ̂ x
rσ +a+2bσ̂

x
rσ +a (8)
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FIG. 4. Majorana stripe order. (a) Correspondence between the
checkerboard decomposition of Ĥg (2) and the even and odd com-
ponents of the compass model. (b) Fourfold degenerate ordered state
and the relation with the nematic order in the compass model.

is the order parameter in the σ -spin representation. We find
that the temperature dependence of 〈|D|〉 is consistent with the
transition into the Majorana stripe phase (the nonmonotonic
T dependence for small L is suggested to be a finite-size
effect due to the open boundary condition in the b direction).
Figure 2(c) shows the Binder parameter U4,D = 〈D̂4

σ 〉/〈D̂2
σ 〉2,

which exhibits crossing for different L, providing another
confirmation of the transition. The crossing takes place at
Tc/g ≈ 0.25(1), in agreement with the location of the diver-
gent peak of C.

Finally, we consider the effect of the nearest-neighbor
hybridization Ĥt (3) on the Majorana stripe phase. The finite-
temperature Ising transition implies a first-order transition
line in the extended T -�g phase diagram [Fig. 5(a)], where
nonzero �g ≡ P − J explicitly breaks the translational sym-
metry [Fig. 1(c)]. Since the QMC method has the sign
problem when applied to Ĥ = Ĥg + Ĥt , we employ the MF
approximation in the Majorana representation to examine
the discontinuous transition at T = 0. Figure 5(b) shows the
order parameter D = 〈D̂σ 〉 as a function of �g/g for t/g =
0.2, 0.8. For t/g = 0.2, D remains finite as �g → 0, and
exhibits a jump upon changing the sign of �g, indicating
that the discontinuous transition persists even in the presence
of weak hybridization. This in turn implies that the finite-T
transition remains stable for small t , although the induced
coupling between the A and B subsystems may alter the uni-
versality class [61]. As t increases, the discontinuity at �g =
0, �D, is reduced and vanishes for t > tc ≈ 0.65g [Fig. 5(d)].
As shown in Fig. 5(c), the MF band structure of Majorana

Δ

Δ

Δ
Γ Γ

εgap = g ΔD

εk

FIG. 5. MF results for Ĥt + Ĥg . (a) Schematic phase diagram
in the T -�g plane showing a first-order transition line ending at
finite-T critical point. (b) Stripe order parameter D as a function of
�g for t/g = 0.2, 0.8. (c) Majorana MF band structure for varying
t . (d) Energy gap εgap(t ) for �g = 0, which is related to the jump
�D of the stripe order parameter at �g = 0 as εgap = g�D (see
Supplemental Material [47]).

fermions in the limit �g → 0 in the stripe phase (t < tc) is
gapped with a topologically trivial band structure, where the
energy gap is εgap = g�D (see Supplemental Material [47]).
With increasing t , the gap reduces and vanishes for t � tc,
giving rise to a critical state with gapless Majorana fermions.
Assuming that the critical temperature Tc ≈ εgap, our result
suggests Tc → 0 as t → tc. Our calculation thus points to
the existence of a quantum critical point characterized by
gapless Majorana fermion excitations for t � tc. We note
that the effect of including second-neighbor hybridization,
which produces a gap in the excitation spectrum, was recently
discussed [28].

In summary, the square-lattice Majorana Hamiltonian
Ĥt + Ĥg , which may have an experimental realization in the
hybrid of a 3D strong topological insulator and a supercon-
ductor, induces a stripe order that spontaneously breaks the
translational and rotational symmetries in the strong-coupling
regime g � t , as opposed to the previously conjectured topo-
logical quantum critical behavior [25]. Our large-scale QMC
simulation as well as the duality mapping (via the JW trans-
formation) provide a solid confirmation of this phenomenon.
We note that Affleck et al. also investigated the same model
recently from the weak-coupling side, suggesting that the
quantum phase transition t = tc belongs to a supersymmetric
universality class [28]. Our unbiased approach coming from
the strong coupling is complementary to their weak-coupling
analysis. In fact, t �= 0 lifts the 1D gaugelike symmetries,
reducing the Majorana stripe state to the dimerized state found
by Affleck et al. using a MF treatment similar to ours. We hope
that our work will trigger an experimental effort in the search
for intriguing phase transitions in the system of interacting
Majorana modes, which may be synthesized on the surface of
a 3D topological insulator as proposed recently [25,26].
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