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Coexistence of spin-1 fermion and Dirac fermion on the triangular kagome lattice

Luyang Wang* and Dao-Xin Yao†

State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China

(Received 15 May 2018; published 10 October 2018)

Quasiparticle excitations beyond the Dirac-Weyl-Majorana classification can appear in lattice systems due to
a lesser symmetry constraint compared with Poincaré symmetry in high-energy physics. In particular, fermions
with an integer spin can appear in a variety of lattices. Here, we show that two-dimensional spin-1 fermions may
coexist with Dirac fermions in the triangular kagome lattice (TKL). We derive a four-band effective model that
hosts both types of fermions. The effective model can be used to study the interplay between spin-1 and spin-1/2
fermions. As an example, using this model we show that spin-nonconserving Klein tunneling can occur in the
TKL, which has a transmission coefficient T = 1 for normal incidence. Our findings pave a way to the study of
the interaction and interplay between different types of fermions in lattice systems.
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Introduction. Fermionic quasiparticles which have no
counterpart in particle physics can emerge in condensed
matter systems [1]. In particle physics, Poincaré symmetry
constrains the types of fermions, and they are classified by the
Dirac-Weyl-Majorana regime [2]. While Dirac fermions are
found, the existence of Weyl fermions and Majorana fermions
is still under debate. In condensed matter systems, lattices
respect space group symmetries and are less constrained,
hence they can host more types of fermions. Besides Dirac
and Weyl fermions, fermions with a higher spin including
spin-1 and spin-3/2 [1,3–5] and other types such as triple
point fermions [6,7] could appear in three-dimensional (3D)
solids, and are protected by space group symmetries.

Fermions with a higher spin could also appear in two-
dimensional (2D) lattices, which has been shown in a variety
of cases [8–23]. In particular, spin-1 fermions may appear in
the T3 lattice [8], Lieb lattice [9,11], kagome lattice [10,20],
and stacked triangular lattice [13]. Spin-1 fermions in 2D
exhibit distinct novel effects, such as super-Klein tunnel-
ing [12,17], diverging dc conductivity [16], and an unconven-
tional quantum Hall effect [24].

To study the interplay between different types of fermions
which can be quite interesting, systems with their coexistence
are highly desired. Such a coexistence has been found in
several 3D systems. For example, it has been shown that
Weyl fermions coexist with triple point fermions in ZrTe [25];
Weyl fermions and spin-3/2 fermions coexist in tricolor cubit
lattices [3]; and Weyl fermions coexist with spin-1 or spin-
3/2 fermions in transition-metal silicides [26]. In 2D, the
coexistence of spin-1 and Dirac fermions has been found in
edge-centered honeycomb lattices [27].

In this Rapid Communication, we investigate fermionic
quasiparticle excitations in the 2D triangular kagome lattice
(TKL). While the magnetism on the TKL has been studied
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both experimentally [28–30] and theoretically [31–35], the
band properties of noninteracting fermions on the TKL have
not been well studied. Here, we demonstrate that in the TKL,
spin-1 fermion and Dirac fermions can coexist. Using k · p

theory, we derive a four-band effective model that hosts both
types of fermions. The effective model provides a good start
to study the interplay between the two types of fermions.
As an example, we study the Klein tunneling of a fermion
from the spin-1 particle state to the spin-1/2 hole state using
the effective model. We find that in this process of spin-
nonconserving Klein tunneling, the transmission coefficient is
T = 1 for normal incidence, the same as the Klein tunneling
of Dirac fermions and spin-1 fermions.

Dirac fermion and spin-1 fermions on the TKL. A schematic
of the TKL is shown in Fig. 1. It can be viewed as a kagome
lattice decorated with an additional triangle inside each of
its original triangles. Let the distance between the nearest
neighbors be a. We choose the primitive vectors �a1 = (4a, 0)
and �a2 = (−2a, 2

√
3a), and a unit cell is indicated by the red

parallelogram in Fig. 1(a). We will set a = 1 for simplicity.
The TKL has D6h point group symmetry, as can be seen
from the part enclosed by the blue rectangle in Fig. 1(a). The
first Brillouin zone is shown in Fig. 1(b), with three high-
symmetry momenta labeled � = (0, 0), and the two inequiv-
alent Brillouin zone corners K = ( π

3 , 0) and K′ = (−π
3 , 0).

We study the tight-binding Hamiltonian H = ∑
〈ij〉 tij c

†
i cj

and only nearest-neighbor hopping is considered. While the
kagome lattice has three sites in each unit cell, the TKL has
nine, resulting in nine bands if only a single orbit on each site
is considered. We assume the hopping energy is t and t ′ for
the solid bonds and dashed bonds in Fig. 1(a), respectively.
A typical band structure is shown in Fig. 2, with t ′ = 0.4t .
Generically, the nine bands decouple into three groups, which
we call the upper, middle, and lower group according to their
energy range. There are two Dirac points at K and K′ in
each group of bands. We find that three of the nine bands are
flat, each touching another band. The flatness of those bands
is due to the frustrated hopping which yields fully localized
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FIG. 1. (a) The triangular kagome lattice (TKL). Solid lines and
dashed lines represent the hopping amplitude t and t ′, respectively.
A unit cell contains nine sites, as indicated by the red parallelogram.
From the part enclosed by the blue rectangle, one can see the TKL
has D6h point group symmetry. (b) The first Brillouin zone with the
high-symmetry points labeled.

Wannier states, and the band touching can be understood
from a state counting argument [36]. Upon tuning the ratio
t ′/t , the flat band can be shifted between different groups.
We will focus on the upper and middle group from here on,
and we show only the five upper bands in Figs. 3(a)–3(c)
for different parameters. As can be seen, at t ′ < tc where
tc = t√

3
, each group has one flat band, while at t ′ > tc, the

flat band of the upper group is shifted to the middle group.
During the process of tuning t ′/t , there is a critical point
t ′ = tc where three bands touch at the � point, as shown in
Fig. 3(c). We demonstrate below that near this band touching,
the 2D fermions are governed by the spin-1 Hamiltonian.
The constant energy contours of the second highest band are
plotted in Fig. 3(d). At low energy, circular electron pockets
around the � point originate from the spin-1 Hamiltonian.
Hexagonal warping appears at a higher energy due to the D6h

symmetry of the � point. At high energy, circular hole pockets
around K and K′ originate from the Dirac Hamiltonian, and
trigonal warping appears due to the C3v symmetry of K and
K′, the same as the case in graphene [37].

We use the k · p method to find the effective Hamiltonian
near the threefold degeneracy. The tight-binding Hamilto-
nian can be written as H = ∑

k∈BZ �†(k)H (k)�(k), where
�(k) is a nine-component spinor. First, we diagonalize
H (k) at the � point, and find the eigenenergies Ei (0) in
ascending order from the lowest to the highest, with the
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FIG. 2. (a) The band structure with t ′ = 0.4t . (b) The same band
structure along the kx axis.
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FIG. 3. (a)–(c) The upper five bands along the kx axis with
(a) t ′ = 0.4t , (b) t ′ = 0.8t , and (c) t ′ = t/

√
3. The spectrum in blue

is that of the spin-1 Hamiltonian with a “mass” term in (a) and (b)
and without “mass” terms in (c), and the spectrum in red in (c) is that
of the Dirac Hamiltonian. (d) The constant energy contours of the
second highest band at t ′ = t√

3
.

associated wave functions |ψi (0)〉. Then we expand H (k)
around the � point to the first order of k, and the effective
Hamiltonian near the triple degeneracy H3(k) has elements
[H3(k)]ij = 〈ψi−5(0)|H (k)|ψj−5(0)〉 with i, j = 6, 7, 8. An
arbitrarily chosen set of orthogonal bases results in H3(k) =
ε + ∑

i=x,y;j=x,y,z kiVijSj , where we choose three out of the
eight Gell-Mann matrices as the spin-1 matrices,

Sx =
⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠, Sy =

⎛
⎝0 0 0

0 0 i

0 −i 0

⎞
⎠,

Sz =
⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠, (1)

which satisfy the angular momentum algebra [Si, Sj ] =
iεijkSk , where εijk is the Levi-Civita symbol. We can choose
a specific set of bases so that the velocity matrix has elements
Vij = vδij , and then the effective Hamiltonian is simply

H3(k) = ε + vk · S = ε + v(kxSx + kySy ), (2)

where ε = 2√
3
t and v = 4√

5
t [38]. This Hamiltonian de-

scribes a 2D spin-1 fermion, with the eigenenergies ε, ε ±
v
√

k2
x + k2

y . The spin-1 spectrum is shown in blue in Fig. 3(c),
and can be viewed as a Dirac cone touching a flat band. Dif-
ferent from spin-1/2 fermions, a spin-1 fermion can exist on
its own and avoids the fermion-doubling theorem by Nielsen
and Ninomiya [39].

Near the double degeneracy at the K point, we use the
same method to find the effective Hamiltonian HK(δk) =
ε1 + vDδk · σ , where δk is the momentum deviation from K,
and σi’s are Pauli matrices. This is a Dirac point in 2D. The
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Hamiltonian near the other Dirac point K′ is related to HK by
the time-reversal operation � = K , where K is the complex
conjugation, HK′ (δk) = ε1 − vDδk · σ ∗. The spectrum of the
Dirac Hamiltonian is shown in red in Fig. 3(c).

We have therefore shown that spin-1 fermion and spin-1/2
Dirac fermions could coexist on the TKL if the ratio of t ′/t

is fine tuned to a critical value (tc = t/
√

3). Away from the
critical value, a “mass” term of the form⎛

⎝� 0 0
0 0 0
0 0 0

⎞
⎠ (3)

appears and opens a gap between one dispersive band and
the band touching, where � is a function of t ′ − tc [38].
Depending on the sign of �, it could be either the case as
in Fig. 3(a) or that as in Fig. 3(b).

Effective model with both Dirac and spin-1 fermions.
An effective model which hosts different types of fermions
is highly desired to study their interplay. Here, we derive
a four-band effective model with both Dirac fermions and
spin-1 fermions from the tight-binding Hamiltonian of the
TKL. Note that an effective model including the uppermost
four bands could have both types of fermions. Using the k · p

method as in the above section, we find the Hamiltonian of the
uppermost four bands near the � point,

H4(k) =

⎛
⎜⎜⎝

0 0 ivkx −2αkxky

0 0 ivky α
(
k2
y − k2

x

)
−ivkx −ivky 0 0

−2αkxky α
(
k2
y − k2

x

)
0 ε′ − k2

2m

⎞
⎟⎟⎠,

(4)

where k =
√

k2
x + k2

y . We have kept only linear terms in the
upper left 3 × 3 block, but up to quadratic terms otherwise.
The reason is that we would like to derive a minimal model
for the coexistence of the two types of fermions, whereas
including quadratic terms in the upper left block would
complicate the model. If α = 0, the band structure of H4

is simply a spin-1 cone intersecting with a quadratic band
dispersing downward (parametrized by ε′ > 0 and m > 0)
along a ring. The terms linear in α gap the degeneracy of the
nodal ring, leaving only discrete Dirac points, as we explain
later. Moreover, these terms hybridize the quadratic band and
the flat band, making the latter dispersive at large momenta.

The four-band effective Hamiltonian can be written in a
more compact form,

H4(k) = 1

2
v(k+S− + k−S+) +

(
ε′ − k+k−

2m

)
M

+ 1

2
α(k2

+L+ + k2
−L−), (5)

where we have defined k± = kx ± iky , S± = Sx ± iSy , and
L± = Lx ± iLy , in which

Sx =

⎛
⎜⎝

0 0 i 0
0 0 0 0
−i 0 0 0
0 0 0 0

⎞
⎟⎠, Sy =

⎛
⎜⎝

0 0 0 0
0 0 i 0
0 −i 0 0
0 0 0 0

⎞
⎟⎠,

FIG. 4. (a) Band structure of the four-band model Eq. (5). (b) The
constant energy contours of the second highest band of the four-band
model Eq. (5). The parameters are v = 1.78, α = 0.5, ε ′ = 2.31, and
m = 0.58.

Sz =

⎛
⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, Lx =

⎛
⎜⎝

0 0 0 0
0 0 0 −1
0 0 0 0
0 −1 0 0

⎞
⎟⎠,

Ly =

⎛
⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎠, Lz =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎠,

M =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎠. (6)

The Si and Li are generators of the SO(4) group which satisfy
[Si, Sj ] = iεijkSk , [Li, Lj ] = iεijkSk , and [Si, Lj ] = iεijkLk .
The rotational operation is represented as eiSzθ . Under C3

operation and time-reversal operation, the momentum and the
matrices are transformed as

C3 : k± → e±i2π/3k±, S± → e±i2π/3S±, L± → e±i2π/3L±,

Sz → Sz, Lz → Lz, M → M,

� : k → −k, S → −S, L → L, M → M. (7)

Then it is clear that H4(k) is invariant under Eq. (7). Although
H4(k) has threefold rotational symmetry, the band structure is
sixfold rotational invariant due to the time-reversal symmetry.

We show the band structure of H4(k) in Fig. 4(a), and
constant energy contours in Fig. 4(b). The spin-1 cone and
Dirac cones are well reproduced, and hexagonal warping
to the spin-1 cone also appears because of the symmetries
mentioned above. However, due to the absence of rotational
symmetry at each Dirac point, the Dirac cones are in general
anisotropic and tilted, and the warping no longer has threefold
rotational symmetry.

The full expression of the spectrum is complicated, and
is devoid of a simple interpretation of the appearance of
the Dirac points. A better understanding of the coexistence
of spin-1 and Dirac fermions can be achieved if we treat
the term linear in α in Eq. (5) as a perturbation, and write
the Hamiltonian in two parts, H4 = H

(0)
4 + H

(1)
4 , where

H
(0)
4 = 1

2vk(eiθS− + e−iθ S+) + (ε′ − k2

2m
)M and H

(1)
4 =

1
2αk2(e2iθL+ + e−2iθL−), with θ ≡ tan−1 ky/kx . The four
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bands of H
(0)
4 have eigenenergies E

(0)
1 = ε′ − k2

2m
,

E
(0)
2 = vk, E

(0)
3 = 0, and E

(0)
4 = −vk, with the associated

wave functions |1(0)〉 = {0, 0, 0, 1}t , |2(0)〉 = 1√
2
{i cos θ,

i sin θ, 1, 0}t , |3(0)〉 = {− sin θ, cos θ, 0, 0}t , and |4(0)〉 =
1√
2
{−i cos θ,−i sin θ, 1, 0}t , respectively. The first two bands

touch at a nodal ring given by k∗ = mv(
√

1 + 2ε′
mv2 − 1).

Transforming H
(1)
4 to the eigenbasis of H

(0)
4 , then the

effective Hamiltonian for the upper two bands is

H2(k) = 1

2

(
ε′ − k2

2m
+ vk

)
+ 1

2

(
ε′ − k2

2m
− vk

)
σz

+ 1√
2
αk2 sin 3θσy. (8)

Obviously, the last term opens a gap along the nodal ring
except at six points, θ∗ = nπ/3 with n = 0, 1, . . . , 5. Since
the spectrum has sixfold rotational symmetry, we expand
H2(k) near one of the points, θ∗ = 0, i.e., k = (k∗, 0),
and get

H eff
2 (δkx, ky ) = vk∗ + v′

xδkx + vxδkxσz + vykyσy, (9)

where v′
x = 1

2 (v − k∗
m

), vx = − 1
2 (v + k∗

m
), and vy = 3√

2
αk∗.

H eff
2 is, for generic parameters, the Hamiltonian of a tilted

anisotropic Dirac cone. The condition for the Dirac cone
to be untilted and isotropic is v′

x = 0 and vx = vy , which

yields ε′ = 3
2mv2 and mα =

√
2

3 . Nevertheless, the parameters
derived from the tight-binding Hamiltonian H (k) do not have
to satisfy this condition, since the four-band Hamiltonian H4

is a k · p Hamiltonian around the � point, hence, in general,
it does not capture the exact band structure around the K
point.

Spin-nonconserving Klein tunneling. Conventional Klein
tunneling occurs when a relativistic particle is incident on a
high potential barrier. It has been studied in the context of
graphene [40], and verified in several experiments [41–43].
The Klein tunneling of spin-1 fermions has also been
addressed [12,17]. The effective model Eq. (5) is a good start
to study the interplay between spin-1 and spin-1/2 fermions in
lattice systems. As shown in Fig. 5, a fermion can tunnel from
a spin-1 particle state with momentum k to a spin-1/2 hole
state with momentum k′ or k′′ when there is a potential step
with a proper depth, which we call spin-nonconserving Klein
tunneling. The perturbed wave functions of the upper two
bands are, respectively, |1〉 = |1(0)〉 + iαk2 sin 3θ√

2(ε′−k2/2m−vk)
|2(0)〉 −

αk2 cos 3θ
ε′−k2/2m

|3(0)〉 − iαk2 sin 3θ√
2(ε′−k2/2m+vk)

|4(0)〉, and |2〉 = |2(0)〉 +
iαk2 sin 3θ√

2(ε′−k2/2m−vk)
|1(0)〉. At normal incidence, θ = 0, the wave

functions on the left side and right side of the potential
step are

ψL(x) = Aeikx

⎛
⎜⎝

i

0
1
0

⎞
⎟⎠ + Be−ikx

⎛
⎜⎝

−i

0
1
0

⎞
⎟⎠, (10)

FIG. 5. (a) Schematic of spin-nonconserving Klein tunneling
from spin-1 to spin-1/2 fermion. (b) Spin-nonconserving Klein
tunneling when a potential step with a proper depth is present.

ψR (x) = Ceik′x

⎛
⎜⎝

i

0
1
0

⎞
⎟⎠ + Deik′′x

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠, (11)

respectively. From the continuity of the wave function at
x = 0, we find A = C and B = D = 0. Therefore, through
the spin-nonconserving Klein tunneling, a spin-1 particle
tunnels to a spin-1/2 hole state near K with the transmission
coefficient T = 1. Veselago lenses and transistors based on
Klein tunneling in graphene have been conceived [44,45], and
similar devices based on spin-nonconserving Klein tunneling
are expected.

Discussion. The (breathing) kagome lattice which has three
sites in each unit cell can host spin-1 fermions or Dirac
fermions, but not their coexistence [20], since it has only
three bands and one of them is flat. Compared with it, the
TKL has the merit of having more bands while retaining
the same lattice symmetry, and hence can host both types of
fermions. Nevertheless, as we have shown, a four-band model
is capable of doing this, thus a lattice with fewer sites in each
unit cell and with D6h symmetry may achieve this goal. The
edge-centered honeycomb lattice with five sites in a unit cell
provides such an example [27].

Since the band structure of a lattice does not depend on
the statistics of the quasiparticles under study, there also
exist spin-1/2 Weyl photons and Weyl magnons as well
as spin-1 photons in periodic systems. Therefore, the TKL
can also act as a platform for the coexistence of spin-1
bosons and spin-1/2 bosons in 2D. Experimentally, ultra-
cold atoms in a tunable optical TKL could be designed to
study the interplay between the two types of fermions or
bosons.

More interesting questions based on the tight-binding
model of the TKL and the effective model are
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awaiting further studies, such as the magnetotransport
properties and the topological invariant of each band
once the fermions are gapped by spin-orbit coupling. The
extension to three dimensions will also be an exciting
direction.
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