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Evolution of the transmission phase through a Coulomb-blockaded Majorana wire
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We present a study of the transmission of electrons through a semiconductor quantum wire with strong spin-
orbit coupling in proximity to an s-wave superconductor, which is Coulomb blockaded. Such a system supports
Majorana zero modes in the presence of an external magnetic field. Without superconductivity, phase lapses are
expected to occur in the transmission phase, and we find that they disappear when a topological superconducting
phase is stabilized. We express tunneling through the nanowire with the help of effective matrix elements, which
depend on both the fermion parity of the wire and the overlap with Bogoliubov–de Gennes wave functions.
Using a modified scattering matrix formalism, that allows for including electron-electron interactions, we study
the transmission phase in different regimes.
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Introduction. Majorana zero modes (MZMs) are localized
zero-energy states that can arise in topological superconduc-
tors [1,2]. In the last decade, they have attracted much atten-
tion, because they are promising candidates for the realization
of quantum computation [3–5]. Recent progress [6–14] sug-
gests that MZMs can be realized experimentally, and that they
can be detected by electric conductance measurements.

The motion of electrons through a mesoscopic device is
characterized by a transmission matrix T . In the simplest case,
it reduces to a complex number. From the Landauer formula
the conductance is proportional to the square of its absolute
value. Its quantum mechanical phase determines how elec-
trons moving along different trajectories interfere. A typical
interference experiment consists of two arms that electrons
can travel through, one containing the device, the other one
acting as a reference arm. When the arms join, the electrons
interfere due to different relative phases. The phase in the
reference arm can be adjusted by means of the Aharonov-
Bohm effect, leading to oscillations of the total conductance
depending on a magnetic flux within the interferometer loop
[15–36].

In this Rapid Communication, we study the transmission
phase when the device is a quantum dot made of a topological
superconductor that can host MZMs [3,37–42]. In particu-
lar, in the Coulomb-blockade regime, it has been predicted
that the transmission phase is sensitive to the presence of
MZMs [43–48]. For concreteness, we consider a semicon-
ducting nanowire with Rashba-type spin-orbit coupling cov-
ered by a metallic superconductor such as aluminum [40–42]
(see Fig. 1).

We find that the trivial and topological regime can be
distinguished by the presence or absence of phase lapses,
where the phase exhibits an abrupt change of π . The presence
or absence of phase lapses may be understood as originating
from the spatial symmetry of Bogoliubov–de Gennes (BdG)

wave-function amplitudes and the way they evolve as we
scan through consecutive Coulomb-blockade peaks. In neigh-
boring peaks, the dominant contribution to the transmission
amplitude switches between being electron type and hole type.
In the topological regime, the spatial symmetry of the effective
p-wave pairing leads to an opposing inversion symmetry of
these amplitudes and thus the absence of phase lapses. In
contrast, in the nontopological regime, the doubling of the
number of Fermi points invalidates this argument, and hence
may introduce phase lapses. We point out that this depends
on the spin polarization and discuss how the transmission
phase is influenced by external parameters, with and without
breaking an effective time-reversal symmetry that may occur
in these wires. We also explicitly distinguish between cases
where consecutive Coulomb-blockade peaks are dominated
by tunneling through the same level or through consecutive
levels.

In the Coulomb-blockade regime, the transmission de-
pends on the total number N0 of electrons in the quantum
dot, which is composed of the semiconducting wire and
the superconducting coating. If the dot is capacitively cou-
pled to a gate with voltage VG, then its energy includes a
charging term Hc = EcN

2
0 /2 − eVGN0. At small bias voltage,

an electron may only tunnel if there is no energy cost for
allowing the electron into the dot, i.e., if the charging terms
for N0 and N0 + 1 are roughly equal. This occurs when the
gate voltage eVG takes certain discrete values EN0 . As a
function of gate voltage, the transmission T (VG) has sharp
conductance peaks at these values. By considering only two
resonances, and by assuming them to be independent of each
other, these resonances can be described by a Breit-Wigner
form obtained from the retarded Green’s function of the wire
[49]. Between two resonances, EN0 < eVG < EN0+1, we find,
taking into account the lack of degeneracy of the quantum
dot spectrum (for details and limits of applicability, see
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Ref. [50]),

Tσσ (VG) =
∑

N = N0,

N0 + 1

ρF λσL(N )λ∗
σR (N )

eVG − EN + iπρF

∑
σ ′[|λσ ′L(N )|2 + |λσ ′R (N )|2]

+ O

(
ρ2

F λ4

(eVG)2

)
, (1)

with λ ∼ λσ,L/R . Here, σ denotes the spin of the transmitted
electron, and we do not consider spin-flip processes as they do
not contribute to interference. We will assume tunneling pro-
ceeds through Bogoliubov quasiparticles. The resonances then
occur at the effective single-particle energy EN0 = N0Ec +
εnmin , with εnmin denoting the lowest Bogoliubov quasiparticle
energy. This captures the behavior of the system near a
resonance. If we assume that the incoming electron tunnels
via a single state in the wire, then the complex quantities
λσL(N ) and λσR (N ) can be identified with the coupling of this
state to the left and the right lead. Finally, ρF is the density
of states at the Fermi energy in the leads. For a given gate
voltage, we always include the two neighboring resonances
with EN0 < eVG < EN0+1.

When the gate voltage VG is swept across a resonance, the
phase of the transmission changes by π according to Eq. (1).
However, when increasing the voltage further, towards the
next resonance, a phase lapse has often been seen in many in-
terferometer studies over the years [18,20,23,30,35,51–53]. In
particular, this will happen when two subsequent resonances
have coefficients with equal phase, arg[λσL(N )λ∗

σR (N )] =
arg[λσL(N + 1)λ∗

σR (N + 1)], as the denominators in Eq. (1)
differ by a relative minus sign. On the other hand, phase lapses
are absent when the sign of the coefficients changes from
one resonance to the other, such that arg[λσL(N )λ∗

σR (N )] −
arg[λσL(N + 1)λ∗

σR (N + 1)] = ±π [54].
In the following, we study the evolution of the transmission

phase for different regimes of the nanowire system. The
interference setup is illustrated in Fig. 1. To avoid the phase
rigidity effect in the presence of time-reversal symmetry [26],
we include a reservoir in the setup.

Model. The electrons in the wire are described by the BdG
Hamiltonian

H=
[
− h̄2

2m
∂2
y − μ− iαRσx∂y

]
τz − Bzσz − Bxσx + �τx, (2)

SC

Left
lead

Right
lead

gate

Reservoir

FIG. 1. Schematic setup. We consider two wires (azure rectan-
gles) connected to leads to the left and right. The shaded rectangles
denote tunneling bridges, and the triangles gates which control the
coupling of the Majorana to the leads. The upper wire is in proximity
to a conventional s-wave superconductor (SC in the figure). The red
circles represent Majorana zero modes. We couple the reference arm
of the interferometer to a reservoir to avoid the phase rigidity effect
(coupling indicated by dashed lines) [26].

with the second quantized form ĤD = 1
2

∫
dy �†H�, where

� = (ψ↑, ψ↓, ψ
†
↓,−ψ

†
↑) is a Nambu vector of electron op-

erators. The coefficient αR denotes a Rashba-type spin-orbit
coupling while Bx and Bz are Zeeman energies arising from
a magnetic field in the xz plane. The proximity to the s-wave
superconductor induces a pairing energy �, which we choose
to be real. Finally, the chemical potential is denoted by μ,
and the Pauli matrices σi and τi act in spin- and particle-hole
space, respectively. Particle-hole symmetry {H, P } = 0 is
described by P = σyτyK , where K denotes complex conjuga-
tion. Additionally, we have an antiunitary reflection symmetry
[H, �̃] = 0 defined on BdG wave functions � as (�̃�)(y) =
K�(L − y), where L is the length of the wire. For Bx = 0,
the Hamiltonian also has an effective time-reversal symmetry
T̃ = σzK with T̃ 2 = +1 and [H, T̃ ] = 0, which puts it into
the BDI symmetry class of topological superconductors [55].
For suitable parameters, the wire hosts MZMs [40–42].

The spatial form of the MZM wave function depends on
the number of particles in the nanowire Nw via the chemical
potential μ. However, the total number of particles N0 in the
dot is larger than Nw, because electrons may also reside in
the superconductor. In general, the semiconductor wire has a
much larger level spacing than the superconductor, such that
at equilibrium most of the electron density will be accom-
modated in the superconductor. Hence the tunneling from the
leads to the hybrid superconductor-wire system is through the
same wire level for several subsequent resonances. Thus, tun-
neling amplitudes are mainly determined by wave functions
in the wire, but the charge of additional Cooper pairs mostly
counts towards the charge in the superconductor, not the wire.
We model this with a charging term

Ĥc,0 = 1
2E0N̂

2
0 + 1

2EwN̂2
w − eVGN̂0 − EMN̂0N̂w. (3)

Here, the charging energy E0 refers to the whole dot, Ew

to the wire, and EM denotes the coupling between them.
Replacing N̂w by Nw = 〈N̂w〉, and minimizing the Hamil-
tonian with respect to this expectation value, we obtain
Nw = (EM/Ew)〈N0〉 and the effective charging Hamiltonian
Ĥc mentioned before Eq. (1) with Ec = E0 − E2

M/Ew. In
this way, we can also apply our model when tunneling oc-
curs through subsequent wire levels. We refer to the regime
EM/Ew 	 1 as tunneling through the same level in consecu-
tive peaks, and to the regime N̂w = N̂0 as tunneling through
consecutive levels in consecutive peaks.

In order to calculate the transmission phase numerically,
we discretize the Hamiltonian ĤD [defined below Eq. (2)]
on a lattice with hard-wall boundary conditions. The BdG
equations that emerge from HD can then be solved for a given
chemical potential which is determined self-consistently for a
given total number of particles, and the number of particles in
the wire [50]. The BdG wave functions thus obtained are the
ones we use to deduce the tunneling amplitudes. For this, we
supplement the dot Hamiltonian ĤD with a description of the
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leads in terms of

ĤL =
∑
k, σ

α = L,R

εkαc
†
kσαckσα,

where α labels the left and right leads, respectively, σ denotes
spin, and ckσα (c†kσα) annihilates (creates) an electron in lead
α. The tunnel coupling between leads and dot is described by

ĤT =
∑
mσ

α = L,R

tαmσ c†σ (yα )dm + H.c., (4)

where cσ (yα ), c†σ (yα ) are lead operators evaluated in the vicin-
ity of lead α, dm (d†

m) annihilates (creates) an electron in the
mth wire state with energy εm, and tαmσ is the tunneling matrix
element between lead α and the mth wire state. The tunneling
matrix elements are identical in magnitude, while their phase
is set to be the phase of ϕmσ (y), the eigenstates of the wire
part ĤD for � = 0, close to the ends of the wire.

The wire operators dm can now be expressed in terms of
BdG operators βn and β

†
n. Assuming the gap in the super-

conductor is greater than in the wire, an unpaired electron
must enter the wire, occupying the lowest BdG quasiparti-
cle state for N0 odd. Denoting this state by nmin we thus
write 2β

†
nminβnmin − 1 = (−1)N0 in the ground state. Higher

quasiparticle states are not occupied in the ground state, so
β
†
nβn = 0 for n 
= nmin. Following Ref. [43], we project the

Hamiltonian to the states with N0 and N0 + 1 particles and
introduce new fermionic operators fn. The tunneling part then
becomes [50]

HT = 1

2

∑
α = L,R

nσ

λnσαc†σ (yα )fn + H.c., (5)

with effective tunneling matrix elements

λnminσα =λu
nminσα + λv

nminσα − (−1)N0
[
λu

nminσα − λv
nminσα

]
, (6)

and λnσα = 2λu
nσα for n 
= nmin. Here,

λu
nσα =

∑
m

tαmσ

∫
dy ϕ∗

mσ (y)unσ (y), (7)

λv
nσα =

∑
m

tαmσ

∫
dy ϕ∗

mσ (y)v∗
nσ (y), (8)

where unσ (y) and vnσ (y) are the BdG wave functions
found by solving the BdG equation corresponding to ĤD.
To obtain the transmission amplitude, we apply the scatter-
ing matrix formalism [56,57]. The S matrix is S(ε) = 1 −
2πiW †[ε1 − HD + iπWW †]

−1
W , where 1 denotes the unit

matrix and W the coupling matrix obtained from ĤT. If we
assume that for each N0, tunneling proceeds only via the
Bogoliubov quasiparticle with the lowest energy, we find, at
zero temperature and at the Fermi level, that the transmission
is given by Eq. (1) with tunneling amplitudes λσα (N0) =
λnminσα/2 for α = L,R.

Results. Before discussing the results in detail let us note
that the presence of the superconductor may influence the
visibility of the interference. Indeed, when the superconductor

acts as a normal conductor, its level spacing is small, and
we expect a rather large suppression of the interference and
weak localization correction to the conductance [58]. Our
main results for realistic parameter regimes [59] are shown in
Fig. 2. In the normal phase, the wire shows phase lapses when
tunneling proceeds through the same level [Fig. 2(a)]. When
tunneling occurs through consecutive levels, phase lapses are
partially absent. In the trivial regime, superconductivity does
not change the pattern. We now consider the topologically
nontrivial regime. When electrons tunnel through the same
level, we can distinguish the normal conducting and the
superconducting regime by the presence or absence of phase
lapses. For tunneling through consecutive levels phase lapses
are always absent.

Interestingly, the transmission is sensitive to the spin po-
larizations of the MZMs at the ends of the wire. Defining
ESO = mα2

R/(2h̄2), we find that, in the regime Bz � ESO,
both ends have the same spin polarization, in the z direction.
For Bz 	 ESO, the ends have orthogonal polarizations along
the y axis, so electrons in the two arms of the interferometer
will have orthogonal polarizations, leading to a suppression of
the interference signal.

Note that the effective tunneling matrix elements alternate
between λu

nα and λv
nα when summing over N0. Furthermore,

the BdG wave functions, of a Hamiltonian invariant to the
spatial symmetry operation (x → −x) with respect to the
wire’s midpoint, are either symmetric or antisymmetric under
this operation, such that only either the even or odd elements
in the sums (7) and (8) are nonzero. We therefore expect the
existence of phase lapses to be connected with the inversion
(anti)symmetry of BdG wave functions. Moreover, the Hamil-
tonian (2) is invariant under the inversion symmetry � = �̃T̃ .
This implies that un↑(y) and vn↓(y) behave in the same way
under inversion and likewise for un↓(y) and vn↑(y). On the
other hand, un↑(y) and un↓(y), and vn↑(y) and vn↓(y) behave
in an opposite way under inversion. Naively, we would then
expect no phase lapses, regardless of whether the wire is in
the topological or trivial regime. In the latter case, however,
the dominant particle- and holelike processes have opposite
spin, such that products such as λu

n↑Lλu∗
n↑R and λv

n↓Lλv∗
n↓R with

the same sign dominate the transmission, and phase lapses
occur. This is unlike the topological regime where the spins
are mostly polarized.

We now study the transmission phase in the topological
regime for the case where the BDI time-reversal symmetry
is broken by a magnetic field, Bx 
= 0 [60–62]. We consider
a homogeneous wire longer than the localization length of
the Majorana wave functions, in the regime Bx 	 ESO 	 Bz.
Here, we can linearize the Hamiltonian (2) and find [50]

H̃ = −ih̄vF ∂yszτz + εsz + �̃τxsz, (9)

acting on BdG wave functions � = [u1, u2, v2, v1]T , where
u1, v1 and u2, v2 correspond to right and left movers. The
Pauli matrices sμ operate on these, while τμ act on particles
and holes. They have opposite velocities ±vF , but the mag-
netic field along the wire axis causes an energy shift ε. The ef-
fective pairing �̃ is obtained from the relation ε/�̃ = Bx/�.
Since a hard-wall boundary reflects left into right movers,
we obtain u1(0) = −u2(0) and v1(0) = −v2(0). Then, the
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FIG. 2. Plots of the the transmission phase arg(T↑↑ + T↓↓)/π (black) and amplitudes |T↑↑|2 + |T↓↓|2 (blue and red), at zero temperature
and at the Fermi level calculated using the S matrix, for a quantum wire with tunneling through the same level in consecutive peaks [(a)
and (c)], and tunneling through consecutive levels in consecutive peaks [(b) and (d)]. For the former, EM/Ew = 0.05, such that only every
20th electron entering the hybrid system of a wire and superconductor, enters the wire, while for the latter, EM/Ew = 1. In the presence of
a superconducting gap �, the wire can either enter a trivial [(a) and (b)] or a topological [(c) and (d)] phase, depending on the number of
particles Nw in the wire. All plots are calculated by discretizing the BdG Hamiltonian (2) on a one-dimensional (1D) lattice with 500 sites with
parameters L = 2.5 μm, m = 0.02me, t̃ = h̄2/(2ma2) = 80 meV, u0 = αR/a = 0.05t̃ , Bz = 0.003t̃ , Bx = 0, and Ec = 3�. Here, a is the
lattice spacing, t̃ the hopping, and u0 an effective spin-orbit coupling in the discretized model. The two columns in each panel are results for
the normal regime (� = 0) and the superconducting regime where � = 2.5δF . The tunneling matrix elements t on the left and right sides have
been chosen to be equal and satisfy ρF t2 = 0.2�. The plots have been made by summing the transmission over the spin configurations. The
transmission phases have been shifted by integer multiples of π for clarity.

Majorana solution localized at the left end of the wire

is given by �L(y) ∝ (1,−1,−ie−iδ, ie−iδ )T e−(y/h̄vF )
√

�̃2−ε2

with phase δ = arcsin(ε/�̃). Identifying the tunneling ampli-
tude as the component u1(0), and fixing its phase by requiring
particle-hole symmetry, we thus find, at resonance,

arg(T↑↑) = arcsin(Bx/�) + π · integer, (10)

which is independent of the total wire length. This equation
implies that upon breaking BDI symmetry, the interference
pattern will not be at an extremum at zero flux. The phase shift
will, however, be identical for consecutive peaks. To under-
stand the phase shift arcsin(Bx/�), we use an antiunitary re-
flection symmetry of the Hamiltonian (2) and denote the BdG
wave functions by �(y) = [u↑, u↓, v↓,−v↑]T . The left Ma-
jorana solution satisfies H�L = 0 and P�L = �L, such that
�R (y) = �L(L − y)∗ is the Majorana solution at the right
end. For a finite but sufficiently long wire, these will hybridize
slightly to give the lowest-energy Bogoliubov quasiparticle

� ∝ (�L ± i�R ), where the relative prefactor is fixed to ±i

because the coupling Hamiltonian has particle-hole symmetry.
Thus, the transmission amplitude is fully determined by the
left Majorana solution, T↑↑ ∝ u↑(yL)u∗

↑(yR ) = ∓iu↑,L(yL)2,
and does not depend on the wire length if the BdG equation
does not explicitly depend on it.

Conclusion. We have studied the transmission of electrons
through a hybrid system consisting of a quantum wire and an
s-wave superconductor in the Coulomb-blockade regime in
a magnetic field and with strong spin-orbit coupling. In this
regime the system supports zero-energy MZMs. We consider
only tunneling through a single Bogoliubov quasiparticle. In
this case we found that the existence of phase lapses in the
transmission phase depends on the superconducting gap and
on whether the wire is in the topological or trivial phase. We
expect that it should be possible to measure this effect in
interference experiments.
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