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Entangled Pauli principles: The DNA of quantum Hall fluids

Sumanta Bandyopadhyay,1 Li Chen,2 Mostafa Tanhayi Ahari,3 Gerardo Ortiz,3,1 Zohar Nussinov,1 and Alexander Seidel1
1Department of Physics, Washington University, St. Louis, Missouri 63130, USA

2National High Magnetic Field Laboratory and Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
3Department of Physics, Indiana University, Bloomington, Indiana 47405-7105, USA

(Received 19 March 2018; revised manuscript received 21 June 2018; published 23 October 2018)

A formalism is developed for the rigorous study of solvable fractional quantum Hall parent Hamiltonians with
Landau-level mixing. The idea of organization through “generalized Pauli principles” is expanded to allow for
root-level entanglement, giving rise to “entangled Pauli principles.” Through the latter, aspects of the effective
field theory description become ingrained in exact microscopic solutions for a great wealth of phases for which no
similar single Landau-level description is known. We discuss in detail braiding statistic, edge theory, and rigorous
zero-mode counting for the Jain-221 state as derived from a microscopic Hamiltonian. The relevant root-level
entanglement is found to feature an Affleck-Kennedy-Lieb-Tasaki (AKLT)-type matrix-product ground states
structure associated with an emergent SU(2) symmetry.
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Introduction. The fractional quantum Hall (FQH) regime
exhibits an astonishing wealth of interacting topological
phases. A rich theoretical framework describing such phases
has historically nucleated around a construction principle for
holomorphic lowest Landau-level (LL) wave functions [1]
and fruitful generalizations to the nonholomorphic, multi-LL
situation, with optional subsequent lowest-LL projection [2].
This variational principle has proven invaluable in driving
the development of field-theoretic descriptions of both the
bulk and the edge physics and their intimate relation [3,4].
One may take the point of view that a complete many-body
theory of any correlated phase of matter requires, in addition
to the aforementioned ingredients, a microscopic Hamiltonian
granting analytic access to its low energy sector, reproducing
key aspects of the field-theoretic description of such a phase.
Such “parent Hamiltonians” do exist for many [5–9] FQH
liquids but lack for even more. Notably, to our knowledge,
they are absent for most Jain states [10], which are regarded
fundamental both theoretically and experimentally.

In this Rapid Communication, we argue that the lack of mi-
croscopic Hamiltonians stabilizing representative variational
wave functions for FQH phases stems from complexities asso-
ciated with nonholomorphic variational states. These include
unprojected Jain states [2] and more general “parton” con-
structions [10,11]. In these cases, lowest-LL projection leads
to sufficiently intractable wave functions to preclude the con-
struction of parent Hamiltonians. Moreover, the unprojected,
multi-LL variational states still lack many “analytic cluster-
ing” properties that were instrumental in the construction of
parent Hamiltonians for many lowest-LL states [5–7]. For
these reasons, even in those cases where parent Hamiltonians
have been proposed for multi-LL states, rigorous analytic
results are usually lacking. This is particularly true for zero-
mode counting, from which the case for incompressibility
at special filling factors is usually made. We will develop
principles to study the zero-mode properties of frustration-

free multiple-LL parent Hamiltonians on the same footing
as for similar single-LL Hamiltonians. Our second-quantized
framework deemphasizes analytic clustering properties [12],
which are arguably less useful in the multi-LL situation, as
we will demonstrate. This lack of emphasis on analytic prop-
erties, in favor of a “guiding-center-based” description, was
recently advocated for various reasons [13–19]. Our approach
connects with the topical investigation of frustration-free
lattice Hamiltonians and their matrix-product ground states
(MPS), with the important additional feature that it extends
to nonlocal lattice Hamiltonians and, in principle, MPS of
infinite bond dimension [20–22].

The heart of our framework consists in further elaboration
on the concept of a “generalized Pauli principle” (GPP),
various guises of which play an important role in discussing
the structure of single-LL wave functions [23–32]. Our ex-
tension not only provides a foundation based on Hamiltonian
principles but also generalizes to multiple LLs. The latter will
naturally lead to what we coin “entangled Pauli principles”
(EPPs), which, in addition to the now familiar rules for GPPs,
permit MPS-like entanglement at “root state level” encoding
the quantum fluid’s “DNA.” We argue this generalization to
be key in yielding microscopic Hamiltonian descriptions to
possibly all FQH phases. We demonstrate our approach in
detail for the parent Hamiltonian of the Jain-221 state [33]. By
rigorously establishing the zero-mode structure of this Hamil-
tonian, we make direct contact both with bulk topological and
edge conformal properties. As a by-product, this affords a case
where simple two-body interactions stabilize a non-Abelian
FQH state, in contrast to better known higher-body, single-LL
cases [34,35].

Parent Hamiltonian. Consider the n-LL projected
“Trugman-Kivelson” interaction for fermions,

HTK =
∑

i<j

Pn∂zi
∂z̄i

δ(zi − zj )δ(z̄i − z̄j )Pn, (1)
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where zi = xi + iyi is the coordinate of the ith particle, and z̄i

its complex conjugate. For general projection Pn onto the sub-
space spanned by the lowest n LLs, this interaction is positive
(semi-)definite. If the n-LLs are energetically quenched [36],
as is in multilayer graphene [33,37,38], the ground states of
the resulting Hamiltonian can be characterized as zero-energy
modes (zero modes). For any n, the wave functions of such
zero modes will have at least second-order zeros as pairs of
particles coalesce into the same point. For both n = 1 and
n = 2, this is equivalent to the polynomial wave function be-
ing divisible by the Laughlin-Jastrow factor

∏
i<j (zi − zj )2.

This was realized early on for n = 1 [5,6] and leads to the
stabilization of the 1/3-Laughlin state and its quasihole ex-
citations. The n = 2 case was extensively discussed recently
[39]. For n � 3, zero modes can only be characterized as
polynomials belonging to the ideal generated by (zi − zj )2

and (z̄i − z̄j )2 for some fixed i �= j , in addition to being
antisymmetric. This makes the characterization of all possible
zero modes considerably more challenging. For the case n =
3, we will establish that the space of all zero modes is linearly
generated by all wave functions of the form

ψ =
∏

i<j

(zi − zj )D1D2, (2)

where D1 and D2 are the polynomial (in {zi, z̄i}) parts of two
Slater determinants each comprised of lowest and first excited
LL states, and we omit obligatory Gaussian factors. It is easy
to see that states of the form (2) are zero modes of the n=3
Hamiltonian. The “Jain-221” state, where D1 = D2 is the
Slater determinant of smallest possible angular momentum in
the first two LLs for given particle number N , was conjectured
to be the densest zero mode [33]. We will show that the set of
all possible wave functions of the form (2) is overcomplete
and establish rules for the selection of a complete set of zero
modes as an EPP on dominance patterns.

Entangled Pauli principle. Our starting point is a second-
quantized form of Eq. (1) for n = 3, in a disk geometry, which
we present in the general [12] form

ĤTK =
∑

J

8∑

λ=1

EλT (λ)†
J T (λ)

J . (3)

The T (λ)
J annihilate a pair of particles of angu-

lar momentum 2J , with J = 0, 1
2 , 1, . . . , T (λ)

J =∑
x,m1,m2

ηλ
J,x,m1,m2

cm1,J−xcm2,J+x and Eq. (3) may be viewed
as a weighted (by Eλ) sum over eight two-particle projection
operators at each J . Note that x is (half-odd) integer if J is
(half-odd) integer, and cm,j destroys a fermion in the mth LL,
m = 0, 1, 2, at angular momentum (“site”) j � −m. The η

symbols and the positive Eλ can be efficiently derived for
general n [40], and are given for n = 3 in [41]. Consider
the Slater-determinant decomposition of any N -particle
zero-mode

|ψ〉=
∑

Cm1,j1;··· ;mN ,jN
c
†
m1,j1

· · · c†mN ,jN
|0〉 ≡

∑
CS |S〉 .

(4)

General arguments [12,39] imply that there are “nonexpand-
able” Slater determinants |S〉 in such an expansion that are
pivotal in the analysis of any zero mode of Eq. (3). These

are those states |S〉 in Eq. (4) with nonzero CS that cannot
be obtained from a |S ′〉 with nonzero CS ′ through an inward-
squeezing [23] process: |S〉 �= c

†
m1,j1

c
†
m2,j2

cm′
2,j2+xcm′

1,j1−x |S ′〉,
where j1 < j2, x > 0. We define the state obtained from the
zero-mode (4) by keeping only the nonexpandable part as the
“root state” |ψroot〉 of |ψ〉. The root state is closely related to
the thin torus limit [26,27,29,30,42], and is generally subject
to simple rules usually known as GPPs in the single-LL
context. We will show that the zero-mode condition leads to a
generalization thereof in the present case, which we call EPP.

We begin by demonstrating that a state |S〉 in |ψroot〉
may not have a double occupancy at any given j . Oth-
erwise, |ψroot〉 = ∑

m1,m2
αm1,m2c

†
m1,j

c
†
m2,j

|S̃〉 + |rest〉, with
|rest〉 being orthogonal to each of the leading terms, and
|S̃〉 an N − 2 particle Slater determinant with no j mode
occupied. The zero-mode condition amounts to [12,39]

T (λ)
J |ψ〉 = 0 for all J, λ. Then, in 0 = 〈ψ |T (λ)

J=j

†|S̃〉 =
∑

x,m1,m2
(ηλ

J,x,m1,m2
)∗ 〈ψ |c†m2,J+xc

†
m1,J−x |S̃〉, the x �= 0 terms

must already give zero, otherwise the x = 0 terms would by
definition not appear in |ψroot〉. One thus obtains the eight
conditions

∑

m1,m2

ηλ
J,0,m1,m2

αm1,m2 = 0 (λ = 1, . . . , 8). (5)

Since there are only three independent numbers
αm1,m2 = −αm2,m1 , and the x = 0 η symbols are sufficiently
[41] linearly independent, one finds that all αm1,m2

vanish. One can similarly rule out triple occupancies
in |ψroot〉. Likewise, one may evaluate possibilities for
nearest-neighbor occupancies in |ψroot〉. Applying the same
method to the similar expression (J half-odd integer)
|ψroot〉 = ∑

m1,m2
βm1,m2c

†
m1,J−(1/2)c

†
m2,J+(1/2) |S̃〉 + |rest〉,

there are eight constraints on the nine constants βm1,m2 ,
∑

m1,m2

ηλ
J,1/2,m1,m2

βm1,m2 = 0 (λ = 1, . . . , 8). (6)

There is a unique solution to these equations which
thus determines any nearest-neighbor pair in |ψroot〉 to
be in a certain entangled state. In evaluating con-
straints at root level for pairs further separated, we must
also take into account inward-squeezed configurations of
the pair. Writing |ψ〉 = ∑

m1,m2
γm1,m2c

†
m1,J−1c

†
m2,J+1 |S̃〉 +

αm1,m2c
†
m1,J

c
†
m2,J

|S̃〉 + |rest〉, where the first term is nonex-
pandable, we obtain eight conditions on the 12 constants
γm1,m2 , αm1,m2 = −αm2,m1 . After eliminating the latter, these
result in five conditions on the γm1,m2 :

∑

m1,m2

�
μ

J,m1,m2
γm1,m2 = 0 (μ = 1, . . . , 5), (7)

with � a function of the η’s at x = 0, 1/2. The constraints
derived so far require any two particles in a root state to be
entangled when in configurations . . . 11 . . . or . . . 101 . . . ,
where 0 denotes an empty site, 1 denotes a single occupancy
(in any LL), and consecutive entries denote states with consec-
utive j . We now ask what these constraints imply for clusters
of more than two particles.

Emergent SU(2) symmetry. Let us apply to |ψroot〉 a nonuni-
tary (but invertible) single-particle transformation V̂ such that
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c
†
m,j = V̂ −1d

†
m−1,j V̂ = vm,sz

d
†
sz,j

, where sz = 0,±1 is inter-
preted as the SU(2) label of a spin-1 particle, as detailed in
[41]. In the new basis, Eq. (6) requires any nearest-neighbor
11 pair in V̂ |ψroot〉 to form a singlet. Clearly, then, it cannot
be entangled with any other particle. This is consistent with
Eqs. (6) and (7) only if any such pair is separated by at
least two zeros from any other particle in |ψroot〉. Moreover,
Eq. (7) takes on a form implying that any 101 configuration
is orthogonal to the spin-2 sector. The satisfiability of this
condition for N particles separated by individual empty sites
is tantamount to the problem of finding ground states of an
open AKLT chain [43]. To label such a structure, we use the
notation . . . 1σL

0101 . . . 0101σR
. . . where σL,R = ± denote

the boundary spin-1/2 degrees of freedom of an AKLT ground
state. Aside from the aforementioned entangled 11 and 101
blocks, a root state may have singly occupied sites surrounded
by at least two empty sites on either side. Such sites may be
in any of the three LLs, or in any “spin state” after the V̂ map.
We denote such configurations by . . . 001sz

00 . . . . All of these
observations imply that a complete set of (rotated) root states
is afforded by product states of entangled units of the 11 and
1σL

0 . . . 01σR
(AKLT) type, and of 1sz

units, all separated by
at least two empty sites. We refer to the resulting patterns as
“dominance patterns” compatible with an EPP.

The SU(2) structure discussed here is not limited to the root
state, but emerges in the full zero-mode sector of the Hamil-
tonian [44]. Indeed, we identified global SU(2) generators
Sν, ν = x, y, z that leave the zero-mode subspace invariant
[41]. Consequently, zero modes can be organized into irreps
of this SU(2) symmetry, as suggested by the root structure and
associated dominance patterns.

Braiding statistics. Recently, multi-LL wave functions
have been discussed on the torus [45]. If the dominance
patterns established here are understood as “thin torus (TT)
patterns,” there exists a well-defined “coherent state” method
to associate braiding statistics to the excitations of the un-
derlying state [46–51]. In this regard, we first observe that
if we discard the subscripts σR,L and sz in the dominance
patterns satisfying the EPP, the resulting reduced patterns of
1’s and 0’s satisfy the GPP associated with TT/dominance
patterns of the ν = 1/2 Moore-Read (MR) Pfaffian state:
There are no more than two 1’s in any four adjacent sites.
In particular, the densest such patterns, . . . 11001100 . . . and
. . . 10101010 . . . , signify the sixfold torus degeneracy of the
MR state in the usual way [30]. We assume that the EPP
remains meaningful on the torus and governs TT limits of
zero modes of Eq. (1), and that the usual assumptions about
adiabatic continuity [26] into the TT limit hold. Then, in the
presence of periodic boundary conditions, the discussion of
ground state degeneracy carries over from the MR case, and
the torus degeneracy of the n = 3 Hamiltonian will be six.
However, any charge-1/4 quasihole excitation, represented by
the familiar domain walls between 1010 and 1100 patterns,
will carry an additional spin-1/2 described by a σ label. So
long as we fix the state of this spin (say, ↑) for all quasiholes,
the coherent state method will make the same predictions for
the statistics as in the MR case [47,50]. That is, one finds that
each quasihole carries a Majorana fermion, and braiding two
such quasiholes is described by an operator θij = exp[iθm −
(−1)m π

4 γiγj ], where γk is the Majorana operator of the kth

quasihole, and θm is a phase only determined up to one of
eight possible values by the coherent state method, as reported
earlier for the ν = 1 bosonic MR state [47,50]. Elsewhere
we will show that, for the fermions, the method yields θm =
mπ
4 , m = 0, . . . , 7. This is consistent with θ = π

4 [52] for the
ν = 1/2 MR state, but it seems possible that the 221 state
discussed here realizes a different allowed phase which, pre-
sumably, can be determined from the conformal field theory
(CFT) proposed in [11,53,54]. The SU(2) symmetry discussed
above can, however, be used to argue that this phase does not
depend on the spin state of the quasiholes, and the full braid
operator is given simply by θijXij , where Xij exchanges the
spin of the ith and j th quasiholes.

Zero-mode counting and edge physics. General principles
[12,39,41] imply that at any angular momentum L, the num-
ber of possible dominance patterns sets an upper bound on
the number of linearly independent zero modes. This bound
was derived as a necessary condition on root states (the EPP).
As such it applies to a large class of Hamiltonians of the
form of Eq. (1), and can be generalized to Hamiltonians with
different number of terms, internal degrees of freedom, or
multibody interactions. That there are, however, indeed as
many zero modes as admitted by the EPP depends strongly
on the details of the Hamiltonian. To establish this for the
n = 3 Hamiltonian (1), we must show that to each dominance
pattern allowed by the EPP, there is a zero mode with the
corresponding root state. We show in [41] that indeed, for ev-
ery dominance pattern one can construct one such zero mode
from the states (2). This then necessarily yields a complete
set of zero modes. It is easy to show that the (odd N ) Jain-
221 state has |ψroot〉 corresponding to the densest possible
(minimum angular momentum) pattern consistent with the
EPP: 10011001100110011 . . . (the leading orbital may not be
entangled [41]). This establishes that the Jain-221 state is the
densest possible zero mode, since there are no allowed dom-
inance patterns at higher filling factor, or smaller L at given
N . Note that the topological shift on the sphere, which further
distinguishes candidate ν = 1/2 states and in principle relates
to Hall viscosity [55,56], is likewise efficiently encoded in
this pattern. The existence of a densest filling factor (here:
1/2) permitting zero modes usually hints at incompressibility.
This is particularly so if the edge theory encoded in the
zero-mode counting is a unitary rational CFT. Using patterns,
we have full control over zero-mode counting. Let N (�L) be
the number of zero modes of Eq. (1) at angular momentum
�L relative to the ground state, where �L 	 N . Detailed
counting for the number of zero modes at �L = 3 in terms of
patterns is shown in Table I. One may ask [57,58] if N (�L)
agrees with the number of states having �L energy quanta
in some CFT. In the presence of suitable chemical potential
terms, one may find [39] complete agreement, for �L 	 N ,
between the degeneracies of some CFT Hamiltonian and of
the total angular momentum operator L̂ within the zero-mode
sector of a special Hamiltonian, for any fixed particle number
N (N being identified with a suitable conserved quantity of
the CFT). For �L � 4, we verified such agreement between
the mode counting determined by our EPP and the mode
counting in a 1 + 1D edge theory of the form [11,53]

H =
∑

i=0,1

Hb,i (�i ) + Hf (γ ) − 5

2
N0. (8)
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TABLE I. Survey of all dominance patterns with angular mo-
mentum �L = 3 above the ground state for odd particle number. The
total number of these patterns including “spin degeneracy” allowed
by AKLT entanglement or due to isolated occupied sites is 33, in
agreement with Table II. The corresponding densest state (�L = 0)
has the pattern 100110011 . . . 110011, where the boundary condition
at the left end is explained in [41].

Patterns Degeneracy

100...110011001sz 0001sz 3 × 3
100...1100110001σL

01σR
4

100...11001σL
0101σR

001sz 4 × 3
100...11001σL

01σR
0011 4

100...1σL
0101010101σR

4

Here, �i are free chiral bosons of compactification radii 1
2

and 1, respectively, γ is a Majorana field in the antiperiodic
sector, all modes are copropagating, Ni is the winding number
of �i , and the parity of the number of occupied Majorana
modes must be opposite to N0 + N1. Except for the chemical
potential term, Eq. (8) is the U (1) × SU (2)2-edge CFT first
ascribed to the Jain-221 state in Refs. [11,53,54], notably
different from other non-Abelian candidate states at half-
filling, such as the Pfaffian [3] or anti-Pfaffian [59,60]. Table II
describes the above mode-counting agreement when N0 is
identified with the particle number N .

Conclusion. Our framework enables controlled access to
numerous quasiexactly solvable quantum-many-body Hamil-
tonians with LL mixing. We argued that the ability to deal
with LL mixing is essential to establish microscopic models
for a more comprehensive set of phases in the FQH regime. To
give an important and concrete example, a substantial number
of results were obtained with special focus on the n = 3
LL projected Trugman-Kivelson Hamiltonian: (i) Generalized
Pauli principles of lowest-LL model wave functions become
“entangled” in the presence of LL degrees of freedom. (ii)
This establishes a link between a large class of FQH states,
in particular “parton-like” states, and MPS of finite bond
dimension. The latter are in turn linked to one-dimensional
symmetry-protected topological phases; in our example, the
Haldane phase [61,62]. (iii) EPPs can be used for efficient
and, as we show, rigorous zero-mode counting. In particular,
they establish densest zero modes, which typically remains
the only direct analytic evidence for the incompressible char-
acter of certain model FQH states; here, the Jain-221 state.

TABLE II. Number of modes for a given number of “quanta”
relative to the ground state. Quanta refers to angular momentum
in the case of microscopic zero modes, and energy in the effective
edge theory (8). The counting agrees for at least up to four quanta,
and for �L = 3, is shown in detail in Table I in terms of patterns.
The chemical potential in (8) is chosen to give equality between
total ground state angular momentum and total edge energy for any
�L 	 N .

�L or �E 0 1 2 3 4

N odd 1 4 14 33 77
N even 3 7 22 50 115

(iv) Through direct zero-mode counting, we confirmed a
“zero-mode paradigm” for Eq. (1), i.e., the edge theory of
Eq. (1) (n = 3) is a U (1) × SU (2)2 CFT. (v) We identified an
emergent SU(2) symmetry [44] under which the zero-mode
spaces of Eq. (1) and many of its generalizations remain
invariant. (vi) We demonstrated how microscopically derived
EPP-dominance patterns encode bulk topological properties,
notably braiding statistics, which are of Ising/Majorana type
for the Jain-221 state.

The above establishes the emergence of non-Abelian
topological phases based on a solvable two-body interac-
tion, which has potentially interesting implications for tri-
layer graphene. Our findings straightforwardly generalize to
bosons, where Eq. (1) becomes a pure contact interaction. It
was demonstrated [63], at least for n = 1, that such contact in-
teractions in an optical lattice with engineered band structure
lead to exactly the same zero modes found in the continuum.
Our results thus imply that a controlled route to non-Abelian
phases, using only realistic two-body contact interactions, is
feasible. Interestingly, many of these findings generalize to
n = 4, where a new parton state emerges [40] supporting
Fibonacci-type anyons that facilitate universal fault-tolerant
quantum computation [64]. Furthermore, the emergent SU(2)
symmetry discussed here proves paramount to the construc-
tion of parent two-body Hamiltonians to all (unprojected) Jain
states at filling factors ν = p/(2pq + 1), where only the case
ν = 2/5 has so far been discussed [36,39]. We leave these
extensions for future work.
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