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Correlation energies of the high-density spin-polarized electron gas to meV accuracy
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We present a combination of quantum Monte Carlo methods and a finite-size extrapolation framework with
which we calculate the thermodynamic limit of the exact correlation energy of the polarized electron gas at high
densities to meV accuracy, −40.44(5) and −31.70(4) mHa at rs = 0.5 and 1, respectively. The fixed-node error
is characterized and found to exceed 1 mHa, and we show that the magnitude of the correlation energy of the
polarized electron gas is underestimated by up to 6 meV by the Perdew-Wang parametrization, for which we
suggest improvements.
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The uniform (or homogeneous) electron gas (UEG) [1]
is a system consisting of electrons in a neutralizing uniform
background intended to model the behavior of electrons in
metals [2]. This system is of crucial importance in under-
standing the nature of electronic correlations, and is of huge
practical relevance since knowledge of the correlation energy
of the UEG as a function of its homogeneous density can be
used as a key ingredient in the description of the behavior of
electrons in real systems [3–5].

Despite its seeming simplicity, the complex correlations
caused by the long-ranged character of the Coulomb inter-
action require the use of explicit many-body methods to
accurately characterize the UEG. The release-node diffusion
Monte Carlo calculations of Ceperley and Alder (CA) [6]
provided data connecting the analytic high-density [7,8] and
low-density [9] limits of the correlation energy, and enabled
the development of parametrizations over the entire density
range [10–12] which are routinely used in density functional
theory calculations.

The Perdew-Wang parametrization of the correlation en-
ergy of the UEG (PW92) [12] has become a cornerstone
in the construction of density functionals over the past
three decades. The PW92 form contains five parameters, of
which two are determined from analytic high-density con-
straints and three by fitting to the CA data. More recently,
a “density parameter interpolation” (DPI) parametrization
was proposed [13–15] that is constructed by imposing four
high-density and three low-density constraints on a seven-
parameter functional form, thus requiring (almost) no quan-
tum Monte Carlo input. In Fig. 1 we plot the PW92 and DPI
parametrizations for the fully polarized electron gas, along
with the asymptotes defined in Refs. [13–15], as a function of
rs, the radius of the sphere containing one electron on average
divided by the Bohr radius. While the two parametrizations
are in excellent agreement at low densities, they differ by
∼20 meV at densities relevant to systems with all-electron
nuclei [16] and solids at high pressures. The cumulative
effect of incurring these small errors in the parametrized
correlation energy could result in a significant bias in

computed properties, including total and relative energy
estimates.

In this Rapid Communication we use a combination of full
configuration-interaction quantum Monte Carlo (FCIQMC)
and fixed-node diffusion Monte Carlo (DMC) to compute
the correlation energy of the fully spin-polarized three-
dimensional UEG at rs = 0.5 and 1 to meV accuracy. Build-
ing upon existing knowledge of finite-size errors in DMC
[17–20], we propose an extrapolation procedure which we
find to be much more accurate than previous approaches. By
extrapolating the fixed-node energy and the fixed-node error
to the thermodynamic limit we obtain the exact correlation
energies at rs = 0.5 and 1. We are thus able to resolve
the discrepancy between the values of the PW92 and DPI
parametrizations at high densities, and we discuss ways to
improve their accuracy.

We simulate finite systems of N same-spin electrons in a
cubic simulation cell at fixed homogeneous densities using
DMC and FCIQMC. Note that we report energies per elec-
tron and use Hartree atomic units (h̄ = me = |e| = 4πε0 = 1)
throughout. Full details about the methodology and calcula-
tions are given in the Supplemental Material [21].

The variational Monte Carlo (VMC) [24–26] and fixed-
node DMC methods [6,27–29] have been extensively used
to study the UEG [30–34] using Slater-Jastrow trial wave
functions, formed by the Hartree-Fock (HF) determinant mul-
tiplied by a Jastrow correlation factor [35,36], often in com-
bination with backflow transformations [30–32,37,38]. While
these wave functions are reasonably sophisticated, the energy
obtained by the DMC method incurs a positive bias, referred
to as the fixed-node error εFN, caused by the restrictions
imposed by the fixed-node approximation [6,39].

The FCIQMC method explicitly operates in the basis of
antisymmetric Slater determinants, thus avoiding the need
for a fixed-node approximation [40]. The initiator approx-
imation [41] allows the efficient exploration of this vast
Hilbert space, and has enabled the successful application of
FCIQMC to systems of interest in quantum chemistry and
condensed matter physics [42–47], including the unpolarized
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FIG. 1. Correlation energy of the polarized UEG as a function
of rs. Shown are the CA data [6], the PW92 parametrization [12],
and the DPI parametrization [13–15]. The inset magnifies the region
around rs = 0.5. The width of the PW92 curve represents its statisti-
cal uncertainty.

UEG [48–51]. FCIQMC calculations use finite basis sets, and
the infinite basis-set limit can be estimated by extrapolation,
as is standard practice in quantum chemistry [52]. We find that
the basis-set error for the polarized UEG is well described
by a quadratic function of the inverse basis-set size [21], in
contrast with the linear dependence found for the unpolarized
UEG [48].

We assess the quality of our FCIQMC energies by compar-
ison with VMC and DMC energies for increasingly accurate
trial wave functions. We construct multideterminantal wave
functions for the 19-electron gas at rs = 1 by truncating the
FCIQMC wave function to the Nd leading determinants, with
symmetry-equivalent determinants grouped together. The re-
sults, obtained using the CASINO code [53], are plotted in
Fig. 2 against Nd.

The variational convergence of our VMC and DMC ener-
gies towards the FCIQMC energy is consistent with FCIQMC
being exact for this system. The best backflow DMC energy is
only 0.027(5) mHa higher than the FCIQMC energy, and is to
our knowledge the most accurate DMC energy for this system
reported to date.

The finite-size error in the energy of the UEG consists
of a contribution which varies smoothly with N and a
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FIG. 2. VMC and DMC energies of the polarized 19-electron gas
at rs = 1 (at �) relative to FCIQMC, as a function of the number of
determinants in the wave function, both without and with backflow
transformations.

quasirandom contribution, which must be eliminated to enable
a clean extrapolation of the smooth part. Twist averaging [17]
substantially reduces quasirandom fluctuations by averaging
over wave-vector offsets in the Brilluoin zone. In DMC we
sample the Brillouin zone randomly, while for our FCIQMC
calculations we divide the Brillouin zone into regions of
equal total momentum and run FCIQMC calculations in each
of these regions [54], which we are able to characterize
exactly [21]. In selected cases we perform the basis-set extrap-
olation in one region and use the extrapolation parameters for
the others, which reduces the number of required FCIQMC
calculations considerably [21]. In what follows we discuss
twist averaged energies except when stated otherwise.

Quasirandom errors are further reduced by subtracting the
finite-size error in the HF kinetic energy �K (N ) = K (N ) −
K (∞) from the DMC total energy [6,19]. Additionally, we
find that the residual quasirandom fluctuations are highly
correlated with those in the HF exchange energy X(N ). The
exchange energy is a particularly slowly varying function at
large N , so subtracting X(N ) − X(∞) would complicate the
extrapolation. However, Drummond et al. [19] found that the
leading-order contribution to the finite-size error in X(N )
for an electron gas is exactly h2N

−2/3, where h2 = − 3ε1
16π

r−1
s

for the polarized UEG and ε1 = 5.674 594 959 for simple
cubic simulation cells [19,21]. We therefore obtain the ther-
modynamic limit by extrapolation of EFN

tot (N ) − �K (N ) −
�X(N ), where �X(N ) = X(N ) − X(∞) − h2N

−2/3. This
is equivalent to extrapolating EFN

corr (N ) + h2N
−2/3, and in

practice we work with the correlation energy directly.
We model the smooth part of the finite-size error as a

polynomial in N−1/3, in agreement with the form of the
contributions found by Ref. [19], and we find that the use of
the above treatment of quasirandom fluctuations enables the
use of fairly high-order polynomials. Chiesa et al. [18] showed
that the leading-order contribution to the finite-size error in
the total DMC energy of an electronic system is t3N

−1,
where t3 = −

√
3

2 r
−3/2
s for the polarized UEG. Since beyond-

leading-order contributions to both �K (N ) and �X(N ) are
proportional to N−4/3 [17,19], the DMC correlation energy
satisfies

EFN
corr (N ) + h2N

−2/3 − t3N
−1

= c0 + c4N
−4/3 + c5N

−5/3 + c6N
−2 + · · · , (1)

where {cn} are density-dependent parameters.
We perform DMC calculations of the polarized UEG using

the Slater-Jastrow wave function at system sizes 15 � N �
515 at rs = 0.5 and 15 � N � 1021 at rs = 1, and we use
Eq. (1) to obtain the thermodynamic limit of the fixed-node
correlation energy, setting h2 and t3 to their analytic values
and treating c0, c4, c5, and c6 as fit parameters. We do
not use backflow or multideterminants to avoid introducing
wave-function optimization noise in our DMC energies. The
magnitude of quasirandom fluctuations has been observed to
decay as N−1 [17], so we use N2 as weights in our fits.
In Fig. 3 we plot Etot (N ) − �K (N ) − �X(N ) − t3N

−1 and
our extrapolation (solid circles and solid line) at rs = 0.5 as
a function of N−1. These results numerically confirm the
absence of additional contributions to Eq. (1) at order N−1

or slower.
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FIG. 3. Finite-size corrected fixed-node energies of the polarized
UEG at rs = 0.5 as a function of N−1. Our results correspond to
the solid circles and the solid line. Data replicating the finite-size
treatment of Ceperley and Alder [6] (open diamonds and dotted line)
and Spink et al. [34] (open squares) are also plotted, along with an
extrapolation of the latter using N−4/3 and N−5/3 terms.

In Fig. 3 we also compare our extrapolation with other ap-
proaches used in the literature. Ceperley and Alder [6] evalu-
ated Etot,� (N ) − �K (N ), where Etot,� (N ) is the total energy
at �, at closed-shell system sizes in the range 38 � N � 246,
and used an extrapolation formula including a single N−1

term to obtain the thermodynamic limit. A reconstruction of
this approach with our DMC data is represented in Fig. 3
(open diamonds and dotted line); we have used N2 as weights
in the single-term fit. Remarkably, the choice of system sizes
is such that the single-term extrapolation yields a nearly
identical thermodynamic limit for �-point energies as for
twist averaged energies, but the absence of higher-order terms
in the extrapolation formula results in an underestimation of
the total fixed-node energy by about 2 mHa. Higher-order
contributions are less important at lower densities, and we
conclude that the extrapolation carried out by Ceperley and
Alder is very accurate at the densities for which they reported
results.

The recent fixed-node DMC study of Spink et al. [34]
can be regarded the current state of the art in the treatment
of finite-size errors. Spink et al. approximate the thermo-
dynamic limit of the total energy by the backflow DMC
value of EFN

tot (N ) − �K (N ) − t3N
−1 − T4N

−4/3 at a single
system size, where the last term is the next-to-leading-order
contribution to the finite-size error in the DMC kinetic en-
ergy, with T4 = ε3

16π
r−2

s for the polarized electron gas and
ε3 = 21.049 598 45 for simple cubic simulation cells [19,21].
Our reconstruction of this approach using our (nonback-
flow) DMC data is presented in Fig. 3 (open squares).
The quasirandom fluctuations obtained with this approach
are small but still significant and, although the data ex-
trapolate to the correct value, individual energy values in
Fig. 3 overestimate the thermodynamic limit by up to over
2 mHa. Indeed, the thermodynamic limit of the backflow
DMC correlation energy at rs = 0.5 reported by Spink et al.,
obtained for a 118-electron system in a face-centered-cubic
simulation cell, is 2.27(2) mHa above our estimate of the
thermodynamic limit of the (nonbackflow) DMC correlation
energy.
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FIG. 4. Fixed-node correlation energies of the polarized UEG at
rs = 0.5, 1, and 5 relative to the thermodynamic limit as a function
of ξ . The line represents a combined fit of the data at rs = 0.5 and
1 to Eq. (2), with density-dependent c0 and density-independent c̃4,
c̃5, and c̃6 coefficients. The rs = 5 data demonstrate the breakdown
of the approximate ξ dependence at low densities.

We turn our attention to the density dependence of Eq. (1),
which we reexpress as

EFN
corr (ξ ) + h̃2ξ

2/3 − t̃3ξ = c0 + c̃4ξ
4/3

+ c̃5ξ
5/3 + c̃6ξ

2 + · · · , (2)

where ξ = r
−3/2
s N−1. We find that assuming coefficients with

tildes to be density independent, in line with leading-order
extrapolation formulas proposed in the literature [55], incurs a
negligible error at high densities. In Fig. 4 we plot EFN

corr (ξ ) and
perform a combined fit of the data at rs = 0.5 and 1 to Eq. (2),
which we find to fit the data very well [21]. We also plot
fixed-node energies at rs = 5 to demonstrate the breakdown
of this approximation at low densities.

We compute the exact energy of the system using FCIQMC
at system sizes N = 15, 19, and 27 at rs = 1 and N = 15,
19, 27, and 33 at rs = 0.5, and we evaluate the fixed-node
error as the difference between the fixed-node and exact
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FIG. 5. Fixed-node error for the polarized UEG at rs = 0.5 and
1 as a function of N−1. The curves are obtained by simultaneously
fitting the data at both densities to Eq. (3) with density-dependent
f0 and density-independent f̃3 and f̃4 coefficients. The linewidth
represents the statistical uncertainty in the fit. The inset shows the
combined fit against ξ .
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TABLE I. Thermodynamic limit of the fixed-node correlation
energy, of the fixed-node error, and of the exact correlation energy
of the polarized UEG at rs = 0.5 and 1, in mHa. Also shown are
values of the PW92 and DPI parametrizations, an unweighted PW92
fit to the CA data (uPW92), and a revised unweighted PW92 fit to
the CA data and our results (rPW92).

rs = 0.5 rs = 1.0

EFN
corr − 38. 778(10) − 30.650(3)

εFN 1.67(5) 1.05(4)
Ecorr − 40.44(5) − 31.70(4)
PW92 − 40.2(1) − 31.6(1)
DPI − 40.91 − 31.99
uPW92 − 40.4(5) − 31.8(4)
rPW92 − 40.38(6) − 31.77(8)

correlation energies. We find the fixed-node error to increase
monotonically with system size [21].

Holzmann et al. [20] found that the use of backflow
contributes to the finite-size error in the energy of the UEG
at order N−1. This has the subtle consequence that the coeffi-
cient of N−1 in the finite-size error of the exact energy must
differ from t3. We assume the fixed-node error to have the
same asymptotic behavior as the backflow contribution to the
energy, which is consistent with the observation of an approxi-
mate proportionality between these two quantities [30,56]. We
expect εFN to vary less strongly with N than the fixed-node
energy, and thus we model it using a lower-order expression.
Under the assumption that, as EFN

corr, the exact correlation
energy is accurately represented at high densities by a function
of ξ , we write

εFN(ξ ) = f0 + f̃3ξ + f̃4ξ
4/3 + · · · , (3)

where f0 is a density-dependent parameter and f̃3 and f̃4

are density-independent coefficients. We perform a combined
fit of our data at rs = 0.5 and 1 to Eq. (3) to obtain the
thermodynamic limit of the fixed-node error at both densities.
In Fig. 5 we plot the fixed-node error and the resulting fit
curves, and in the inset we show the same data as a function of
ξ . The results obtained with this procedure are given in Table I
and plotted in Fig. 6.

Before comparing our results with existing parametriza-
tions, we note two problematic aspects of the PW92 fit. First,
the statistical uncertainty of the CA data propagates to the
parametrized correlation energies, which thus incur a random
bias of magnitude proportional to the uncertainty, but this
was ignored after fitting. We have calculated these propagated
uncertainties, shown in Table I and Fig. 6. Second, the CA
data were weighted by their inverse square uncertainty in the
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FIG. 6. Correlation energy of the polarized UEG at (a) rs = 1
and (b) rs = 0.5 from our calculations (dotted lines), and values of
the PW92 and DPI parametrizations, our unweighted PW92 fit to the
CA data (uPW92), and our revised unweighted PW92 fit to the CA
data and our present results (rPW92).

PW92 fit (a “chi-square” fit), but these span over two orders
of magnitude, and in effect the PW92 parametrization ignores
the CA data for rs � 10: Fitting the CA energies for rs = 20,
50, and 100 to the PW92 form gives essentially identical
results to the “chi-square” fit using all the data. In Table I and
Fig. 6 we report values of an unweighted PW92 fit to the CA
data (uPW92) and of an unweighted PW92 fit to the CA data
and our present results (rPW92).

We find that the magnitude of the correlation energy
is underestimated by the PW92 parametrization by about
3–6 meV, and overestimated by the DPI parametrization
by 8–13 meV. The correlation energies obtained from the
unweighted uPW92 fit have rather large uncertainties, but
their expected values are more accurate than those from
the weighted fit. Our revised rPW92 fit delivers the correct
correlation energies at both densities with negligible bias and
a factor of 5–10 smaller uncertainties than the uPW92 fit.

By construction, the accuracy of the DPI parametrization
at finite densities depends exclusively on its functional form.
Modifications to include more high-density constraints would
be advisable in order to enable better agreement with our
results. Alternatively, additional degrees of freedom could be
used to fit parameters to quantum Monte Carlo data, which
would be advantageous over our rPW92 fit since the DPI form
has the correct analytic structure in the high- and low-density
limits [13].
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