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Tunable two-dimensional Dirac nodal nets
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Nodal-line semimetals are characterized by symmetry-protected band crossing lines and are expected to
exhibit nontrivial electronic properties. Connections of the multiple nodal lines, resulting in nodal nets, chains, or
links, are envisioned to produce even more exotic quantum states. In this work, we propose a feasible approach
to realize tunable nodal-line connections in real materials. We show that certain space group symmetries support
the coexistence of the planar symmetry-enforced and accidental nodal lines, which are robust to spin-orbit
coupling and can be tailored into intricate patterns by chemical substitution, pressure, or strain. Based on
first-principles calculations, we identify nonsymmorphic centrosymmetric quasi-one-dimensional compounds,
K2SnBi and MX3 (M = Ti, Zr, Hf and X = Cl, Br, I), as materials hosting such tunable two-dimensional (2D)
Dirac nodal nets. Unique Landau levels are predicted for the nodal-line semimetals with the 2D Dirac nodal nets.
Our results provide a viable approach to realize the novel physics of the nodal-line connections in practice.
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Quantum materials have recently become a promising
platform for the discovery of new fermionic particles and
novel quantum phenomena [1]. Among them are Weyl and
Dirac semimetals, the three-dimensional (3D) materials with
nontrivial band crossings at discrete points in the momen-
tum space [2,3]. These materials support the quasiparticles
resembling the relativistic Dirac (fourfold degenerate) and
Weyl (doubly degenerate) fermions known from high-energy
physics [2,4–10]. It has been demonstrated that the Dirac
or Weyl cones can be tilted [11–13], the low-energy disper-
sion can be quadratic or cubic [14,15], and the fermionic
quasiparticles can hold three-, six-, or eightfold degeneracies
[3,16–19], which do not have analogy in high-energy physics.

In addition to the nodal points, band crossings can also
occur along the nodal lines [2,20–26], resulting in unusual
surface states and magnetotransport properties [21,27,28]. Im-
portantly, the nodal lines can serve as the constituents for other
nontrivial states. For example, the multiple nodal lines can
form nodal chains [29–32], nets [33,34], and links [35–38].
Nodal-line intersections can produce triple or fourfold de-
generate points in noncentrosymmetric materials [17,29] and
support photoinduced Floquet multi-Weyl fermions [39,40].

All the current studies of the interconnecting nodal-line
systems with non-negligible spin-orbit coupling (SOC), how-
ever, are limited to the nodal-line connections with the
permanent shapes, leaving possible transformations between
the different nodal net textures unexplored. Materials with
the tunable nodal-line connections would allow engineering
the desired spinful fermionic properties of the nodal-line
semimetals, thus providing a promising platform to discover
new physics and to design potential applications.
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In this work, we propose a feasible approach to realize
tunable nodal-line connections in real materials with non-
negligible SOC. We identify space group symmetries that
support the coexistence of symmetry-enforced and accidental
nodal lines. The former are robust to perturbations, while the
latter are symmetry protected but tunable, i.e., can be created,
altered, and annihilated by external stimuli. Combining the
two types of the nodal lines in a single compound allows the
tunability of the nodal nets by chemical substitution, pressure,
or strain. Using density functional theory (DFT) calculations,
we identify nonsymmorphic quasi-one-dimensional (quasi-
1D) compounds, K2SnBi and MX3 (M = Ti, Zr, Hf and
X = Cl, Br, I), as materials hosting the two-dimensional (2D)
Dirac nodal nets that are robust to SOC. We show that in
these compounds, the 2D Dirac nodal nets can be created and
weaved into intricate patterns, using the symmetry-enforced
nodal lines as a frame and tuning the size and shape of
the accidental nodal lines. Semimetals hosting such tunable
2D Dirac nodal nets are expected to reveal magnetotransport
properties different from those previously known, due to the
unique Landau levels controlled by the nodal net shape.

To realize the tunable 2D Dirac nodal nets we consider
materials with a quasi-1D chainlike structure, which supports
the inversion symmetry P and the time-reversal symmetry
T, and has an off-centered mirror symmetry plane gi =
{Mi |(t‖ = 0; t⊥ �= 0)} perpendicular to the chain direction and
a glide (or mirror) symmetry plane gj = {Mj |(t‖; t⊥)} parallel
to the chain direction, such that gi and gj anticommute, i.e.,
{gi, gj } = 0. Here Mi (Mj ) is a mirror reflection about the
plane perpendicular to the Cartesian axis i (j ); and t‖ and
t⊥ are translations parallel and perpendicular to the mirror
plane, respectively. As shown below, these conditions are
sufficient to support the coexistence of the symmetry-enforced
and accidental nodal lines. The quasi-1D nature of these ma-
terials is required to efficiently tune their electronic structure
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FIG. 1. (a) Schematic of “double hourglass,” “double zipper,”
and “double eye mask” band connectivities between the time-reversal
invariant momenta (�i) in a glide invariant plane. Glide eigenvalues
μi are indicated for the �i points and bands. (b), (c) A symmetry-
enforced closed Dirac nodal loop (b) and a symmetry-enforced
open Dirac nodal line (c) from the double hourglass connectivity
between G1 and �2. (d) A symmetry-enforced open straight Dirac
nodal line from the double zipper connectivity between �2 and �3.
(e) A symmetry-protected closed Dirac nodal loop from the acci-
dental double eye mask connectivity. (f) Combination of the double
zipper and double eye mask Dirac nodal lines forming tunable 2D
Dirac nodal nets.

through the interchain coupling, which is sensitive to external
perturbations and the ionic radii of the chemical constituents.

A Dirac nodal line robust to SOC is protected by the
combination of the symmetry operations P, T, and gi (see
Supplemental Material [41] and Refs. [20,42,43]). There
are two types of the symmetry-enforced Dirac nodal lines.
The first type is due to “double hourglass” band connec-
tivity shown schematically in Fig. 1(a) between the �1 and
�2 points [44]. This kind of connectivity is guaranteed by
the gi = {Mi |(t‖ �= 0; t⊥ �= 0)} symmetry, which enforces a
closed (looplike) nodal line [Fig. 1(b)] or an open nodal line
[Fig. 1(c)] in generic k points [29,31,42,43]. The second type
is due to “double zipper” band connectivity shown in Fig. 1(a)
between the �2 and �3 points. This kind of connectivity
requires an additional perpendicular glide (or mirror) plane
gj , such that {gi, gj } = 0. In this case, along certain high-
symmetry paths, the two doublets are enforced to be locked
to each other like a zipper, forming fourfold degenerate bands
[41]. This double zipper connectivity enforces a straight nodal
line along that path [Fig. 1(d)] [26,45].

In addition to the symmetry-enforced nodal lines, there
exist symmetry-protected nodal lines resulting from acciden-
tal degeneracy [43,46]. Here we focus on the nodal lines
formed by “double eye mask” connectivity shown schemat-
ically in Fig. 1(a) between the �3 and �4 points. This type of
connectivity is protected by the gi = {Mi |(t‖ = 0; t⊥ �= 0)}
symmetry [41].

FIG. 2. (a) Crystal structure of K2SnBi. (b) The structure viewed
along the [001] axis. (c), (d) Band structures of pristine K2SnBi (c)
and K2SnBi under isostatic pressure of 10 GPa (d). The inset in (c)
shows the Brillouin zone. Blue arrows point to the accidental eye
mask band crossings. (e), (f) Color maps of the band gap between the
two doubly degenerate bands (�E) in the kz = π

c
plane for pristine

K2SnBi (e) and K2SnBi under an isostatic pressure of 10 GPa (f).
Gray contrast reflects the nodal net patterns (a band gap smaller than
0.5 meV).

Two intersecting Dirac nodal lines must have the same
electron filling (i.e., the number of occupied bands below the
band crossing). From the simple electron counting, the double
zipper and the double eye mask nodal lines have the same
filling number. Therefore, a tunable 2D Dirac nodal net robust
to SOC can be engineered by tailoring the size and shape of
the double eye mask accidental nodal lines in the frame of
double zipper nodal lines, as shown in Fig. 1(f). Suitable space
groups to realize the nodal net tunability are summarized in
Supplemental Material Table S3 [41]. Below we demonstrate
the feasibility of our predictions for real materials.

First, we consider K2SnBi. The crystal structure of K2SnBi
is characterized by two quasi-1D zigzag Sn-Bi chains along
the z direction separated by the intercalated K atoms in its
simple orthorhombic unit cell [Figs. 2(a) and 2(b)] [47].
This compound belongs to the nonsymmorphic space group
57 (Pbcm) [47], which has P, gx = {Mx |(0, 1

2 , 0)}, gy =
{My |(0, 1

2 , 1
2 )}, and gz = {Mz|(0, 0, 1

2 )} symmetries. There
are two parallel double zipper nodal lines along the high-
symmetry U-R and Z-T lines in the Brillouin zone [inset in
Fig. 2(c)] enforced by the anticommutation relation {gz, gx} =
0 [41].

Figure 2(c) shows the calculated band structure of the pris-
tine K2SnBi [41]. Strong dispersions are seen along the �-Z
direction due to the quasi-1D nature of the Sn-Bi chains. We
focus on the two less dispersive doubly degenerate bands in
the kz = π

c
plane. Figure 2(e) shows the calculated energy gap
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FIG. 3. (a) The side view and top view of the crystal structure of MX3. (b) Band structure of pristine HfI3. The inset shows the Brillouin
zone. (c) Zoomed-in bands close to EF along the high-symmetry lines in the kz = π

c
plane and the related gap color map for HfI3. (d)–(f)

Band structures and gap color maps in the kz = π

c
plane calculated for the pristine ZrCl3 (d), HfBr3 under a tensile strain of 0.5% (e), and HfI3

under an isostatic pressure of 10 GPa (f). Blue arrows point to the accidental double eye mask band crossing. Gray contrast reflects the nodal
net patterns (a band gap smaller than 0.1 meV).

between these bands in the kz = π
c

plane, which reflects the
resulting nodal-line pattern. The double zipper connectivities
along the U-R and Z-T lines [Fig. 2(c)] enforce two parallel
Dirac nodal lines along the U-R and Z-T directions [Fig. 2(e)].
There are also the double eye mask band crossings in the
Z-U and Z-R directions [Fig. 2(c)]. The resulting ellipselike
accidental Dirac nodal line surrounding the Z point crosses
one of the double zipper nodal lines [Fig. 2(e)].

These features of the 2D Dirac nodal net can be tuned by
pressure, affecting the size and the shape of the accidental
nodal lines. Figure 2(d) shows the calculated band structure
of K2SnBi under isostatic pressure of 10 GPa. The double
eye mask band crossing in the Z-U direction is eliminated,
while a new double eye mask crossing emerges in the U-T
direction. This enlarges the ellipselike accidental Dirac nodal
line and links it to the double zipper Dirac nodal line along the
U-R direction, forming a 2D Dirac nodal net over the whole
kz = π

c
plane [Fig. 2(f)]. We find that a significant portion of

the 2D Dirac nodal net in K2SnBi emerges around the Fermi
energy, which makes this material promising for experimental
verification.

Next, we consider the Dirac nodal nets emerging in MX3

compounds (M = Ti, Zr, Hf and X = Cl, Br, I) [48–50].
Figure 3(a) shows the atomic structure of MX3, where M
atoms are surrounded by octahedra of X atoms, which share
common surfaces forming linear chains along the z direction.
These chains are arranged into a triangular lattice in the
x-y plane. MX3 belongs to the hexagonal space group 193

(P 63/mcm), which has P, gz = {Mz|(0, 0, 1
2 )}, My , and C3z

(threefold rotation about the z axis) symmetries. The anticom-
mutation relation {gz,My} = 0 enforces the double zipper
Dirac nodal line to appear at ky = 2nπ√

3a
(n = integer). The C3z

rotation applied to such Dirac nodal lines can generate other
Dirac nodal lines at ky = ±√

3kx + 4nπ√
3a

[41].
Figures 3(b)–3(f) show the calculated band structures of

a series of MX3 compounds. We focus first on HfI3 as
a representative material, where a possibility of the Dirac
fermion has been discussed [51]. As seen from Fig. 3(b), the
highest occupied band, largely composed of the Hf dz2 orbital
[41], exhibits a strong dispersion along the �-A direction due
to the quasi-1D crystal structure. There are two less dispersive
doubly degenerate bands in the kz = π

c
plane slightly above

EF , which are enlarged in Fig. 3(c). As expected from the
symmetry, the double zipper bands appear along the L-H -A
direction.

Chemical substitution in the MX3 compounds allows intro-
ducing accident nodal loops into the nodal net pattern. We find
that the double eye mask band crossings emerge in pristine
ZrCl3 [Fig. 3(d)], ZrBr3, HfBr3, and HfCl3 (Supplemental
Material Fig. S8 [41]). These crossings produce accidental
Dirac nodal loops centered around the A point. The accidental
nodal line is circular in MCl3 [inset in Fig. 3(d)] and hexago-
nal in MBr3 (Fig. S8). Combination of such accidental nodal
lines and the symmetry-enforced nodal lines produces a 2D
Dirac nodal net.
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FIG. 4. (a)–(d) Band structures calculated using the effective Hamiltonian for a symmetry-enforced straight nodal line (a); a symmetry-
enforced straight nodal line plus an accidental ellipselike nodal loop (b); a symmetry-enforced straight nodal line plus accidental hyperbolalike
nodal lines (c); a symmetry-enforced straight nodal line plus accidental straight nodal lines (d). Insets show the nodal-line patterns. (e)–(h)
Landau-level spectra for the nodal lines in (a)–(d), respectively, for a magnetic field along the x direction. (i)–(l) Landau-level spectra for a
magnetic field along the y direction. The purple dashed lines denote the intersection of the accidental nodal line and qy axis in qy = ±qc.

The size and shape of the accidental nodal loops can be
further tuned by strain and pressure. For example, the outer
symmetry-enforced and inner accidental nodal hexagons in
HfBr3 form a hexagonal “spiderweb” pattern (Fig. S8). With
in-plane tensile strain of 0.5%, the side-to-center distance
of the inner hexagons can be tuned to ka/3 [Fig. 3(e)]. In
this case, along the ky direction, the band crossings appear
at “quantized” momenta ky = ±ka,±ka/2,±ka/3. Moreover,
using pressure one can not only turn on the accidental loop
surrounding the A point in HfI3, but also introduce an addi-
tional nodal loop surrounding the H point [Fig. 3(f)].

In order to demonstrate the uniqueness of such tunable 2D
Dirac nodal nets, we analyze the Landau-level spectra, which
play a key role in magnetotransport properties. We derive the
effective Hamiltonian from the tight-binding model for MX3

near the L point (0, 2π√
3a

, π
c

) in the Brillouin zone: H (q ) =
αqzτx − qy (λ1 − λ2q

2
x − λ3q

2
y )τyσz, where q = k − kL, and

τ and σ are the Pauli matrices acting on the sublattice and
spin degrees of freedom, respectively [41]. When qz = 0,
band degeneracy occurs at qy = 0 (symmetry enforced) and
at q2

y = (λ1 − λ2q
2
x )/λ3 (accidental). If λ2 and λ3 have the

same sign, while λ1 has an opposite sign, only a nodal line
along the qx axis is enforced by symmetry [Fig. 4(a)]. In other
cases, accidental nodal lines can be ellipselike, hyperbolalike,
or straight parallel lines [Figs. 4(b)–4(d) and Supplemental
Material Fig. S11]. The nodal-line patterns, resulting from the
effective Hamiltonian, capture the essential features of the 2D
Dirac nodal nets calculated from firs principles [41].

Figures 4(e)–4(h) show the calculated Landau spectra un-
der an in-plane magnetic field along the x direction (parallel to
the symmetry-enforced nodal line) for the nodal-line patterns
in Figs. 4(a)–4(d). We find that the Landau levels are discrete
with a fourfold degenerate flatband at zero energy. That is
understandable since if we only keep the linear term in the
continuum limit, the Hamiltonian resembles that of graphene
[52]. A similar behavior has been suggested for a hypothet-
ical hyperhoneycomb lattice with a Dirac nodal loop under
a toroidal magnetic field [53]. Moreover, a flatband at EF

implies the appearance of a pronounced peak in the electronic
density of states, which can be detected experimentally by
scanning tunneling spectroscopy, even if it is buried in other
Fermi surfaces [27].
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For an in-plane magnetic field along the y direction (per-
pendicular to the symmetry-enforced nodal line), the Lan-
dau spectrum is gapless [Fig. 4(i)] when there is only one
symmetry-enforced nodal line along the qx axis [Fig. 4(a)].
In this case, each Landau level is doubly degenerate. A
crossing appears at qy = 0, which consists of two pairs of
counterpropagating chiral bands corresponding to the lowest
Landau levels. This crossing is robust against the magnetic
field and the emergent accidental nodal lines [Figs. 4(i)–4(l)].
In contrast to the known Dirac semimetals with a doubly
degenerate crossing of the lowest Landau levels [2], the
predicted crossing in the 2D Dirac nodal net compound is
fourfold degenerate protected by symmetry [41].

Accidental nodal lines significantly modify the Landau
spectra. In the case of the ellipselike accidental nodal loop
[Fig. 4(b)] at a low magnetic field, a flatband with nearly
fourfold degeneracy appears in a range of 0〈|qy | < qc , i.e.,
between the edges of the symmetry-enforced nodal line (qy =
0) and the accidental nodal line (which intersects the qy axis
at qy = ±qc ), as shown in Fig. 4(j). This result is consistent
with the previous finding for a single accidental nodal loop in
the presence of an in-plane magnetic field [27]. An increasing
magnetic field splits and shrinks the flatband, isolating the
symmetry-enforced single-crossing point [Fig. 4(j)]. There-
fore, the transition between a flatband and a single-crossing
point can be induced by a sufficiently large magnetic field.
Similarly, flatbands appear in the case of hyperbolalike ac-
cidental lines, but they have different ranges, i.e., |qy | > qc.
An increasing magnetic field pushes the flatbands away from
qy = ±qc [Fig. 4(k)]. Interestingly, the fourfold degenerate
flatband disappears when the accidental nodal lines become
parallel to the symmetry-enforced nodal line, which occurs at
the critical point between the ellipselike and hyperbolalike ac-
cidental nodal lines [Fig. 4(l)]. When the nodal-line crossing
occurs at qy = 0, two additional fourfold degenerate crossings
appear in the Landau spectrum and are located exactly at
qy = ±qc [Fig. 4(l)]. The magnetic field cannot shift or gap

them. Therefore, the shape of the 2D Dirac nodal nets can be
engineered to produce transitions between different types of
the Landau spectra, i.e., those with a single-crossing point,
multiple-crossing points, and flatbands, which are expected to
have different magnetotransport properties.

We note that quasi-1D compounds might experience the
Peierls distortion or a charge-density wave, leading to a trivial
band insulator [54] or a topological phase [55]. Usually, the
compounds with the Peierls distortion reveal phonon instabil-
ity [56]. For K2SnBi and HfI3, we have calculated the phonon
dispersions (Supplemental Material Fig. S9) and found no
unstable phonon mode, indicating that these materials are
stable in respect to the Peierls distortion.

In conclusion, we have proposed the realization of
tunable 2D Dirac nodal nets in quasi-1D nonsymmorphic
compounds, resulting from the interplay between the coplanar
symmetry-enforced and symmetry-protected accidental Dirac
nodal lines. Using DFT calculations, we have demonstrated
that the appearance, shape, and size of the 2D Dirac nodal nets
in K2SnBi and MX3 compounds can be tuned by chemical
substitution, pressure, or strain, leading to controllable
physical properties, as is evident from the nontrivial Landau-
level spectra in these compounds. Our work offers a feasible
plan to realize the tunability of the nodal-line connections
in real materials, which is important for exploring novel
physical properties and potential applications of the nodal-line
semimetals.
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