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Assessing the validity of the thermodynamic uncertainty relation in quantum systems
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We examine the so-called thermodynamic uncertainty relation (TUR), a cost-precision trade-off relationship in
transport systems. Based on the fluctuation symmetry, we derive a condition for invalidating the TUR for general
nonequilibrium (classical and quantum) systems. We find that the first nonzero contribution to the TUR beyond
equilibrium, given in terms of nonlinear transport coefficients, can be positive or negative, thus affirming or
violating the TUR depending on the details of the system. We exemplify our results for noninteracting quantum
systems by expressing the thermodynamic uncertainty relation in the language of the transmission function. We
demonstrate that quantum coherent systems that do not follow a population Markovian master equation, e.g., by
supporting high-order tunneling processes or relying on coherences, violate the TUR.
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I. INTRODUCTION

A thermodynamic uncertainty relation (TUR) describing
a trade-off between entropy production (cost) and precision
(noise) was recently derived for classical Markovian systems
operating at steady state [1–5], with generalizations to finite-
time [6], time-discrete, and driven Markov chains [7]. The
thermodynamic uncertainty relation has generated significant
research work directed at understanding its ramifications to
dissipative systems such as biochemical motors and heat
engines [8] and probing its validity in the classical regime [9–
12] and beyond [13,14].

For a two-terminal single-affinity system, the TUR con-
nects the steady-state averaged current 〈j 〉, its variance
〈〈j 2〉〉, and the entropy production rate σ in a nonequilibrium
process as

〈〈j 2〉〉
〈j 〉2

σ

kB

� 2. (1)

This relation reduces to an equality in linear response: the
current and the entropy production rate are linear in the ther-
modynamic affinity A, 〈j 〉 = GAT , (T is the temperature),
σ = 〈j 〉A, and the noise satisfies the fluctuation-dissipation
relation with the linear transport coefficient G, 〈〈j 2〉〉 =
2GkBT . Away from equilibrium, Eq. (1) points to a funda-
mental trade-off between precision and dissipation: A precise
process with little noise is realized with a high thermodynamic
(entropic) cost. We refer to systems that obey this inequality as
“satisfying the TUR.” TUR violations correspond to situations
in which the left-hand side of Eq. (1) is smaller than 2.

Several interesting questions immediately come to mind
when inspecting the TUR. Does it hold for other systems
beyond Markov processes? Away from equilibrium, can we
derive the TUR from fundamental principles, essentially from
the fluctuation symmetry [15–19]? What is the role of quan-
tum effects in validating or violating the inequality [13]?

Recent studies addressed the potential of quantum coherences
to reduce fluctuations in quantum heat engines [14].

The objective of our work is to understand the valid-
ity/invalidity of the TUR from fundamental principles beyond
specific examples. In particular, (i) using the steady-state
nonequilibrium fluctuation symmetry, we achieve a condition
for violating the TUR, written as a series expansion in the
applied bias voltage, and (ii) we study quantum systems that
do not satisfy Markovian dynamics and rationalize violations
of the TUR in certain regimes of operation.

We emphasize that multiaffinity systems such as thermo-
electric junctions go above the lower bound of 2 even close
to equilibrium [20], while a single-affinity system shows
an equality in linear response. In this work, we focus our
attention on the latter situation, where a far-from-equilibrium
condition is necessary for departing from an equality in
Eq. (1).

The paper is organized as follows. In Sec. II, we organize
the TUR relationship in orders of applied voltage, while using
the fundamental fluctuation symmetry. We analyze fermionic
quantum transport junctions in Sec. III by deriving a closed-
form condition on the TUR. We study examples in Sec. IV
and conclude in Sec. V.

II. PERTURBATIVE ANALYSIS OF THE TUR
FOLLOWING THE FLUCTUATION RELATION

The TUR was derived in Refs. [1–3] for classical Markov
processes. Here, we arrive at a general connection between
the current and its fluctuations for arbitrary systems, classical
or quantum, by performing a perturbative expansion in the
bias voltage and employing the nonequilibrium fluctuation
symmetry. To the first nontrivial (second) order in voltage, the
resulting combination can take values below 2, thus demon-
strating a violation of the TUR.

The setup that we have in mind is a junction, where a
finite-size system is sandwiched between two fermionic leads
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with a bias voltage V . The steady-state fluctuation symmetry
[15–19], an outcome of the microreversibility principle of the
underlying dynamics and the local detailed balance condition,
relates the probability for transferring n carriers from high to
low voltage over the time interval t , Pt (n), to the probability
of transferring charges against the applied voltage, Pt (−n)
(assuming e = 1),

ln

[
Pt (n)

Pt (−n)

]
= β V n, (2)

where β = 1/kBT is the inverse temperature. We define the
characteristic function, Z (α) ≡ 〈eiαn〉 = ∑∞

n=−∞ Pt (n)eiαn,
and the long-time limit of the cumulant-generating function
(CGF) as χ (α) = limt→∞ 1

t
lnZ (α), or equivalently

χ (α) = lim
t→∞

1

t

∞∑
p=1

〈〈np〉〉 (iα)p

p!
. (3)

The steady-state fluctuation relation (2) dictates the symme-
try χ (α) = χ (−α + iβV ). The fluctuation symmetry ensures
relations between transport coefficients, specifically [17],

S0 = 2 kB T G1,

S1 = kB T G2. (4)

The first equation is the Johnson-Nyquist (fluctuation-
dissipation) relation. The second equation uncovers a uni-
versal relation in the nonlinear transport regime, beyond the
Onsager relation. Here, the steady-state charge current and
its associated fluctuations (noise) are expanded in order of
applied voltage,

〈j 〉 = G1V + 1

2!
G2V

2 + 1

3!
G3V

3 + · · ·

〈〈j 2〉〉 = S0 + S1V + 1

2!
S2V

2 + 1

3!
S3V

3 + · · · . (5)

Here, G1,G2,G3, . . . are the linear and nonlinear transport
coefficients. Similarly, S0, S1, S2, . . . are the equilibrium and
nonequilibrium noise terms. The associated entropy produc-
tion is the joule’s heating, σ = V 〈j 〉/T .

We are now ready to put these relations together, and we
find that

βV
〈〈j 2〉〉
〈j 〉 = β

G1
S0+βV

G1

[
S1 − S0 G2

2 G1

]
+βV 2

G1

×
[
S2

2
−S0G3

6G1
+ S0G

2
2

4G2
1

− S1G2

2G1

]
+O(V 3) + · · ·

= 2 + V 2

G1
Cneq + O(V 3) + · · · , (6)

where we define the combination Cneq as

Cneq ≡ β

6
[3S2 − 2kBT G3]. (7)

Note that the O(V ) term disappears in the above expression
precisely due to Eq. (4), an outcome of the nonequilibrium
fluctuation symmetry (2).

Equations (6) and (7) are central results of this work:
a combination of nonlinear transport coefficients determine
the validity of the TUR. In the O(V 2), the TUR is satisfied

to second order in voltage if Cneq � 0. It is violated once
Cneq < 0. Equation (6) holds for arbitrary classical or quan-
tum junctions. The only underlying requirement behind it are
relationships (4) between transport coefficients, in and beyond
linear response, which are grounded in the fluctuation relation.
One can further extend this result for systems under a mag-
netic field and for bosonic systems. A nontrivial consequence
of our work is that for Markov processes, high-order transport
coefficients satisfy an inequality, S2 � 2

3kBT G3. The next
section examines this derivation in quantum transport prob-
lems.

III. NONINTERACTING CHARGE TRANSPORT:
FORMULA FOR THE TUR VIOLATION

We focus here on a generic noninteracting quantum charge
transport problem and study the validity (Cneq � 0) and break-
down (Cneq < 0) of the TUR based on the perturbative ex-
pansion Eq. (6), as well as exact simulations. We consider a
tight-binding chain connected to two fermionic leads that are
maintained at different chemical potentials but at the same
temperature. The steady-state cumulant-generating function
associated with the integrated charge current was first de-
rived by Levitov-Lesovik [21–23]. It was later extended to
finite-size systems [24,25] and written following the Keldysh
nonequilibrium Green’s function formalism [15,26]. It is
given by

χ (α)=
∫ ∞

−∞

dE

2πh̄
ln

(
1 + T (E)

{
fL(E)

[
1 − fR (E)

]
(eiα − 1)

+ fR (E)
[
1 − fL(E)

]
(e−iα − 1)

})
. (8)

Here, T (E) is the transmission function for charge transport at
energy E. It can be calculated from the retarded and advanced
Green’s function of the system and from its self-energy
matrix [27,28]. The transmission function is restricted to
0 � T (E) � 1. α is a counting parameter for charge transfer.
fν (E) = [eβ(E−μν ) + 1]−1 is the Fermi distribution function
for the two metal electrodes ν = L and R. As mentioned
above, the CGF satisfies the steady-state fluctuation symme-
try, χ (α) = χ (−α + iβV ), where V = μL − μR [29]. From
the CGF, one can generate all the cumulants. In particular, to
interrogate the TUR we need to focus on the current and its
fluctuations, given as 〈j 〉 = ∂χ

∂ (iα) |α=0 and 〈〈j 2〉〉 = ∂2χ

∂ (iα)2 |α=0.
Working out Eq. (8) we get

〈j 〉 =
∫ ∞

−∞

dE

2πh̄
T (E)

[
fL(E) − fR (E)

]
,

〈〈j 2〉〉 =
∫ ∞

−∞

dE

2πh̄

(
T (E)

{
fL(E)

[
1 − fL(E)

]

+ fR (E)[1 − fR (E)]
} + T (E)[1 − T (E)]

× [
fL(E) − fR (E)

]2)
. (9)

To test the TUR, we can use the exact expressions (9) in
simulations. However, to gain a deeper understanding of
this trade-off relationship we employ the voltage-perturbative
expression (6). To find the nonequilibrium transport coeffi-
cients, we Taylor-expand the current and its noise in orders
of V around equilibrium, μL = μ + V/2 and μR = μ − V/2,
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and get

G3 = 1

4

∫ ∞

−∞

dE

2πh̄
T (E)

∂3f (E)

∂μ3
,

S2 = 2 kBT G3+ 2
∫ ∞

−∞

dE

2πh̄
T (E)[1−T (E)]

(
∂f (E)

∂μ

)2

.

(10)

We proceed and simplify the third-order derivative using
the following relation, ∂3f/∂μ3 + 6β(∂f/∂μ)2 = β2∂f/∂μ.
Below we also make use of the linear conductance,

G1 =
∫ ∞

−∞

dE

2πh̄
T (E)

∂f (E)

∂μ
. (11)

Substituting the transport coefficients (10) into Eq. (7), we
gather

βV
〈〈j 2〉〉
〈j 〉 = 2 + β2V 2

6G1

∫ ∞

−∞

dE

2πh̄
T (E)

∂f (E)

∂μ

× {
1 − 6 T (E)f (E)

[
1 − f (E)

]}
+O(V 3). (12)

Here, f (E) is the equilibrium Fermi function. Following
Eq. (6) we identify Cneq by

Cneq ≡ β2

6

∫ ∞

−∞

dE

2πh̄
T (E)

∂f (E)

∂μ

× {
1−6 T (E)f (E)

[
1 − f (E)

]}
. (13)

This function can switch sign depending on the structure of
the transmission function and the contribution coming from
the Fermi distribution. The validity of the TUR thus delicately
depends on the properties of the system, i.e., its energetics
and its coupling to the leads, hidden within the transmission
function, as well as external conditions, i.e., the temperature.

Equation (13) is a central result of this work. Evaluating it
gives a direct measure for TUR violation within second order
in voltage. This expression can be furthermore supported by
comparing its prediction to exact numerical results. We now
discuss several limiting cases of this formula.

Low transmission, T (E) � 1. The limit of small trans-
mission corresponds to uncorrelated electron transfer pro-
cesses. In Eq. (9), if we disregard the quadratic [T (E)]2

expression, assuming it is small relative to T (E), we find
that the nonequilibrium noise always exceeds the equilibrium
value. This limit, of a small transmission probability, should
correspond to a Poisson statistics for transferred electrons,
which is strongly linked to Markov processes. Specifically, in
this limit Eq. (13) yields β2G1/6, thus we get (up to V 2)

βV
〈〈j 2〉〉
〈j 〉 = 2 + β2V 2

6
. (14)

Since Cneq = β2G1

6 > 0, the TUR is satisfied.
Constant transmission. If the transmission is a constant in-

dependent of energy, T (E) = τ , one can show that the TUR is
satisfied. We note that βf (1 − f ) = ∂f

∂μ
and G1 = 1

2πh̄
τ . We

then perform the integration in Eq. (13) using
∫

dE( ∂f

∂μ
) = 1

and 6
β

∫
dE( ∂f

∂μ
)
2 = 1, and we obtain

βV
〈〈j 2〉〉
〈j 〉 = 2 + β2V 2

12πh̄G1
τ (1 − τ ) � 2. (15)

This result corresponds to the quantum limit of the TUR, with
the thermal width of the Fermi distribution smaller than the
broadening of resonances in the system. For low transmission
values, we recover Eq. (14). For a perfect conductor or when
approaching zero transmission, the TUR touches the lower
(equilibrium) bound.

Resonance tunneling condition. We can greatly simplify
Eq. (13) in the opposite limit, when the metal-system hy-
bridization is weak. In this case, we assume that the trans-
mission function is sharply peaked about a certain frequency,
εd , which is set close to the Fermi energy, while the derivative
of the Fermi function is relatively broad (kBT > �). In this
case, the principal contribution to the integral in Eq. (13)
comes from the region near the resonance frequency εd .
We can therefore replace the derivative of the Fermi function
by a constant and simplify Eq. (13),

Cneq = β3

6
f (εd )[1 − f (εd )]

{
T1 − 6f (εd )[1 − f (εd )]T2

}
,

(16)

where we define the integrals

Tn ≡
∫ ∞

−∞

dE

2πh̄
T n(E). (17)

Under this weak-coupling approximation, the violation of
TUR (Cneq < 0) translates into the inequality

T1

T2
< 6f (εd )[1 − f (εd )]. (18)

Since 0 < f (1 − f ) < 1
4 , the violation condition reduces to

T2

T1
>

2

3
. (19)

This inequality is another important result of our work. It
should be pointed out that this condition for the violation of
the TUR likewise holds for systems with multiple resonances
εn, as long as these resonances are sharp and sufficiently
close, εn,�n < kBT , such that they are all positioned under
the (approximately constant) envelope of ∂f

∂μ
. Here, � is the

characteristic width of the resonances.

IV. EXAMPLES

We illustrate the formal results of Sec. III within three
central charge transport models: a single-dot resonant trans-
mission model (A), a serial double-dot junction (B), and a
side-coupled double-dot model (C). The three models are
sketched in Fig. 1. As we demonstrate and rationalize in
this section, the three models show violations of the TUR
in certain regimes—when it is understood that the population
dynamics deviates from Markovianity.

The transmission functions of the three models are
described in the Appendix and displayed in Fig. 2. While
model A depicts a simple resonant-Lorentzian structure, mod-
els B and C show quantum interference effects. In particular,
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FIG. 1. Transport models that show violations of the TUR in
different regimes: model A, a single-dot junction; model B, a se-
rial double-dot junction; and model C, a side-coupled double-dot
junction.

in model B, when � is small, the system includes two quasi
degenerate levels (in the energy basis), and the transmission
is suppressed at large � when both levels contribute. The
side-coupled model C displays a node at E = 0 due to a
destructive interference effect; at large �, the transmission
peak still reaches the unit value close to E = 0, unlike model
B. We note that the double-dot models B and C were recently
analyzed in great detail for demonstrating destructive quan-
tum interference effects in molecular electronic conduction
[30–33].

Junctions A and B were recently studied in Ref. [14]
based on the Levitov-Lesovik formula, as well as with a local
Lindblad equation, manifesting TUR violations in different
regimes. Our analysis in Secs. II and III lays out the theoretical
groundwork for these curious observations and grants us a
fundamental understanding of TUR violations.

In calculations below we position the equilibrium Fermi
energy at μ = 0. Furthermore, for simplicity, we consider
only symmetric junctions with identical hybridization ener-
gies, � = �L,R . In simulations we compare analytical results,
referring to the second order in the V formula, Eq. (12), to
exact calculations using Eq. (9). For convenience, we also
define the function

F ≡ βV
〈〈j 2〉〉
〈j 〉 − 2, (20)

where the breakdown of the TUR to any order in voltage
corresponds to F < 0.

FIG. 2. Transmission functions for models A, B, and C at (a)
weak and (b) strong couplings to the metal leads. Model A, single-
dot junction: εd = 0. Model B, serial double-dot junction: εL,R = 0
and � = 0.1. Model C, side-coupled double-dot junction: ε1,2 = 0
and � = 0.1.

A. Model A: Single-dot junction

The junction includes a single site of energy εd coupled to
two leads. The transmission function is given by

T (E) = �L�R

(E − εd )2 + (�L + �R )2/4
, (21)

where we assume the wide-band limit for the spectral density
of the baths, thus taking � as energy independent.

In the weak-coupling limit, the transmission function is
sharply peaked around εd :

T (E) = 2π
�L�R

�L + �R

δ(E − εd ), (22)

T 2(E) = 4π
�2

L�2
R

(�L + �R )3
δ(E − εd ). (23)

From here, we readily calculate the integrals T1 and T2, given
as

T1 = 1

h̄

�L�R

�L + �R

,

T2 = 1

h̄

2�2
L�2

R

(�L + �R )3
. (24)

Since (�L − �R )2 > −�L�R , the condition in Eq. (19) cannot
be satisfied and therefore the TUR is valid. In particular,
when �L = �R , we find that T2/T1 = 1/2. In fact, this ratio
is prevalent: systems with a set of sharp resonances show up
this ratio at the weak-coupling limit.

In the very-strong-coupling regime, � > εd, kBT , we per-
form an asymptotic expansion with �, T (E) ∼ 1 − E2

�2 + E4

�4 .
We plug it into Eq. (13) and get

βV
〈〈j 2〉〉
〈j 〉 = 2 + β2V 2

6

[
a

(β�)2
+ b

(β�)4
+ · · ·

]
, (25)

where a < 0 and b > 0. Specifically, a = (π2/3 − 4) and
b = 7π4

15 − 18 + π2

3 ( π2

3 − 4). Altogether, we find that for a
single resonant level the TUR is satisfied at weak coupling
when indeed the dynamics can be described by a Markovian
population dynamics [34]. Nevertheless, it is violated at strong
coupling when high-order tunneling processes contribute and
the Markovian population dynamics breaks down [35]. In
fact, under the V 2 expansion, the TUR is always violated at
strong coupling in the single-dot model, with the function Cneq

approaching zero from below.
In Fig. 3(a), we display the violation of the TUR in

the single-dot model based on the analytical V 2 expansion,
Eq. (12). We further compare simulations to the exact form,
received from exact expressions for the current and noise,
Eq. (9). We find that the quadratic formula (13) very well
captures the deviation from linear response up to βV ≈ 1.
Figure 3(b) further shows that only at high voltage, βV 
 1,
when dissipation is excessive, is the TUR satisfied.

B. Model B: Serial double-dot junction

The serial double-dot junction includes two sites of ener-
gies εL and εR , which are coherently coupled to each other
through the tunneling element �. The dots are individually
coupled to the respective leads with dot ν coupled to the
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2 4 6 8 10
Γ

-2

-1

0

1

2

F/
V

2
×10 -3

(a) O(V 2) (analytical)
V = 0.1 (exact)
V = 1 (exact)
V = 2 (exact)

0 1 2 3
V

-6

-4

-2

0

2

F

×10 -3

(b) O(V 2) (analytical)
exact

FIG. 3. Single quantum dot: Violation of the TUR (F < 0),
illustrated by varying the (a) metal-molecule coupling � and
(b) voltage. Parameters are εd = 0, β = 1, and � = 4 in panel
(b). Exact calculations for F/V 2 are based on Eq. (9). These are
compared to the analytic formula (13); we display Cneq/G1 in panel
(a) and V 2Cneq/G1 in panel (b).

νth metal with the hybridization energy �ν . The transmission
function of a double dot is given by [14,33,36]

T (E) = �L�R�2

|(E − εL + i�L/2)(E − εR + i�R/2) − �2|2 .

(26)

Assuming levels’ degeneracy, εL = εR , a Markovian mas-
ter equation neglecting coherences is generally inaccurate
and cannot describe transport in this model even at weak
coupling [34,37–40]. Thus, we expect TUR violations in
this model when �,� < kBT . Under the symmetric cou-
pling (�L = �R = �), we perform the integration (17) and
obtain [14]

T1 = 1

h̄

2��2

�2 + 4�2
,

T2 = 1

h̄

4��4(5�2 + 4�2)

(�2 + 4�2)3
. (27)

According to Eq. (19), a violation of the TUR at weak
coupling is expected when T2/T1 > 2/3, translated here as

0 0.1 0.2 0.3
Γ

-0.05

0

0.05

0.1

0.15

F/
V

2

(a)O(V 2) (analytical)
V = 0.1 (exact)
V = 5 (exact)
V = 10 (exact)

0.05 0.1 0.15 0.2 0.25
0.2

0.3

0.4

0.5

0.6

0.7

0.8

2/3

FIG. 4. Serial double quantum dot: (a) Violation of the TUR
(F < 0) within a certain range for �. The transmission function is
given in Eq. (26), with εL = εR = 0, β = 1, � = 0.05, and � =
0.08. Exact calculations for F/V 2, based on Eq. (9), are compared
to results from the analytic formula for Cneq/G1 based on Eq. (13).
(b) When the ratio T2/T1 (solid line) exceeds 2/3 (dashed line), the
TUR is violated at weak coupling as shown in panel (a).

4x2 − 7x + 1 < 0, with x = �2/�2. This prediction is quite
accurate as we find in Fig. 4.

In contrast, at strong coupling, � 
 �, kBT , the transmis-
sion function is suppressed because of a destructive interfer-
ence effect [32,33,36]. In this limit the TUR is satisfied; recall
that we proved in Eq. (14) that the TUR is valid when the
transmission is small. We can also prove this result analyt-
ically. In the very-strong-coupling regime, � 
 �, kBT , an
asymptotic expansion in � gives T (E) ∼ 16�2

�2 + O( �4

�4 ). We
plug this expansion into Eq. (13) and find that Cneq > 0 to
order 1/�2.

We display our results for the double-dot model in Figs. 4
and 5. First, in Fig. 4(a) we show that the TUR can be violated
at � ∼ � and smaller that the thermal energy, specifically here
in the range 0.04 < � < 0.126. This observation agrees with
Ref. [14]. We again confirm that Eq. (13) very well performs
even at high voltage, compared to exact calculations from
Eq. (9). We further verify in Fig. 4(b) that TUR violations take
place precisely when T2/T1 > 2/3. This inequality thus serves
as an excellent estimate of TUR breaking at weak coupling.

We uphold the quadratic approximation (13) in Fig. 5(a)
by manifesting that it is valid up to βV ∼ 2, whether or
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0 2 4 6 8 10 12
V

-0.5

0

0.5

1
F

(a)

Γ = 0.08

Γ = 0.2

O(V 2) (analytical)
(exact)
O(V 2) (analytical)
(exact)

0.05 0.1 0.15 0.2 0.25
-0.01

0

0.01

0.02

FIG. 5. Serial double quantum dot: (a) Violation of the TUR
(F < 0) as a function of bias. The transmission function, given in
Eq. (26), is evaluated at εL = εR = 0, β = 1, and � = 0.05. (b) The
exact charge current 〈j〉, the associated noise 〈〈j 2〉〉, and the TUR
function F/V 2 plotted against �. Here V = 5. Other parameters are
the same as those in panel (a).

not the TUR is verified. Finally, in Fig. 5(b) we display the
players behind the TUR: the current and its fluctuations. The
TUR is violated when the current is enhanced but the noise is
suppressed, which is a favorable regime of operation.

C. Model C: Side-coupled double-dot junction

The side-coupled model includes two electronic sites of
energies ε1 and ε2, where site 1 is directly coupled to the two
metals and site 2 is side-coupled to site 1. Assuming the two
sites are degenerate at the Fermi energy, ε1,2 = 0, as we show
in Fig. 2, the side-coupled junction displays a node at E = 0.

10 -1 10 0

0

0.02

0.04
Model B
Model C

FIG. 6. Uncovering TUR violations in Model B (�/� ∼ 1) and
Model C (�/� � 1). We use β = 1, V = 1, and � = 4.

The transmission function of this model is given by

T (E) = E2�L�R

|[E + i
2 (�L + �R )]E − �2|2 . (28)

At weak coupling � < �, the transmission shows a two-peak
structure around ±�. Given the node at E = 0, at very weak
coupling we can approximate the transmission by two sep-
arate (close to) Lorentzian functions. We then conclude that
similarly to the single-dot model, we precisely get T2/T1 =
1/2 when �L = �R . Therefore, according to Eq. (19), TUR
violations are not expected at weak coupling in the side-
coupled model. In contrast, at large couplings, � 
 �, the
transmission behaves similarly to the single-dot resonant level
model A; therefore we expect to overturn the TUR. This
could be rationalized by the breakdown of a Markovian mas-
ter equation for population dynamics in this regime, due to
the contribution of high-order tunneling processes [41,42].
Figure 6 displays TUR violations in models B and C using
the complete expressions (9). It is significant to note that the
models behave in a strikingly different way at weak and large
splitting �/�.

We summarize our findings on the validity of the TUR
for the single-dot, serial double-dot, and side-coupled double-
quantum-dot setups in Table I. Here, validation of the TUR
refers to satisfying the inequality to quadratic order in V .

V. SUMMARY

We investigated the validity of the thermodynamic un-
certainty relation in a single-affinity junction beyond linear
response. Based on the nonequilibrium fluctuation symmetry,
we put together a relation among the current, its noise, and the
entropy production, given in terms of nonlinear transport co-
efficients. From this relation we received a general condition
for validating the TUR to second order in biasing/invalidating

TABLE I. Thermodynamic uncertainty relation for charge transport in quantum dot setups.

Hybridization � Single-dot (A) and side-coupled (C) models Serial double-dot model (B)

Weak Valid O(V 2) Invalid
(Markovian master equation for population) (Non-Markovian population dynamics)

Strong Invalid Valid O(V 2)
(High-order electron tunneling processes) (Low-transmission function)
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it, Eqs. (6) and (7). This condition holds for both classical
and quantum systems. We exemplified the analysis on an
analytically tractable noninteracting fermionic system. We
derived a general relation for invalidating the TUR, which was
given in the language of the transmission function [Eq. (13)],
and tested it with central charge transport models, with single
and double (serial and side-coupled) quantum dots.

Future work will be focused on the exploration of the
TUR in interacting (electron-electron and electron-phonon)
quantum systems based on analytical results for the cumulant-
generating function [43] and on the analysis of parallel rela-
tions for heat-conducting systems [44]. Furthermore, we plan
to study nonreciprocating continuous quantum heat machines
that rely on quantum coherences for operation, e.g., absorp-
tion refrigerators [45–47], and search for optimized regimes of
operation with suppressed fluctuations and high-output power.
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APPENDIX: TRANSMISSION FUNCTIONS

The transmission function that appears in the Levitov-
Lesovik formula, Eq. (8), can be computed from the Green’s
function of the system and the self-energies resulting from its
couplings to the leads:

T (E) = Tr[Ĝr
0(E)�̂L(E)Ĝa

0 (E)�̂R (E)]. (A1)

Here, Ĝ
r,a
0 (E) is the retarded (advanced) Green’s function

for the system and �̂L,R are the hybridization matrices that
include the coupling to the reservoirs (electrodes) L and R.

Model A. The single-dot model, also referred to as the
resonant transmission model, includes a single electronic level
with a site energy, εd , which is coupled to two leads. In
this case, the Green’s functions are c-numbers, Gr

0(E) =
[E − εd + i(�L(E) + �R (E))/2]−1 and Ga

0 (E) = [Gr
0(E)]†.

In general, the hybridization parameter depends on energy,
�(E). Nevertheless, for simplicity, in the main text we use
a wide-band model with a fixed value for �. The transmission
function is given by

T (E) = �L(E)�R (E)

(E − εd )2 + [�L(E) + �R (E)]2/4
, (A2)

reducing to Eq. (21) in the wide-band limit.
Model B. The serial double-quantum-dot setup comprises

two levels with site energies εL and εR . The dots are coupled
to each other with a coherent tunneling, �. Each dot is
furthermore coupled to its respective metal lead. The Green’s
functions of the system are 2 × 2 matrices, given by

Ĝr
0(E) = {

EÎ − ĤS − [
�̂r

L(E) + �̂r
R (E)

]}−1
, (A3)

where the system Hamiltonian is

ĤS =
[
εL �

� εR

]
, (A4)

with �̂L(E) = − i
2 �̂L(E), and similarly for �̂R (E). The

self-energy matrices are

�̂L(E) =
[
�L(E) 0

0 0

]
, �̂R (E) =

[
0 0
0 �R (E)

]
.

(A5)

The resulting transmission function is

T (E)

= �L(E)�R (E)�2

|[E − εL + i�L(E)/2][E − εR + i�R (E)/2] − �2|2 .

(A6)

In the wide-band limit we acquire Eq. (26).
Model C. The side-coupled model includes two dots of

energies ε1 and ε2, which are coherently coupled. In this
design, level 1 is coupled to both metal leads while level
2 does not directly connect to the electrodes. The system
Hamiltonian ĤS and the matrix �̂L(E) are given by Eqs. (A4)
and (A5). Since level 1 couples to both leads, �̂R (E) is given
by

�̂R (E) =
[
�R (E) 0

0 0

]
. (A7)

Gathering the transmission function we get

T (E) = (E − ε2)2�L(E)�R (E)

|{E − ε1 + i
2 [�L(E) + �R (E)]}(E − ε2) − �2|2 .

(A8)

Using ε1,2 = 0, we find that the transmission shows a node at
E = 0 and a double-peak structure at E = ±�.
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