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We show that the spectrum of subbands in an electrostatically defined quantum wire in gapped bilayer
graphene (BLG) directly manifests the minivalley structure and reflects Berry curvature via the associated
magnetic moment of the states in the low-energy bands of this two-dimensional material. We demonstrate how
these appear in degeneracies of the low-energy minibands and their valley splitting, which develops linearly in a
weak magnetic field. Consequently, magnetoconductance of a ballistic point contact connecting two nongapped
areas of a bilayer through a gapped (top and bottom gated) barrier would reflect such degeneracies by the heights
of the first few conductance steps developing upon the increase of the doping of the BLG conduction channel
(we consider an adiabatic constriction, where conductance is set by the number of propagating ballistic modes
in its narrowest part): 8e2/h steps in a wide channel in BLG with a large gap, 4e2/h steps in narrow channels,
all splitting into a staircase of 2e2/h steps upon lifting valley degeneracy by a magnetic field.
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I. INTRODUCTION

The development of hardware for quantum technology
applications requires materials where an operation of a qubit,
such as a spin state of an electron in a quantum dot [1],
is not hindered by spin decoherence due to its interaction
with environment. In conventional semiconductors, hyperfine
interaction of electron’s spin with nuclear spins appears to
lead to an unbeatable decoherence [2–4], leading to a proposal
[5,6] to employ electron’s spin and valley degrees of freedom
in quantum circuits fabricated from graphene with spinless
C12 nuclei. While quantum-dot qubits and quantum-wire
readouts [7] fabricated from monolayer graphene suffer from
disorder caused by functionalization of their edges, the use
of bilayer graphene (BLG) [8], where a substantial band gap
(∼200 meV) can be induced by electrostatic gating [9–11]
has been suggested [12] as a possible route toward creating
quantum circuits with a long spin-coherence time. Recently,
electrostatically controlled quantum wires [13–16] and even
dots [17–19] in BLG have been successfully fabricated and
operated in the Coulomb blockade (for dots) and ballistic
conduction (for wires) regimes. In such devices, similar to
those sketched in Fig. 1, dual (top and bottom) gating [20,21]
permit to control both interlayer asymmetry gap, �, generated
by a displacement field, EZ , and the Fermi level in the
conduction channel.

Here, we present a detailed theoretical analysis of elec-
tronic properties of ballistic quantum wires and their magne-
totransport characteristics. We calculate the dispersions of the

one-dimensional (1D) modes, En(k), in the wire, which ap-
pear to reflect the formation of a triplet of minivalleys around
both K+ and K− Brillouin zone corners of the spectrum of
BLG upon opening its interlayer asymmetry gap, �, using the
vertical displacement field. We find that, for wide channels
and large gaps �, these minivalleys set an approximate degen-
eracy of the edges of the lowest 1D subbands in the electrostat-
ically defined 1D channel in BLG, as well as a dependence of
the subband spectra on the crystallographic orientation of the
channel axis. We also find that the Berry curvature of electron
states in the gapped BLG minivalleys, and the associated
magnetization of the electron states [22,23], lead to the linear
in magnetic field splitting of the valley degeneracy of the
subbands. All these features are illustrated in Fig. 1, where
we plot the energies of the dispersion minima, En(kmin), for
both K+ and K− valleys in a BLG channel. After taking into
account spin degeneracy, the subband edge spectra in Fig. 1
can be used to predict the staircase of conductance steps
forming upon filling ballistic wires with carriers: crossing
each of the levels plotted by the Fermi energy corresponds
to an 2e2/h conductance step. From this, one can see that,
at B = 0, a wire with the axis aligned with the armchair
direction of the graphene lattice would have all steps with
the height of 4e2/h, whereas a wire aligned along the zigzag
direction would feature a twice-higher first step, 8e2/h.

The above-described properties of quantum wires in
gapped BLG have been determined using the four-band BLG
Hamiltonian [24,25]

H
ξ

BLG = ξ

⎛
⎜⎜⎜⎝

ξU (x) − 1
2�(x) v3π 0 vπ †

v3π
† ξU (x) + 1

2�(x) vπ 0
0 vπ † ξU (x) + 1

2�(x) ξγ1

vπ 0 ξγ1 ξU (x) − 1
2�(x)

⎞
⎟⎟⎟⎠,

⎧⎪⎪⎨
⎪⎪⎩

π = px + ipy, π † = px − ipy,

with p = −ih̄∇ − e
c
A,

v = 1.02 ∗ 106 m/s,
v3 ≈ 0.12v, γ1 = 38 eV,

⎫⎪⎪⎬
⎪⎪⎭
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written in the basis �K+ = (�A,�B ′ ,�A′ ,�B ) or �K− = (�B ′ ,�A,�B,�A′ ) of states on the four BLG sublattices sketched in
the two valleys, K± (for ξ = ±1). The diagonal terms account for the spatially modulated confinement potential, U (x) and an
electrostatically modulated gap, �(x), chosen in the form

U (x) = U0

cosh x
L

, �(x) = �0

[
1 − β

cosh x
L

]
. (2)

The choice of U (x) and �(x) is motivated by recent experiments [14], where simulations have been performed to estimate the
electrostatic potential profile inside the channel. For homogenous BLG with an interlayer asymmetry gap � features [24] four
valley degenerate bands, ±Eα=1,2, such that

E2
α = γ 2

1

2
+ �2

4
+

(
1 + τ 2

2

)
γ1p

2

2m
+ (−1)αv2

(
(2γ1m − τ 2p2)2

4
+ 4ξmv3τp3 cos 3ϕ + p2

[
2mγ1 + �2

v2
+ τ 2p2

]) 1
2

. (3)

Here, p = p(cos ϕ, sin ϕ) is the momentum near the K point,
m ≈ γ1

2v2 ≈ 0.032me is the effective mass of electrons in
gapless BLG, and τ = v3

v
≈ 0.1 parametrizes skew interlayer

hopping [8,11]. The dispersion of the lower conduction

FIG. 1. Subband edges En (conduction band) in the electron
channels in a BLG quantum wire as a function of an external
magnetic field, B, for K± valleys. The device parameters (explained
later in the text) are �0 = 100 meV, L = 85 nm, U0 = −20 meV, and
β = 0.3. Top/bottom panels correspond to armchair/zigzag channel
direction. Upper inset: sketch of the channel geometry (blue region),
where A, B, A’, B’ label the basis atoms of the BLG lattice. Lower
inset: The device architecture where voltage applied to the bottom
gate and top split gates determine the confinement potential U (x )
and the modulated gap �(x ) forming the channel.

band (α = 1) in the K− valley is plotted in Fig. 2 (for
� = 100 meV).

The dispersion features three minivalleys around each K

point [10,11]. The corresponding bands carry Berry curvature,
�(p), and orbital magnetic moment, M(p) = M (p)ez, deter-
mined by the Bloch functions as [22,23]

� = ih̄2〈∇p�(p)| × |∇p�(p)〉 · ez,

M = −ieh̄〈∇p�(p)| × [ε(p) − H (p)]|∇p�(p)〉 · ez. (4)

Here, ∇p = (∂px
, ∂py

), “×′′ is the cross product, ε(p) is the
band energy, and e > 0. Both � and M , computed numeri-

FIG. 2. Contour energy plot for the 2D dispersion of homoge-
neous gapped BLG’s lowest conduction band for � = 100 meV
(grayscale), with minivalleys A, B, and C in valley K−. Blue bars
indicate the orientation of the wire axis along the armchair (θ = 0)
or zigzag (θ = π/2) direction in graphene. The corresponding Berry
curvature, �, and orbital magnetic moment, M , are shown in the
top right and bottom left panel, respectively. The bottom right panel
shows the �-dependence of the maximum value of such magnetic
moment, Mmax, carried by a plane-wave state of electrons with
momentum p.
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cally from the four-band model of BLG, are shown in Fig. 2
for the lower conduction band in the K− valley (the sign
of � and M is reversed in the K+ valley). They exhibit
maxima at the minivalleys, while M (0) ≈ �(0) ≈ 0. Note
that the two-band model of BLG [8,24] with τ → 0 [26,27],

for which ε(p) =
√

( p2

2m
)2 + ( �

2 )2, gives decent estimates for

� ≈ −ξ h̄2

2m

p2

2m
�

ε(p)3 and M ≈ ε(p) e
h̄
� = −ξ eh̄

2m

p2

2m
�

ε(p)2 (see
Sec. III B).

II. MANIFESTATION OF GAPPED BLG MINIVALLEYS
AND BERRY CURVATURE IN THE SPECTRAL

PROPERTIES OF ELECTROSTATICALLY
CONTROLLED QUANTUM WIRES

The electronic properties of gapped BLG also determine
the features of the dispersion of an electrostatically induced
channel. The states close to the edges of the minibands form-
ing in the 1D BLG channel are determined by the electron
states of the minivalleys of gapped BLG . The quantization of
the electron motion perpendicular to the channel axis reflects
the anisotropy of the effective mass in the minivalleys, which,
in the limit of small, but finite gaps (δ = �

γ1

 1 but � >

v2
3m) and small interlayer hopping (τ 
 1) can be found

approximately to read (see Sec. III F)

m/m−1
p ≈ 1

8δ
[8δ4 + 8δ2 + τ (3

√
8δ2 + τ 2 + τ )],

m/m−1
ϕ ≈ 9

8δ
τ (

√
8δ2 + τ 2 + 3τ ), (5)

where � = (1 − β )�0 is the gap in the middle of the channel.
This determines the dependence of the miniband spectrum
on the orientation of the channel axis (blue bars in Fig. 2).
Moreover, the nontrivial topological properties of the BLG
bands (Berry curvature and corresponding magnetic moment)
determine the response to an external magnetic field, B. For a
weak magnetic field, this leads to a valley-dependent shift,

δεξ = −MB = −ξ |M|B, (6)

of the bottom miniband energy, which leads to the valley
splitting of the miniband spectra. At high magnetic fields,
this valley splitting culminates in a full valley polarization
of the lowest two minibands resulting from the sublattice
polarization of the “zero-energy” (n = 0, 1) Landau levels
(LLs) in BLG [6].

To develop a detailed qualitative description of the spectra
of the 1D channel in BLG, we diagonalize the Hamiltonian in
Eq. (1) numerically [10,11] in a basis,

⎛
⎜⎝

ψn(x̃)
0
0
0

⎞
⎟⎠,

⎛
⎜⎝

0
ψn(x̃)

0
0

⎞
⎟⎠,

⎛
⎜⎝

0
0

ψn(x̃)
0

⎞
⎟⎠,

⎛
⎜⎝

0
0
0

ψn(x̃)

⎞
⎟⎠, (7)

where ψn(x̃) =
√

α√
π2nn! e− 1

2 (αx̃ )2Hn(αx̃) are harmonic oscil-

lator functions with a scaling factor α adapted to the width,
L, of the quantum well. We assume free propagation of the
electrons along the channel axis ỹ = x sin θ + y cos θ , and
quantization across the channel axis x̃ = x cos θ − y sin θ :
�n(r̃) = eiky ỹ�n(x̃).

FIG. 3. Energy levels of the conduction band for BLG in the
presence of a confinement potential U (x ) and a modulated gap �(x )
as given by Eq. (2) for several values of �0 and angle θ . The marks A,
B, C refer to the minivalleys indicated in Fig. 2. The insets illustrate
how the spectra convert into conductance steps G(EF ) upon filling
the quantum wire with electrons.

The wave vector k is related to the momentum p by h̄.
For every set of system parameters, we use Eq. (1) and this
basis to compute the Hamiltonian matrix and diagonalize it to
obtain the energy spectrum for each ky point. Convergence is
reached when the energy levels do not change anymore upon
including a higher number of basis states.

To quantify the channel spectra, we perform a numerical
analysis of the Hamiltonian given in Eq. (1) for several values
of �0 and L, with and without magnetic field, and for 1D
channels oriented along the armchair (θ = 0) or the zigzag
(θ = π/2) direction. In Fig. 3, we show the spectra of mini-
bands in the channel with L = 85 nm and for different values
of �0 at B = 0. Further examples of spectra demonstrating
the influence of the various model parameters are provided in
Sec. III A.

Adiabatically, only the outer modes at nonzero momentum,
indexed by B and C in Fig. 3, would be populated by
nonequilibrium electrons driven by a bias voltage applied to
the bulk electrodes at the end of the 1D channel structure.
Therefore, the fact that some of the calculated dispersions
feature a band inversion does not affect the mode counting
(for details, see Sec. III C). From counting the number of
current-carrying modes provided by the lowest-energy band,
we conjecture the conductance step at the band edge shown
in sketches in Fig. 3. For narrow channels and/or smaller
�0, the lowest energy levels are well separated, resulting
in the first conductance step of 4 e2/h that should happen
upon filling the channel with electrons (the factor of 4 in the
height of the step reflects the spin and valley degeneracy).
For wider channels and/or larger �0, the lowest-energy bands
merge together (in fact, this is an almost-degeneracy with an
exponentially small splitting of the band edges). This results
in the step of 8 e2/h at the conductance threshold. Note that
this simple mode-counting picture does not account for the
influence of disorder in the system nor for potential relaxation
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FIG. 4. Subband spectra in a BLG wire in a magnetic field
(�0 = 100 meV, L = 85 nm). Small-field regime (top/second row)
displays a linear in B valley splitting (gray asymptotes in the second
row panels) expected from Eqs. (4) and (6). High-field regime
(third/bottom row): electronic channels are in fact edge states of the
lowest LLs in gapped BLG. In structures with multiple split gates
and variable sign of the gap (bottom panel), the states in the opposite
valleys are realized in the parts with opposite sign of the gaps and
come together at the ±� interface, where they form topologically
protected channels [28,29].

of the nonequilibrium electrons via scattering (see Sec. III C).
Their effect will be subject of further studies.

To take into account a magnetic, in Eq. (1) we use the
vector potential in Landau gauge along the channel: A =
B(y sin θ,−x cos θ, 0). In the presence of a gap and a nonzero
magnetic field, both spatial and time-reversal symmetry are
broken. Therefore, for B �= 0, we compute the spectra for
the two valleys K±, separately. Examples of such spectra
for �0 = 100 meV, L = 85 nm, and B = 2 T are shown in
Fig. 4. The lowest bands in these spectra clearly display K±
valley splitting, for which the difference δε± = δε+ − δε−
of the lower subband edges is described very well by the
Zeeman splitting of magnetic-moment carrying states in the
minivalleys of gapped BLG,

δε± ≈ −2|M|B. (8)

with the same slope but opposite signs in the valleys K+ and
K−. We demonstrate the agreement of this linear behavior
in B with the numerics at small magnetic fields in Fig. 4.
In the limit of large magnetic fields, the subbands in the
channel become spatially modulated and evolve into the LLs
of BLG. For LL number n, these are given approximately
by [8,25]

E0 ≈ EB=0,0 and E1 ≈ EB=0,0 − ξ
�

γ1
h̄ωc,

En,ξ ≈ EB=0,n−1 + h̄ωc

√
n(n − 1) − ξ

�

2γ1
h̄ωc, (9)

where ωc = eB/m. With EB=0,n, we denote the nth B = 0
conduction band level and � is the gap at the center of
the channel [for the gap profile in Eq. (1), � = (1 − β )�0].
For the n = 0, 1 LLs, the electron valley index is linked
to the sublattice so that the two lowest minibands on the
conduction band side of the BLG spectrum are always in
one valley, as represented by the colours in Fig. 1. Note that
the states in the opposite valley are buried in the valence
band, hence, excluded from the transport of the channel.
To create a channel with electrons based on the opposite
BLG valley (K− instead of K+) one would need to either
invert the magnetic field, or invert the sign of the gap (by
inverting the gate voltage), as sketched in the bottom image of
Fig. 4.

III. EVOLUTION OF BLG QUANTUM WIRE SPECTRA
UPON VARIATION OF THE BLG ASYMMETRY GAP,

CRYSTALLOGRAPHIC ORIENTATION OF THE
CHANNEL, AND MAGNETIC FIELD

A. Examples of spectra over a large parameter range

We discuss the dependence of the channel spectra on
the various system parameters. Figure 5 demonstrates the
evolution of the nonmagnetic conduction band levels with
increasing �0 for L = 85 nm for orientation angle θ = 0
in the left column and θ = π/2 in the right column. There
is a set of size-quantized energy levels as a function of the
transverse momentum ky , before, above a certain energy, the
continuous spectrum is reached. The lowest conduction band
edge develops a structure with multiple minima with increas-
ing �0. At a certain critical value of �0 (which depends
on L and on the orientation), the spectra exhibit an addi-
tional degeneracy when the lowest two energy levels touch.
Figure 6 shows corresponding channel spectra when a
nonzero external magnetic field is considered. In the presence
of a magnetic field, the spectra form LLs. Breaking of both
spatial inversion symmetry and time-reversal symmetry en-
tails valley symmetry breaking and therefore we obtain two
unrelated spectra for the valleys K+ and K−. For the case
without confinement potential, i.e., U ≡ 0, particle-hole sym-
metry in one valley is broken in a nonzero magnetic field, but
is restored when both valleys are included. Figure 6 compares
the LLs in the conduction band for different values of �0, L,
and the field strength B for both channel orientations θ = 0
(left column) and θ = π/2 (right column). We observe a
similar multiminima structure as in the zero-field case (where,
additionally, symmetry between the two valleys is broken)
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FIG. 5. Energy levels of the conduction band for the BLG QPC
without magnetic field for different values of �0 for orientation
θ = 0 in the left column and θ = π/2 in the right column.

before, above a certain threshold, nearly flat LLs are formed.
The splittings of the subband edges in the 1D channel which
result from the valley splitting lead to the splittings of the
conduction quantization steps. In Fig. 7, we show additional
examples for the lower conduction band edges as a function
of the magnetic field strength for different �0 and different L.
We analyze the discrete energy spectra as a function of B from
low values of B, where the behavior of the levels and the gaps
is dictated by the confinement, to large magnetic fields where
the spectra evolve into the B-field driven LL spectra. At zero
magnetic field, the level splitting of the lowest energy levels
scales as 1/L, and is almost independent of �0. Conversely,
the scaling of the LLs at large magnetic fields is governed by
�0, see Eq. (9). Also, with increasing �0, additional features

FIG. 6. Channel spectra (conduction band) for the BLG QPC in
the presence of a magnetic field for different values of �0 and L.

in the spectra appear, notably for the lowest conduction band
levels. Therefore, we find the magnetic field positions of the
level crossings in Fig. 7 to depend on both parameters, L and
�0. For all choices of the system parameters, above a certain
value of the magnetic field, the two lowest energy levels stem
from the same valley. As the two zero-energy states of the
K−-valley are buried in the valence band, we observe this
pairing between states N + 1 and N − 1 in the large field
limit, where N labels the energy levels at zero magnetic field.
As a consequence, the two lowest energy states in this regime
always stem from the same valley (see Fig. 1). This allows
for the postulation of valley polarized currents in a BLG
quantum point contact (QPC) in the presence of a magnetic
field. The possibility of creating valley polarized currents in
this structure is hence a robust feature of this structure in this
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FIG. 7. Energy levels of the conduction band for the BLG QPC
as a function of B for different values of �0 and L.

2D material and does not require a particular choice of system
parameters.

B. Berry curvature and Magnetic Moment

We discuss the topological properties of the homogeneous
BLG states we obtain from different models. In Fig. 8, we
plot both magnitude of the Berry curvature, �, and orbital
magnetic moment, M , for the lowest conduction band of BLG
in the K− valley, computed for the two-band model or the
four-band model with or without trigonal warping, respec-
tively. The two-band model description in the absence of
trigonal warping reproduces the feature that Berry curvature
and magnetic moment are nonzero only within a ring of finite
width at finite momentum around the K-point. Within this
approximation, the magnetic moment is simply proportional
to the Berry curvature (as for any particle-hole symmetry
two-by-two Hamiltonian [30]). The anisotropic feature, how-
ever, that only the states in the minivalleys carry finite Berry
curvature (and, consequently, finite magnetic moment), is
obtained only when v3 is taken into account. The two-band
model predicts the Berry curvature and the magnetic moment
to vanish exactly at the graphene valley center, whereas in
the four-band model both quantities remain finite at zero
momentum (but small as compared to the maximum value
at the peaks). Within the two-band model, in the absence of

trigonal warping, � and M can be computed analytically as

� ≈ ξ
h̄2

2m

p2

2m

�

ε(p)3
,

M ≈ ε(p)
e

h̄
� = ξ

eh̄

2m

p2

2m

�

ε(p)2
. (10)

This allows us to give an approximate formula for the
maximal value of the magnetic moment which is simply
given by

Mmax ≈ μ = ξ
eh̄

2m
. (11)

Hence we see that the minivalley states of gapped BLG at
zero magnetic field have finite Berry curvature and corre-
sponding finite magnetic moment as shown in Fig. 8. The
orbital magnetic momentum behaves like the electron spin
[22] and will therefore couple linearly to a magnetic field
through a Zeeman-like term −M(k) · B. This leads to the
linear behavior of the subbands in Fig. 7 with B with the same
slope but opposite signs in the valleys K+ and K−.

C. Adiabatic population of the transverse modes

We discuss the adiabatic population of the modes in the
zero-field channel spectra by nonequilibrium electrons driven
by a bias voltage applied at either end of the channel. This
counting of transverse transport modes leads to the predictions
for the conductance of the channel at zero magnetic field
shown in Fig. 3. As an example, we use the θ = 0 spectra for
different �0 and L shown in Fig. 9. The electrons of homo-
geneous BLG (which would correspond to U0 ≡ �0 ≡ 0) are
injected into the channel (which is realized for U0 �= 0,�0 �=
0). Coupling in the modes adiabatically means increasing the
confinement and the gap continuously. Figure 9 demonstrates
the evolution of the modes upon such continuous, gradual
increase of the channel parameters: At the Fermi energy EF

needed to populate the modes of the developing channel in
the right-hand side figure, in the left panel (corresponding to
a more shallow part at the onset of the channel) only modes
at nonzero momentum are available. Therefore, only the outer
modes in the spectra (corresponding to the minivalleys B and
C in Fig. 2) of the right-hand side plot will be populated.
Population of the zero-momentum modes would require relax-
ation of momentum via scattering processes. A similar line of
argumentation also holds for the channel spectra for θ = π/1,
again leading to the conclusion that only the modes corre-
sponding to the minivalleys at nonzero transverse momentum
(minivalleys B and C) will be populated by nonequilibrium
electrons. Additional degeneracies between the the lowest
energy levels, however, can lead to a higher number of modes
available for the nonequilibrium electrons at the same energy.
We observe such degeneracies for the band edges of the lowest
and the first conduction band for both angles above a certain
critical value of �0. Due to this additional degeneracy, we
conjecture that there will be an additional factor of 2 for the
conductance if �0 is large enough.
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FIG. 8. Berry curvature � and orbital magnetic moment M of the lowest conduction band of homogeneous gapped BLG calculated within
various different levels of approximation. Top: �(px, py ) and M (px, py ) within the two-band model without trigonal warping according to
the analytical expressions of Eq. (10). Middle: �(px, py ) and M (px, py ) within the four-band model including trigonal warping. Bottom: Cuts
along the px , and py direction, respectively, through � and M for the different models.

D. Perturbation theory for small magnetic field strengths

As an additional consistency check, the onset of the mag-
netic field effects for very small values of the magnetic
field B can be reproduced using perturbation theory. We
treat the magnetic part of the Hamiltonian as a perturbation
writing H

ξ

BLG = H
ξ
0 + H

ξ

B , where H
ξ
0 is the Hamiltonian in

the absence of a magnetic field as given in Eq. (1), and the
perturbation due to the magnetic field reads

H
ξ

B = ξB

⎛
⎜⎜⎝

0 i e
c
v3x 0 −i e

c
vx

−i e
c
v3x 0 i e

c
vx 0

0 −i e
c
vx 0 0

i e
c
vx 0 0 0

⎞
⎟⎟⎠. (12)

FIG. 9. Adiabatic population of the channel modes with nonequi-
librium electrons. When the channel depth is gradually increased, the
modes of at the band edges of the channel spectra (Fermi energy EF

in the right picture) become populated by nonequilibrium electrons
that carry a nonzero transverse momentum (intersections with EF in
the left picture).

Due to the trigonal warping, the lower band edges occur at
a nonzero transverse momentum (kx,min, ky,min). Using these
states at the band edges, we compute the first-order correction
E1 to the energy to read

E
ξ=+1
1 = 〈

�0
K+

∣∣Hξ=+1
B

∣∣�0
K+

〉
=2 B

e

c
Im

[
v
〈
�0

A

∣∣x∣∣�0
B

〉 + v
〈
�0

B ′
∣∣x∣∣�0

A′
〉

− v3
〈
�0

A

∣∣x∣∣�0
B ′

〉 ]
,

E
ξ=−1
1 = 〈

�0
K−

∣∣Hξ=−1
B

∣∣�0
K−

〉
= − 2 B

e

c
Im

[
v
〈
�0

B ′
∣∣x∣∣�0

A′
〉 + v

〈
�0

A

∣∣x∣∣�0
B

〉

− v3
〈
�0

B ′
∣∣x|�0

A

〉 ]
, (13)

where |�0
K+/K−〉 denotes the unperturbed, valley degenerate

state at zero magnetic field evaluated at finite ky,min as ob-
tained from the numerics. It reproduces the gray, dashed lines
in Fig. 4. Hence the first-order perturbation theory correction
in the vector potential predicts the linear dependence on B

with opposite sign of the slope for either valley. This serves as
additional proof that it is the properties of the zero-field states
in the minivalleys of gapped BLG (namely, their nontrivial
Berry curvature and finite magnetic moment) that dictate the
sensitivity of the spectra to the magnetic field at low magnetic
field (i.e., in the linear regime).

E. Role of γ3: Comparison of spectra without trigonal warping

In Figs. 10, 11, 12, we show the channel spectra with and
without magnetic field in the absence of trigonal warping,
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FIG. 10. Energy levels of the conduction band for the BLG QPC
without magnetic field for different values of �0 when we do not
consider trigonal warping effects and set v3 ≡ 0. The black lines
compare to the first conductance band of homogeneous gapped BLG
in the absence of confinement with a gap �0.

FIG. 11. Landau levels (conduction band) of the BLG QPC for
a magnetic field of B = 2 T and different values of �0 when we
choose v3 ≡ 0. Blue lines are for the K+ valley, magenta lines are
for the K− valley. The black lines compare to the first conductance
band of homogeneous gapped BLG in the absence of confinement
with gap �0.
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FIG. 12. Conduction band edges as a function of the magnetic
field for different L and different values of �0 for the case without
trigonal warping effects, i.e., v3 ≡ 0. Blue lines are for the valley
K+, magenta lines are for the valley K−.

i.e., when we chose v3 ≡ 0, for a channel with L = 85 nm
and different values of �0 and the magnetic field. In the
case without trigonal warping, the dispersion of homogeneous
BLG does not exhibit the threefold mini-valley structure, but
is of rotationally symmetric Mexican-hat shape [8]. Therefore,
the channel spectra in this case do not depend on the angle
of the channel orientation. We show in Figs. 10 and 11
that the spectra do inherit the Mexican-hat features of the
homogeneous-gapped BLG’s dispersion by developing a dou-
ble minimum at nonzero ±ky,min. For smaller values of �0,

FIG. 13. Properties of the spectra at zero magnetic field. The
lowest energy levels En�12 scale linearly with the level number n,
where the slope is independent of �0.

the levels below the continuum are well separated and there
are only shallow modulations of the band edge which would
be washed out by temperature fluctuations. Hence, effectively,
a single, nondegenerate minimum is formed. For larger �0,
the modes become degenerate at ky = 0, but are pushed apart
at nonzero momentum, in analogy to tunneling processes and
instantons in double-well potentials. As a consequence, a
clearly separated double minimum develops at nonzero value
of the transverse momentum. As discussed earlier, at nonzero
momentum the states of BLG have nonzero Berry curvature
and nonzero orbital magnetic moment, even for v3 = 0. As a
consequence, also in the absence of trigonal warping, we see
linear valley splitting with magnetic field in small magnetic
fields, see Fig. 12.

We demonstrate some of the properties of the zero-field
levels in Fig. 13 where we show that the lowest energy levels
En�12 follow an approximately linear dependence on the level
number n, where the slope is independent of the gap. The
level spacing in this regime is found to scale like 1/L as a
reminiscence of the near-to-quadratic confinement.

F. Effective masses of the BLG minivalleys

Within the two-band model approximation the dispersion
of gapped BLG reads [31]

E = ±
(

�2

4
+ (δ2 + 1)p4v4

γ1
2

+ p2(v2τ 2 − δ2v2)

−2p3v3τ cos(3ϕ)

γ1

) 1
2

, (14)

where δ = �
γ1

. We consider the limit of small, but finite gaps

(δ 
 1, but � > v2
3m) and small τ (τ 
 1). The conduction

band assumes three minima at radius

p0 = γ1(
√

8δ2(δ2 − τ 2 + 1) + τ 2 + 3τ )

4(δ2 + 1)v

≈ γ1

4v
[
√

8δ2 + τ 2 + 3τ ], (15)
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FIG. 14. Effective radial and azimuthal masses of the minivalleys
in the BLG dispersion as a function of � (in relation to the mass m

of electron in gapless, BLG).

and angles ϕ = 0, 2
3π, 4

3π (in the K+ valley) or ϕ =
π, 1

3π, 5
3π (in the K− valley). For small variations around the

minima, an expansion to second order in p and ϕ around p0

yields the approximate expansion coefficients

aϕ ≈ 9

64

γ 2
1 τ

�
[
√

8δ2 + τ 2 + 3τ ]3,

ap ≈ 1

4

v2

�
[8δ4 + 8δ2 + τ (3

√
8δ2 + τ 2 + τ )], (16)

from which the approximate effective azimuthal and radial
masses are computed:

mϕ ≈ 4

9

�

v2

1

τ (
√

8D2 + τ 2 + 3τ )
, (17)

mp ≈ 4
�

v2

1

8δ4 + 8δ2 + τ (3
√

8δ2 + τ 2 + τ )
. (18)

Figure 14 shows both effective masses as a function of �.

IV. CONCLUSION

In summary, we find that the minivalley structure of the
gapped BLG dispersion determines the properties of elec-
trostatically defined 1D transport channels in devices based
on this 2D material. The anisotropy of the dispersion in and
around the minivalleys makes the subband spectra sensitive
to the orientation of the channel, including the position and
the splitting of the band edges, therefore determining the
sequence of quantized conductance steps in the BLG wire.

Depending on the channel width and the chrystallographic
orientation, and the size of the gap in BLG, we find that the
first step developing upon filling the channel with electrons
may have 8e2/h or 4e2/h height, for larger or smaller gaps �,

respectively. Also, we find that the miniband splitting linear in
magnetic field, prescribed by the finite magnetic moment of
the electron states at the minivalleys of gapped BLG (related
to the Berry curvature of the gapped BLG bands), results in a
conductance staircase of a sequence of 2e2/h steps.

While the above results identify the generic degeneracies
in the subband spectra of electrostatically defined wires in
gapped BLG at the singe-particle level (which would not
be affected by self-consistent Hartree effects produced by
electron-electron interaction on the shape of voltage potential
in the channel), the details of the potential profile, U (x)
and the gap modulation, �(x), would affect the numerical
values of the subband offset energies. Also, the exchange
interaction in gapped BLG is known to increase the single-
particle band inversion near the center of BLG valleys [32],
making minivalleys more pronounced spectral features in a
homogeneously gapped BLG, so that we expect that the mini-
valley effects predicted by the single-particle theory would be
more pronounced in the real experimentally studied systems,
at least at the lowest temperatures. Moreover, one may expect
that electron-electron interaction in the weakly filled lowest
subband of a BLG quantum wire may produce effects similar
to the thermally activated 0.7 anomaly in GaAs quantum
wires [33–36]. However, the very flat and, in some para-
metric ranges, non-monotonic (even slightly inverted around
ky = 0) lowest energy subbands shown in Figs. 3–10 point
towards other possible roles that may be played by electron-
electron interaction. For one, low-density electrons in a long
BLG wire may form a charge-density wave ground state
(1D Wigner crystals). Another option would be that, for a
partly filled lowest subband, its slightly inverted dispersion
with a maximum at ky = 0 (Figs. 3, 5, and 10) may open
new electron-electron scattering channels between nonequil-
brium electrons injected from bulk electrodes, as discussed in
Sec. III C, and electrons at the Fermi energy in the “passive”
central part of the subband dispersion, which would lead to
a strong suppression of the quantum wire conductance at
intermediate temperatures. These interesting possible effects
of electron-electron interaction on the BLG quantum wire
characteristics will be the subject of further studies.
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